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Abstract—In this work, we propose an interactive visual approach for the exploration and formation of structural relationships in
embeddings of high-dimensional data. These structural relationships, such as item sequences, associations of items with groups, and
hierarchies between groups of items, are defining properties of many real-world datasets. Nevertheless, most existing methods for the
visual exploration of embeddings treat these structures as second-class citizens or do not take them into account at all. In our
proposed analysis workflow, users explore enriched scatterplots of the embedding, in which relationships between items and/or groups
are visually highlighted. The original high-dimensional data for single items, groups of items, or differences between connected items
and groups are accessible through additional summary visualizations. We carefully tailored these summary and difference
visualizations to the various data types and semantic contexts. During their exploratory analysis, users can externalize their insights by
setting up additional groups and relationships between items and/or groups. We demonstrate the utility and potential impact of our
approach by means of two use cases and multiple examples from various domains.

Index Terms—Dimensionality reduction, projection, visual analytics, layout enrichment, aggregation, comparison.
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1 INTRODUCTION

MULTIVARIATE datasets are ubiquitous. The challenge
of making high-dimensional data accessible for visu-

alizations in a two-dimensional space is typically addressed
by dimensionality reduction (DR). A plethora of powerful
visualization and interaction methods have been proposed
for interpreting and exploring scatterplots of dimensionally
reduced data, also referred to as embeddings [1]. However,
most existing approaches do not take a defining character-
istic of many real-world datasets into account: structural re-
lationships between items and groups of items. Item-to-item
relationships, for instance, can result from an inherent (tem-
poral) ordering of data items. Item-to-group associations can
be based on shared categorical values or user-defined group
labels. Group-to-group relationships are defining properties
in hierarchical datasets.

To effectively analyze such structures in scatterplots,
users need to be able to relate visual patterns to the
underlying structure and high-dimensional data. This is
complicated by a general drawback of DR techniques—
embedding the data in a space with reduced degrees of
freedom naturally introduces distortions. Even data ana-
lysts and machine learning engineers—who may know the
underlying principles—have difficulties in analyzing these
distorted spaces [2], [3]. Nonato and Aupetit [2] pointed
out that as a result of these complications, many analytic
tasks cannot be performed with the embedding scatterplots
alone. Layout enrichment, such as coloring items by an
attribute, is necessary to visually convey information about
the original high-dimensional data and enable the most
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common tasks when working with embeddings: analyzing
point clusters, representing them as groups, and mapping
high-dimensional data to the embedding [2], [3].

In this paper, we propose an interactive visual explo-
ration workflow of embedding scatterplots that treats struc-
tural relationships as first-class citizens. We represent the
structures directly within an enriched scatterplot layout.
Additional interaction methods and summary visualiza-
tions let users relate the structures to the underlying high-
dimensional data. Users can define groups in datasets on
the fly, compare groups, and introduce new relationships
between them. Summary visualizations show the high-
dimensional data for the groups, while difference visual-
izations show how groups are different from each other. We
designed our approach to be independent of both the DR
technique and the application domain.

Our primary contribution is an interactive visual explo-
ration approach for scatterplots of low-dimensionally em-
bedded, multivariate data, augmented with structural infor-
mation about the dataset and an implementation thereof. As
secondary contributions, we (i) discuss important design
considerations for summary visualizations that grant users
access to the high-dimensional data for items, groups of
items, and differences between groups; (ii) elaborate on how
users can explore an embedding using these summary and
difference visualizations to find similarities and differences
between items and groups and to form new structures
and relationships; and (iii) provide use cases from various
domains that demonstrate the utility of our approach.

The paper is structured as follows. In Section 2, we intro-
duce our terminology for possible structures in datasets and
discuss related analysis tasks. In Section 3, we summarize
related visual exploration approaches and discuss impor-
tant literature that inspired our design for the summary
visualizations. The design of the various visual components
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is described in Section 4, followed by a discussion of the
workflow in Section 5. Section 6 briefly describes how we
implemented our approach as part of the Projection Space
Explorer web application. We present two use cases in Sec-
tion 7 and discuss remaining challenges for future work in
Section 8.

2 DATA & TASKS

In this section, we discuss the different types of structures
and relationships that we considered for the design of our
analysis workflow. From each of these structures, low-level
analysis tasks can be derived.

We call the individual entities in a dataset items and
their properties attributes [4]. For this work, we consider
numerical and categorical attributes. Embeddings are cal-
culated from a set of high-dimensional data items based on
a subset of the available attributes, which we term projected
attributes. The remaining meta-attributes are not reflected in
the embedding positions, but might still be relevant for the
interpretation and exploration, typically through a form of
layout enrichment.

The high-dimensional data items can be structured in
different ways. In the simplest case, the items form a flat set
with no structural relationship between them (see “Flat” in
Figure 1). Tasks related to such flat sets—e.g., identifying
clusters or outliers—can be performed in non-enriched scat-
terplots. If one of the attributes of the data items is strictly
ordered, individual items can be connected to form sequences
(see “Sequence” in Figure 1). Multivariate time series are
the prime examples of datasets that exhibit such sequential
item-to-item relationships. Sequentially connected items in
scatterplots are often referred to as paths or trajectories and
are known as Time Curves in the context of multidimensional
projection. Bach et al. [5] describe the possible patterns
emerging from Time Curves, and how these patterns relate
to different analysis tasks.

We use the term groups to refer to collections of items
with some shared property. Groups can be defined in a vari-
ety of ways (see “Groups” in Figure 1). They can be based on
the values of a categorical attribute, in which case they are
typically represented in scatterplots with categorical color
coding. Similarly, groups can be defined by numeric value
ranges. Users can also set up groups themselves based on
selections made either directly in the embedded scatterplot
or in a different representation of the data (e.g., a tabular
view).

Clusters are special types of groups defined via the
spatial proximity of items (either in the embedding space or
in the high-dimensional data space), typically by means of
some density- or neighborhood-based clustering algorithm.

If a single split of the dataset into groups is based on
attributes or the result of a typical clustering algorithm,
each item will be associated with at most one group. How-
ever, more generally, items can belong to multiple groups.
Such an independent splitting into groups can give rise
to multi-partitioning and hierarchical group structures (see
“Groups—Selection in Embedding” and “Related Groups—
Hierarchy” in Figure 1). Exploratory data analysis often
requires the creation of hierarchical relationships on the fly
dependent on a user’s needs. In this scenario, the order

Density-based Clustering

Groups

Sequence

Flat

Selection in Embedding

Related Groups
Sequence

Selection ElsewhereCategorical Numerical

Hierarchy

Fig. 1. Different types of structure in datasets considered for the design
of our visual exploration workflow. The two halves of each “pill” represent
the values of an items’ categorical (left) and numerical attribute (right).

of the levels in the hierarchy can be arranged in any way.
Group-to-group relationships can also be sequential (see “Re-
lated Groups—Sequence” in Figure 1). This is the case, for
instance, when a chain of clusters forms a trajectory bun-
dle [6]. The most important tasks related to groups are the
exploration of item-to-group associations (in both directions)
and the estimation of data distributions within and across
groups.

As outlined in Section 4, we address the item-to-item,
item-to-group, and group-to-group exploration tasks with
layout enrichment, summary and difference visualizations,
and by letting users freely connect groups in the embedding.

3 RELATED WORK

In this section, we first discuss works related to the inter-
active exploration of embedding spaces. We then briefly
describe the role of supervised, hierarchical DR techniques
and network embeddings in the context of our work. Finally,
our use of visual summaries for representing groups of
items motivates a brief discussion of relevant aggregation/
summary visualization literature along with some related
applications.

3.1 Exploration of Embedding Spaces
In their 2019 survey paper on multidimensional projections
in visual analytics, Nonato and Aupetit [2] discuss the
need to enrich embedding scatterplots to let users work
around distortions introduced by the projection. Layout
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enrichment—combined with carefully chosen interaction
techniques—lets users perform exploration tasks and relate
visual clusters to “true” high-dimensional ones. This com-
bined approach has been used for the interactive exploration
of embeddings in a number of works.

An early example of enabling such an interactive analy-
sis of embeddings is the Projection Explorer by Paulovich
et al. [7], which features various labeling and encoding
options. ProxiLens by Heulot et al. [8] allows within-cluster
and between-cluster analysis by automatically moving false
low-dimensional neighbors to the border of an interactive
lens. Liao et al. [9] use abstract glyphs in combination
with a tabular view to enable a cluster-focused analysis of
multivariate scatterplots. The t-viSNE technique by Chatz-
imparmpas et al. [10] allows users to explore and interpret
t-SNE scatterplots in a dashboard that shows information
related to the preservation of neighborhoods or pairwise
distances. Xia et al. [11] introduce a technique for finding
clusters and outliers in embeddings based on successive
projections that maximize a marked pattern’s saliency. Other
tools focus on the interactive comparison of embeddings,
based on dissimilarity matrices [12], linking clusters be-
tween embeddings [13], or visualizations of neighborhood
overlap [14].

To find similarities and differences between groups of
a dataset, Fujiwara et al. [15] describe a technique to in-
teractively adjust embeddings by moving or scaling group
representations and showing the impact of attributes on
the embeddings’ axes, carrying on from previous work on
interactive embeddings [16], [17]. Ma and Maciejewski [18]
describe the analysis of class separations in embeddings
through locally linear segments, which connects the work to
other recent efforts to explain non-linear embeddings [19],
[20], [21]. The Latent Space Cartography technique by Liu et
al. [22] lets users explore embeddings of an autoencoder’s
latent space in multiple coordinated views with enriched
scatterplots. Users can define groups through selection or
meta-data and create pairwise relationships between them.

Perhaps most closely related to our work are the Probing
Projections technique by Stahnke et al. [23] and the Non-
Linear Embeddings Surveyor by Sohns et al. [24]. Probing
Projections supports a variety of tasks related to cluster
and distortion analysis based on four types of layout en-
richment: (i) histograms show the value distribution of
numeric high-dimensional attributes; (ii) glyphs indicate
whether distances in the vicinity of points are exaggerated
or reduced; (iii) a value heatmap lets users gauge the relation
between directions in the embedding space and high-di-
mensional attribute values; and (iv) overlaid dendrograms
indicate clustering hierarchies of items in the high-dimen-
sional space. In Probing Projections, groups of points can be
defined by automatic clustering or based on user selections,
and small multiples of the groups are created on the fly
in the side panel (similar to our summary and difference
visualizations described in Section 4.3). In contrast, the Non-
Linear Embeddings Surveyor creates groups by binning the
data. Each group is represented by a colored non-convex
hull, which may get split into multiple smaller areas if the
point clouds are far apart. Small multiples show histograms
of the individual attributes and how the binned data points
are distributed in the embedding.

In most of these works, interactions and layout enrich-
ment are used to let users analyze the distortions and the
embeddings themselves, rather than focus on the data that
is embedded (and some approaches are limited to specific
DR techniques). More importantly, only simple item-to-
group associations (such as those derived from categorical
attributes or straightforward clustering) are represented vi-
sually. In contrast, our approach allows analysis of different
types of relationships (see Section 2) and is agnostic to both
the DR technique and the application domain. As such,
it is an extension of our previous work ProjectionPathEx-
plorer [6], which focused on the analysis of collections of
Time Curves [5] (i.e., a combination of categorical grouping
with sequential item-to-item relationships).

3.2 Hierarchical Embeddings
Analysis of the hierarchical properties of datasets in the
context of DR cannot only be supported through a post-hoc
interaction with existing scatterplots, as described above.
It is also possible to consider the hierarchical information
already during the calculation of the embedding. Notable
techniques include Hierarchical SNE [25], Tree-SNE [26],
and Haisu [27]. These approaches are members of the
broader family of supervised DR techniques [28].

While these supervised, hierarchical DR techniques are
certainly related to our approach, we see them as orthog-
onal to the interaction- and enrichment-focused analysis
approach, which is at the core of our contribution. In fact,
since our approach is agnostic to the type of embedding
used, the results of supervised DR techniques can be ana-
lyzed with our technique. However, as discussed by Höllt
et al. [29], additional Focus + Context exploration techniques
may be required for an effective analysis of such hierarchical
embeddings for large datasets.

3.3 Network Embeddings
Network embeddings map nodes to low-dimensional rep-
resentations while preserving the network structure and
properties in the low-dimensional space [30]. Yan et al. [1]
showed that all common DR techniques can be phrased
in this way if an intrinsic graph is created that represents
certain aspects of the high dimensional dataset. Exploring
and analyzing network embeddings has been the subject of
several previous works, paying attention to the special re-
quirements of network embeddings. In EmbeddingVis [31],
users are offered multiple embeddings for comparison and
to examine which properties the embeddings value. Com-
parison of embeddings is also the focus of the work by
Heimerl et al. [14] and Boggust et al. [32], in which they
compare two embeddings and their local neighborhoods.
GNNVIS by Jin et al. [33] lets users analyze graph neural
networks and their prediction results with multiple views
that summarize node-level metrics, structure, and data.

Similar to the hierarchical embeddings discussed above,
network embedding methods are related to our approach
and provide an opportunity to analyze already structured
data with our technique. In contrast to the aforementioned
works, however, we focus on exploring and comparing the
data that is embedded and let users form the structure based
on their insights. A subsequent analysis of the structured
data is, of course, possible with the above-mentioned tools.
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(a) Item-to-Item (b) Items-to-Groups (c) Group-to-Items (d) Groups-to-Groups (e) Groups-within-Group (f) Reprojection

Fig. 2. Supported visual encodings to explore and identify relationships. (a) Related items are connected to form trajectories. (b) An item’s
association to groups is indicated by connecting it to the group centroids ( , , ). (c) Likewise, items associated with a selected group are
indicated through lines from the group centroid ( ). (d) To encode related groups, directed edges are drawn between their centroids ( ▶ ▶ );
here, group contours are shown additionally. (e) Hierarchical structures lead to tree-like representations ( is connected to items of , , and ).
(f) Changing centroid positions during and after reprojection are indicated by a fading trail of centroid marks ( , , and ).

3.4 Summary Visualizations

Our technique makes use of visual summaries of the high-
dimensional data of groups of items in the embedding,
which facilitate the mapping between low and high dimen-
sional data [2], [3]. There are several related examples in
the literature of combining summary visualizations with
embeddings. In DICON [34], Voronoi-diagrams are used as
glyphs to summarize clusters. Visualnostics [35], introduced
by Lehmann et al., are pictograms that guide users through
projections of high-dimensional data. Joia et al. [36] place
textual representations of the most important attributes
inside the concave hulls of clusters. Liao et al. [9] use
radial glyphs as abstract visual summaries for clusters in
multivariate scatterplots. Marcı́lio et al. [37] propose the use
of star plots as visual summaries for the analysis of feature
spaces. Jo et al. [38] provide a grammar to encode cate-
gorical data in scatterplots with multiple scalable designs.
The Probing Projections technique [23], as explained above,
uses histograms to summarize the high-dimensional value
distributions of clusters. Some of these works also improve
readability of cluttered scatterplots [9], [34], [36], [38].

We introduce the concept of summary visualizations to
generalize such specific visual summaries. In Section 4.3,
we discuss how the design of these summary visualizations
depends on the data types, the supported tasks as well as the
semantic context. This discussion draws heavily from previ-
ous work on visual aggregates by Elmqvist and Fekete [39],
and from a more recent paper on the design factors for
summary visualizations by Sarikaya et al. [40].

4 VISUALIZATION OF RELATIONSHIPS AND
STRUCTURE IN EMBEDDINGS

In this work, we enrich the embedding scatterplot with
meta-data, structures, and relationships and provide sum-
mary and difference visualizations so that users can relate
the data.

Based on the types of structure identified in Section 2, we
have designed representations for groups and relationships
between items and/or groups (see Figure 2). We use mul-
tiple layers to display the items, groups, and their relation-
ships to avoid occlusion of the data in focus and improve
readability: (i) unselected items and their relationships are
at the lowest level, followed by their selected equivalents;

(ii) groups, their relationships, and contours follow on top of
the items in the same manner since items belong to groups
and there are fewer groups than items; and (iii) the top layer
is used to visualize selections.

In the following, we explain and justify the visual en-
coding choices. The workflow and interaction methods are
described in Section 5.

4.1 Representing Items and Their Relationships

Items are represented as marks in the scatterplot. The po-
sition of these items can either be based on predefined
coordinates (e.g., if users inspect a dataset, for which a DR
was already applied externally) or based on the results of
a DR algorithm. Color (hue and opacity), shape, and size
channels can be used to encode additional data. The shape
encoding only supports categorical data, while opacity and
size require numerical data. The color scheme of the hue
encoding automatically adapts to the attribute type.

We encode sequential item-to-item relationships by con-
necting item marks with Catmull–Rom splines (see Fig-
ure 2a). We have seen in previous work that the use of
curves over straight lines improves readability [6]. Catmull–
Rom splines do not require any control points to be de-
fined [41], [42]. The color channel of the resulting trajec-
tories can encode an attribute. In Figure 6, the states of the
individual chess games are connected in order to follow the
course of the game. The shape channel of the item marks
can also be set to encode the initial, intermediate, and final
states along a trajectory.

Apart from more advanced options for the different
visual channels, the encodings described so far are mostly
identical to those discussed in our previous work focusing
on collections of trajectories [6]. The following subsections
pertain to new features introduced for working with other
types of structures, such as item-to-group associations and
group-to-group relationships.

4.2 Representing Groups and Their Relationships

The base encoding for a group of items is the group’s
centroid. The centroid is represented by a diamond mark ( )
and differs in shape and size from the item marks in the
embedding, see Figure 2. While we do not provide means
to encode data in the group marks, their size scales with the
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item marks minimum size. Additionally, we use color to dif-
ferentiate between selected (blue ) and unselected (gray )
groups. The position of the centroid is determined by av-
eraging the low-dimensional coordinates of the embedded
items. If the data is reprojected, group trails can be displayed
that show how the group centroids change their position
in the embedding (as illustrated in Figure 2f). Group trails
show centroid positions for the last 50 iteration steps with
decreasing opacity.

We also considered medoids, representative items of a
group, and centroids based on the high-dimensional data
as alternative group representations. However, we decided
against these alternatives for two reasons. First, the high-
dimensional centroids would require adapted DR tech-
niques that provide an out-of-sample extension, to display
interactively defined groups. Second, we observed that em-
bedding the medoid or high-dimensional centroid together
with the items causes it to almost always lie within a visible
cluster. For groups with multimodal point distributions in
the embedding space, this led to unintuitive results, espe-
cially in hierarchies where parent and child nodes coincided,
while the low-dimensional centroids are well separated.

The group centroids are the foundation of our encoding
for item-to-group and group-to-item associations. Depend-
ing on the analysis task and the complexity of the groupings,
we propose different options for encoding item-to-group
and group-to-item associations. By default, these associ-
ations are shown as lines connecting a centroid’s group
and an item, following the Gestalt grouping principle of
connectedness (see Figures 2b and 2c). We opted for this
encoding because it can be used bidirectionally and also
works in cases, where items can belong to multiple groups.
Additionally, it leads to intuitive visual representations of
simple hierarchies (see Figure 2e), even without explicitly
encoding group-to-group relationships.

Users can optionally switch to a contour representation
of the group-to-item associations, as shown in Figure 2d,
which is based on the grouping principle of common re-
gions. The contours are calculated using kernel density
estimation, with a default, global kernel bandwidth set to
one-tenth of the total range spanned by the embedded
points. For each group, contours for 10 evenly spaced
density thresholds are drawn. Initially, we experimented
with concave and convex hulls instead of contours, but
we found that contours enable users to better judge spatial
distributions of groups [43]. Additionally, contours are less
prone to be distorted by outliers.

We encode group-to-group relationships as directed
edges between group centroids. We have decided to use
straight lines with small arrows to represent group-to-group
relationships to clearly distinguish the curves of item-to-
item relationships. Figure 2d shows a simple network of
groups with three edges.

4.3 Summary and Difference Visualizations
We differentiate between two visualizations through which
users can access the high-dimensional data for items or
groups. Summary visualizations show a single item’s or a
single group’s characteristics in a compact manner. Dif-
ference visualizations reveal (dis-)similarities between two
items or two groups.

Inspired by enRoute [44] and Probing Projections [23],
we position the summary visualizations in a juxtaposed
view, as other positioning choices, such as integrated, super-
imposed, overloaded, or nested views, would suffer from
occlusion problems [45]. Additionally, the placement in a
separate view requires no additional layout modifications to
allow further analysis of multiple items or groups. Summary
visualizations are shown in the Details tab of the menu pane,
and in the comparison pane (see Figure 6).

The Details tab displays a summary visualization for
the data selected and allows the selection of displayed
attributes. The comparison pane consists of a three-column
layout. The first column contains a compact vertical repre-
sentation of all sequences (i.e., branches) that go through
the selected item/group. The second column shows the
summary visualization for each item/group selected. The
third column of the side panel displays the differences that
exist between two consecutive items/groups.

We now discuss the design of our generic summary and
difference visualizations first and then elaborate on domain-
specific variants.

4.3.1 Generic Visualizations for High-Dimensional Data
A generic approach of summarizing attributes for a single
item is a tabular layout as outlined in Figure 3 (high-
dimensional data). Similar to Probing Projections [23], we
encode the values for numerical attributes as vertical lines
on top of a density plot that shows the attribute’s value
distribution for the whole dataset. This lets users relate
the characteristics of an item to the overall dataset. For
categorical attributes, we simply show the category of the
item.

For the default summary visualization of groups, we
use density plots for numerical attributes, again overlaid
with the overall distribution. For categorical attributes, we
display each category by the count of items in descending
order.

To make the tabular representation scale to datasets
with many attributes, ranking the attributes is necessary. We
rank table rows for continuous attributes by the normalized
standard deviation (lowest first), and categorical attributes
by the relative frequency of the largest category (highest
first). This ranking lets users quickly identify the most or
least relevant attribute depending on their analysis goal.

The difference visualization of items/groups uses di-
verging bar charts for categorical attributes and box plots for
numerical ones. For the respective attribute, the diverging
bar charts show the relative change in distribution, while the
box plots show the distributions of the two items/groups.
We made the difference visualizations self-contained to
reduce back and forth comparison between the summary
visualizations. The visualizations are generic to use for the
items and groups comparisons. Additionally, we rank the
attributes according to their change between the items/
groups—from most to least.

4.3.2 Domain-Specific Visualizations
While we chose the above encodings as default, we have
found that many specific application domains have more
natural ways to encode the high-dimensional single items
visually. For instance, in the case of the (spatially fixed)
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Fig. 3. Encodings for the summary and difference visualizations for a general tabular approach using high-dimensional datasets, chess games
using the argument of the maxima, a Rubik’s cube based on the relative frequency of occurrence, and chemical compounds using the maximum
common substructure. At the top, we show the visual encoding for item-to-item and at the bottom for group-to-group comparison tasks.

categorical attributes that describe a Rubik’s cube state, the
folded-out cube is a straightforward representation (see Fig-
ure 3) [6]. For chess, the chessboard can be shown directly.
In these cases, we found that a group visualization derived
from the single-item case is more intuitive than the default
tabular one. However, unlike in the default case, where the
full histograms can be used as an aggregation for groups, the
additional design constraints in these special cases require
further aggregation.

Data can be aggregated by different aggregation func-
tions. We found that aggregation by most common value
(i.e., the argmax of a discrete distribution) together with its
frequency/count works well for categorical data with addi-
tional local constraints. Examples of such constraints, which
fix the placement of the mark’s encoding the categorical
values, are the Rubik’s cube “cubies”, or the squares of a
chessboard. This argmax aggregation visually highlights the
most frequently occurring category within an item group.

In the case of Rubik’s cube, we determine the color
of a “cubie” by this argmax aggregation and encode the
value’s frequency with the size of the rectangle (see Rubik’s
Cube in Figure 3). In the case of chess games, the argmax
determines which chess piece is placed on a square in
the summary visualization. The difference visualization for
both of these categorical datasets with placement constraints
is straightforward in the single-item case. The difference
visualizations only display squares and pieces that differ
between two items. For the group-to-group comparison in
the case of a Rubik’s cube, “cubies” that did not change are
colored in white and the ones that changed are encoded
by the respective color and size of the second state. For
the chess games, group-to-group summary visualizations

encode the frequency of a piece with opacity.
The concept of summary and difference visualizations

can also be adapted to completely different data types from
other domains. For example, consider a domain adapta-
tion of our visualization that enables chemists to analyze
chemical compounds in an embedding. For molecules, the
structural formula—a 2D graph with atoms as nodes and
bonds as links—is a well-known representation that can
be used directly for single items. The group representation
can be derived from the structural formula. We propose
to use the maximum common substructure of all selected
items in this case (see chemical compounds in Figure 3). For
the group difference visualizations, the maximum common
substructure between groups can be augmented with the
structural parts that differ.

5 WORKFLOW

Our proposed workflow for visually exploring high-
dimensional data using low-dimensional embeddings is
illustrated schematically in Figure 4. The user interface of
our prototype implementation is depicted in Figure 6. The
interface is divided into three components: the menu pane,
the embedding scatterplot, and the comparison pane.

In our workflow, users first select a dataset and attributes
of interest that serve as input for the DR. Our prototype im-
plementation currently supports t-SNE [46] and UMAP [47],
but other DR algorithms could be added easily, as discussed
in Section 3. They then explore the resulting embedding
scatterplot. In the early phase of their analysis, layout-
enriching encodings directly in the scatterplot engage users
to interact with the embedding. Users can start to explore
and create groups within the embedding, using the enriched
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Fig. 4. Schematic workflow of our interactive embedding exploration
approach starts by selecting the dataset and the attributes to visualize
high-dimensional data in a low-dimensional embedding using dimen-
sionality reduction. The visual exploration of relationships and structures
can then be done by layout enrichment using attributes, by the creation
of groups, and by comparing items or groups and introducing relation-
ships. This process can be considered iterative.

layout and summary visualizations. Once users have ac-
quainted themselves with the embedding space, they can
start to use the difference visualizations to compare and
relate the data and characterize group-to-group relation-
ships. During each phase of their analysis, users can go back
and use their updated knowledge to modify the projection
attributes that should be taken into account by the embed-
ding.

To introduce our approach, we use the Palmer’s Penguin
dataset [48] as a guiding example throughout this section.
The dataset consists of three species of penguins residing
on three islands: Biscoe, Dream, and Torgersen. The Adelie
species is found on all three islands, whereas the remaining
two penguin species—Gentoo and Chinstrap—each inhabit
the latter two islands. The dataset additionally includes the
sex of the penguins and various numerical body measure-
ments (bill length, bill depth, flipper length, and weight).
We load the dataset and use the UMAP DR technique (with
a neighborhood of 15 and 300 iterations) to project the data
based on the penguins’ numerical body measurements (see
Figure 5).

In the following sections, we discuss how users can
adapt and interact with the visuals described in Section 4.

5.1 Enrich Layout
Marks in embedding scatterplots are initially indistinguish-
able. The color (hue and opacity), shape, and size channels
of item marks can be encoded, through the Encoding tab
of the menu pane. Users can enrich the scatterplot with
projected or meta-attributes. As explained in Section 2, meta-
attributes are those attributes that have not been used to

calculate the embedding. In the penguin embedding shown
in Figure 5, the data points are colored by the three species.

Users can also use the shape encoding to distinguish
between start, intermediate, and end states along an item-
to-item trajectory. The color channel of trajectories can be
set to encode an attribute of the users’ choice. In Figure 6,
the states of the individual chess games are connected in
order to follow the course of the game. The item marks and
trajectories are colored according to the opening chosen by
the player.

Hovering over items shows a visual summary of that
item’s high-dimensional data, while a lasso selection shows
a summary of multiple items’ data. The hue encoding is only
applied to selected items and their trajectories. Users can
select single trajectories to load them into the comparison
pane, where consecutive items and their differences can be
explored.

5.2 Create Groups
Groups can either be predefined in the dataset or con-
structed interactively on demand. Users can perform the
interactive grouping: (i) by selecting items directly within
the scatterplot through clicking or using a lasso selection;
or (ii) by calling an automatic, density-based clustering
algorithm (HDBSCAN [49]) that operates on the low-di-
mensional item coordinates. Groups can be given a label to
reference them and maintain orientation after reprojecting
the data. Groups are listed by their labels in the Groups tab
of the menu pane, and the labels serve as headers for the
summary visualizations. Groups can be deleted either via
the context menu of the centroids or in the Groups tab of
the menu pane.

The summary visualization is shown in the Details tab
of the menu pane after selecting a group by clicking its
centroid. Selecting a group also selects all items of that
group and updates their hue encoding (see Section 5.1).
The user can adjust the high-dimensional data displayed in
the summary visualizations, which by default only include
projected attributes. As discussed in Section 4.3, the attributes
are ranked to let users quickly identify the most or least
relevant attributes.

In our guiding example, the user groups the penguin
populations by species. Assisted through summary visual-

Fig. 5. Penguin embedding showing the three species encoded by color.
In the comparison pane, the summary visualizations describe groups
by their attributes, and the difference visualizations highlight distinctions
between two consecutive groups.
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izations and the enriched layout, the user labels the groups.
The individual species are well separated within the em-
bedding, apart from a few outliers of Chinstrap penguins,
for which the user creates an additional group. For the
penguin dataset, the generic summary visualization is used.
In Figure 5, the Adelie penguin group has the attribute bill
length ranked first in the summary visualization, as it is the
least varying attribute in this group. In contrast, the bill depth
varies most, making it the last ranked numerical attribute in
the summary visualization.

5.3 Compare and Relate

As described in previous sections, summary visualizations
are shown when hovering over items and selecting items
or groups. After selecting multiple groups, they can be
compared in the comparison pane using the context menu of
centroids. The comparison pane displays multiple summary
visualizations and compares the groups with difference
visualizations. For items, difference visualizations are avail-
able for points along trajectories. With the stepper controls
in the comparison pane, users can go through the data step
by step, which also highlights the current item/group in the
embedding.

The difference visualization uses the same attributes as
the summary visualization and ranks them, as discussed in
Section 4.3, to let users quickly identify attributes that vary
the most or least between items/groups. We further enhance
the information retrieval by adding a threshold filter (see top
right in the high-dimensional data example in Figure 3)
that lets users hide lower-ranked attributes in the difference
visualization.

In order to compare groups of penguins, the user selects
the groups and loads them into the comparison pane using
the context menu of centroids (see Figure 5). When com-
paring the whole Chinstrap penguin population with the
outlier group, the difference visualization shows that the
groups differ in the distribution of all body measurements.
The Chinstrap Outliers group has much more in common
with the Adelie penguin group, showing only little devia-
tions in the bill length and bill depth (see Figure 5). This
confirms the positioning in the embedding and indicates a
possible misclassification of the Chinstrap Outliers.

After creating and comparing groups, users can intro-
duce edges between groups to set the data in relation.
Edges are created by clicking and dragging from one group
centroid to another. The resulting structure resembles a
graph in which a group or item may have more than one
outgoing or incoming link, as shown in Figure 2d.

In our guiding example, we have Chinstrap penguins
that are much more similar to Adelie penguins than to
their conspecifics. As shown in Figure 5, the user, therefore,
connected the Chinstrap Outliers group to the group of all
Adelie penguins and to the group of all Chinstrap penguins,
to indicate these relationships.

Users can save groups and relationships as sessions to
avoid visual clutter in the embedding space caused by too
many connected groups from different analyses.

In summary, our approach allows users to explore ex-
isting or newly introduced relationships between items or
groups. With the help of our comparison panel, users can

analyze these relationships in detail to investigate differ-
ences, capture insights, and finally present their findings.

6 IMPLEMENTATION

We integrated our visual exploration approach into the
Projection Space Explorer library. The library is open-source
and available on GitHub: https://github.com/jku-vds-lab/
projection-space-explorer.

The prototype is available at https://jku-vds-lab.at/
apps/embedding-structure-explorer. The application ex-
tends and generalizes the ProjectionPathExplorer described
in our earlier work [6].

The web application is written in TypeScript. We use
three.js [50] for rendering the embeddings, Vega-Lite [51]
for the summary and difference visualizations, D3’s contour
library [52] for the contour plots, and React [53] for creating
the user interface.

Users can load tabular datasets as JSON or CSV files,
containing the items and optional structural information.
All datasets that are mentioned throughout this paper are
preloaded in the prototype.

7 USE CASES

We demonstrate our visual exploration approach by means
of two use cases from different domains: (1) the analy-
sis of openings in professional chess games and (2) the
analysis of cancer patient cohorts based on genomics data.
We chose these two because they cover a broad variety
of aspects in terms of data types, structural relationships,
and analysis workflows. The chess dataset includes item-
to-item relationships and requires custom summary and
difference visualizations we have designed in consultation
with a professional chess player. The genomics dataset is
a real-world high-dimensional dataset, where hierarchical
group-to-group relationships are the focus of the analysis.

7.1 Chess Games

The first use case targets the analysis of 450 profes-
sional chess games downloaded from the KingBase chess
database [54]. As hobby chess players and inspired by the
TV series The Queen’s Gambit, we are eager to learn more
about how professional players open their games and what
influence openings have on the strategy, progression, and
outcome of the games. We demonstrate the workflow and
interactions in the supplementary video.

To prepare the dataset, we parsed the raw data files that
are provided in the PGN format using the chess module of
the pgn2gif Python package [55]. The resulting sequences of
chessboard states are encoded in 64 categorical attributes—
each representing a square on the chessboard. There are
13 categories in total: six for the different black pieces, six
for the different white pieces, and one for empty squares.
A chessboard is organized in ranks (rows) and files (columns)
with the identifiers 1 to 8 and a to h, respectively. The white
player’s perspective defines the order of these identifiers.
Letters go from left to right, and 1 is closest to the player.
We additionally added the meta-attribute containing the
opening move chosen by the white player.
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Fig. 6. The menu pane is used to select and project datasets, adapt visual encodings, manage groups of items, and get details on selected items
and groups. The embedding scatterplot shows the dimensionality reduced data. Group A represents the start of all chess games, which splits
up into groups for the three different openings: Zukertort ( B , green), English ( C , pink), and Queen’s Pawn ( D , orange) opening. Groups E – I

contain middlegame moves, and group J endgame moves. In the comparison pane, differences between the connected middlegame groups are
shown.

As a preprocessing step, we projected the chessboard
data using t-SNE with a learning rate of 100 and a perplexity
value of 50. Additionally, we added an identifier for each
game that corresponds to one opening strategy (the first
move by white). Furthermore, we created one group for
the starting position and several groups for the most com-
mon chessboard states for the first ten moves and labeled
them accordingly. To reflect the opening (first move) and
the response (second move), we additionally introduce a
hierarchy of group-to-group relationships that connect the
first two moves sequentially. After loading the preprocessed
dataset, the embedding scatterplot shows the approximately
40 000 projected chessboard states during the games (see
Figure 6).

In our previous work [6], we explored the game trajec-
tories and the main clusters of a similar but smaller dataset.
We were already able to characterize the embedding space
containing the start of the games, endgames with only a
few pieces, and the distinct regions of densely threaded
sequential states. We discovered that the number of pieces
on the chessboard loosely corresponds to the position in the
embedding space. Points on the right side tend to represent
states with many pieces on the chessboard and points on
the left side represent states with only a few. Furthermore,
we characterized the main clusters that show up in the em-
bedding. These clusters were the start position, endgames
with a few pieces, three predominant openings, and clusters
with different pawn positions. The comparison of these
middlegame clusters was a tedious process because we had

to recall the states of the chessboard or use screenshots in
order to detect similarities and differences. The sore points
and limitations of our earlier analysis motivated us to think
about how the analysis of trajectories in embeddings can
be carried out more effectively. The result of this process is
presented in this paper.

We continue our analysis by loading the defined groups
and relationships. We switch to the Groups menu and select
the saved session. The games are colored by the three domi-
nant openings chosen by professional players (see Figure 6):

B Zukertort, C English, and D Queen’s Pawn.
We now want to investigate the different openings by the

white player and the response moves by the black player.
We make use of the summary visualizations for the different
groups and notice that two moves are used in response to
all three openings: pawn from f7 to f5 or pawn from e7 to
e6. We continue to further look into the groups of the first
ten moves and observe that all three openings can lead to
the same chessboard state which then splits up again as the
game continues.

Next, we take a closer look at the middlegames by
focusing on the remaining embedding region left to the
predefined groups. As in our previous work [6], we are able
to see the castling move (king and rook trade places) and the
different pawn positions for these clusters, Figure 6 E to G .

To dig deeper, we create a group for each of the three
clusters and open the comparison pane to analyze the
summary visualizations and compare the groups in more
detail. We see that the position of the kingside (files e to h on
the chessboard) bishop changed from g7to e7 from group E
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(a) Comparison by gene mutations. (b) Comparison by gene expression.

Fig. 7. Analysis of a cancer genomics dataset. (a) In the comparison pane, we compare colon, lung, and pancreatic adenocarcinoma groups.
Particularly the Gly12Cys mutation type changes between the groups. In the summary visualization of the lung group, we see that this is the group’s
most common mutation type. (b) Items in the embedding space are embedded based on gene expression values and color-coded by tumor type:
colon adenocarcinoma (pink ○), lung adenocarcinoma (green ○), and pancreatic adenocarcinoma (orange ○). Here, the comparison pane shows
a comparison of lung and pancreatic adenocarcinoma groups, which are located in the same cluster. Despite their adjacent positioning in the
embedding, we can observe from the summary visualizations that the gene expression values are partially higher for the lung adenocarcinoma
group. The difference visualization highlights that the expression values change most for genes A1CF, GLI1, and NKX2-1.

to group F . However, in group G both queens were moved
from their starting position. We can also observe different
distributions of the opening moves in the respective clus-
ters. The majority of games in group F were opened with
Zukertort opening, while games of groups E were mostly
started with a Zukertort or English opening, and games of
group G with an English or Queen’s Pawn opening.

We extend the list of groups by creating
groups H and I . As outlined in Figure 6, we compare all
selected groups from the middlegame in the embedding
scatterplot. The comparison pane reveals that in the groups
from E to H , castling is used by both players on the
kingside. Only group I differs, where castling is used
by the white player on the queenside (files a to d on the
chessboard). We also see a change in the white player’s
defensive strategy between group G and group H , since
the player has placed a bishop in front of the king in these
states. Group H and group I consist mainly of the Queen’s
Pawn opening.

This confirms our expectation that castling moves are
essential strategic gameplay elements used in almost every
professional game. Which type of castling to use, depends
on the opening already, as we can see in the summary
visualizations of groups E to H . Furthermore, we can see
that the queenside castling is chosen rarely compared to the
kingside castling because it is more dangerous and mostly
done by white who moves first. As hobby players, we
have learned from the analysis that we should use kingside
castling, if possible.

7.2 Cohort Analysis

The second use case is motivated by a New York Times
article [56] that features a new generation of drugs for cancer
treatment, targeting the KRAS gene. Mutations of KRAS can

lead to uncontrolled cell growth, i.e., cancer. In fact, KRAS
mutations are one of the most frequent mutations found
in cancer tissue samples. One particular mutation of this
gene, Gly12Cys, is highly prevalent in lung, colorectal, and
pancreatic cancer.

With the new therapy, the cell growth caused by the
mutated KRAS gene can be prevented, even causing cancers
to shrink. Based on these advances, we want to investigate
genomics data from The Cancer Genome Atlas [57] that
we previously already worked with [58], [59]. The dataset
contains data extracted from tumor samples and includes
meta-data such as the age and gender of the patients, gene
expression, mutation, and copy number data (745 attributes
in total). For the purpose of this use case, we extracted data
for the three aforementioned tumor types from the Ordino
application [58], resulting in 1 238 tissue samples. The goal
of this analysis is to determine the prevalence of KRAS
mutations, specifically Gly12Cys. Within the scope of this
paper, we also investigate the expression of tumor-related
genes and how they relate to different tumor types.

After loading the dataset, we use the UMAP DR tech-
nique (with a neighborhood of 15 and 250 iterations) to
project the data based on the KRAS AA Mutated and Tumor
Type attributes. KRAS AA Mutated indicates whether the
sample has a mutated KRAS gene. By selecting all samples
in the embedding scatterplot, we can investigate how the
samples in our dataset are distributed regarding tumor type
and KRAS mutation. The summary visualization shows that
about 39.5 % of the tumor samples have a KRAS mutation,
48 % have no mutation, and 12.5 % don’t have any infor-
mation on KRAS mutations included. We color the items by
the Tumor Type and observe that almost all clusters consist of
samples with the same tumor type. To differentiate between
mutated and non-mutated samples, we additionally map
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the KRAS AA Mutated attribute to the shape of the items.
We remove samples with missing data from the embedding
by deselecting the shape encoding for KRAS AA Mutated
values. The remaining six clusters correspond to the three
tumor types, each with and without a KRAS mutation.
We apply density-based clustering to the samples in the
embedding to have a group created for each cluster and
label them via the Groups menu. The number of samples in
each group is shown in the Groups menu, which reveals that
the share of KRAS mutation differs depending on the tumor
type.

To build up a semantic hierarchy, we create additional
groups using a lasso selection, each containing all items of
one tumor type, and connect them with the corresponding
subgroups. By looking at the position of the tumor type
centroids, we can observe whether the majority of samples
are KRAS mutated. The centroid of all pancreatic adenocar-
cinoma samples, for example, is placed close to the centroid
of the KRAS mutated subgroup, as 131 out of 174 samples
with this tumor also have a KRAS mutation.

Finally, we investigate the specific KRAS mutations in
the three tumor types. To this end, we add the KRAS AA
Mutation attribute to the summary visualization. In addition
to the presence of a mutation, KRAS AA Mutation also
includes information about the specific type of mutation.
The mutation type ultimately determines whether a patient
responds to a drug or not. We select the groups of the
three tumor types that have a mutated KRAS gene, to
display them in the comparison pane using the context
menu (see Figure 7a). The difference visualization shows
that the tumor type changes from one group to the next,
which is not surprising considering the groups are based
on the tumor types. The more interesting part is the KRAS
AA Mutation attribute, which shows high dissimilarities
between the groups. This is depicted in the difference visu-
alization and also indirectly in the summary visualization.
We discover that tumor types differ by the specific cancer-
causing KRAS mutations. For the three different tumor
types colon adenocarcinoma, lung adenocarcinoma, and pancre-
atic adenocarcinoma, the most frequent KRAS mutations are
Gly12Asp, Gly12Cys, and Gly12Asp, respectively. Less than
5 % of the colon adenocarcinoma samples have a Gly12Cys
mutation, even less for pancreatic adenocarcinoma. We can
therefore confirm the insights from the New York Times
article that patients with lung adenocarcinoma—who are
mostly current or former smokers—are the ones that can
benefit the most from those new drugs.

As the tumor growth is ultimately triggered by the
gene expression, we continue the analysis with the gene
expression data and their correlation to the tumor types.
We go back to the Projection menu and recalculate the
UMAP embedding (with a neighborhood of 15 and 250
iterations), but this time including the expression data of all
genes (720 attributes). Instead of random initialization, we
use the current item positions as seed points. By enabling
group trails in the projection menu, we can observe how
the group centroids change their position in the embedding
through reprojection (as illustrated in Figure 2f). In the
newly calculated embedding space, we detect three well-
separated clusters. One is almost entirely made up of colon
adenocarcinoma samples, one of lung and pancreatic ade-

nocarcinoma samples, and one very small cluster contains a
mix of samples of all three tumor types. Using the summary
visualizations, we observe that the small heterogeneous
cluster has comparably low gene expression values across
a large number of genes compared to the expression data
in the other two clusters. On closer examination, we dis-
cover that the gene expression values are not only low but
zero, indicating that these samples had no gene expressions
recorded at all.

We continue the analysis by comparing the tumor type
groups that we created before. We select the groups of
colon, lung, and pancreatic adenocarcinoma, and use the com-
parison pane to investigate differences between their gene
expressions. The spatial separation in the embedding scat-
terplot already highlights a difference across all genes in the
dataset.

Figure 7b shows the embedding scatterplot zoomed in
on the two clusters with valid gene expression data. By
inspecting the summary visualizations in the comparison
pane, we can observe that gene expressions of lung adeno-
carcinoma samples are distributed over a larger range for
most of the 720 genes. By increasing the filter threshold from
0.25 to 0.6, we see that the biggest difference of lung and
pancreatic adenocarcinoma samples are lower expression
values for A1CF and GLI1, and higher expression values
for NKX2-1 (see Figure 7b). The gene expression of GLI1
is promoted by a KRAS mutation and is involved in the
formation of pancreatic cancer [60]. NKX2-1 is a tumor
biomarker for lung cancer [61].

Between the Pancreatic and Colon adenocarcinoma
groups, we can observe higher expression values for genes
MYB and CDX2. MYB is a regulator of certain cells of
the colon, with increased expression occurring with colon
cancer cells [62]. Additionally, the expression of PER1 is
lower for colon adenocarcinoma, compared to pancreatic
adenocarcinoma. The expression of PER1 prevents the pro-
grammed cell death of pancreatic cancer cells and thus
promotes cancer [63]. These and the above findings are also
in line with data provided by The Human Protein Atlas [64].

Based on these insights, we were able to confirm that the
tumor types are characterized by the expression of genes as
well as the frequency of different types of KRAS mutations.

7.3 Domain Expert Feedback

During the design and development of our approach, we
organized multiple feedback sessions with two experts in
the respective domains of our use cases: a tournament chess
player and a senior scientist working in a drug discovery
team at a pharmaceutical company. In these feedback ses-
sions, we presented the tool, the use case, and discussed po-
tential findings. The experts had access to the tool between
the interviews and also explored the data themselves. Based
on their feedback, we continuously increased the usability
of the presented exploration approach. In the following,
we first summarize general feedback given by the experts,
followed by domain-specific feedback on the individual use
cases.

Besides providing valuable input on the usability, the
experts quickly came up with more ideas on how to use the
tool for further exploring the data. Both experts highlighted
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the utility of the high-dimensional comparison, especially
of groups created in the embedding. This comparison was
initially limited to groups that users needed to manually
connect via edges. We removed this restriction and users
can now directly compare arbitrary groups, leading to
the workflow described in Section 5.3. The chess expert
also noted that keeping track of the currently compared
data in the embedding is difficult for many comparisons.
We, therefore, added stepper controls to the comparison
pane and highlight the currently compared items/groups
in the embedding and sidebar (see Figure 6). Based on the
feedback from the cancer genomics expert, we also rank
the attributes in the summary and difference visualization
and provide a filter function to support a large number of
attributes.

Specifically for chess, we designed the summary and
difference visualization in close collaboration with the do-
main expert. In the future, we plan to integrate datasets that
contain more professional chess games and additional meta-
data. We are also working on a better representation of the
moves in the embedding through Parametric UMAP [65],
as the irregular distances between states do not yet reflect
the importance of the moves. The domain expert has also
expressed that he would like to be assisted in identifying
the most common moves between a start and an end state,
by automatically creating groups along the game sequences.
We describe our plans to generate group sequences along
trajectory bundles in Section 8.2.

For the cohort analysis use case, the expert noted that
creating and labeling the groups becomes more and more
tedious as the number increases. We discuss our plans
to further support group creation in Section 8.2 and are
additionally working on combining the presented approach
with a dedicated tool for cohort creation and characteriza-
tion [59].

8 DISCUSSION

In this section, we reflect on challenges and potential im-
provements of our work.

As demonstrated in both use cases, our embedding
scales well with both the number of items and the number
of attributes. The chess dataset consists of approximately
40 000 items and 70 attributes, and the projection of cancer
genomics data is based on 1 238 items and 720 attributes.

Technically, the rendering of the embedding scales well
up to 100 000 items. However, the scatterplot does not,
due to overplotting. Some works described in Section 3.4
improve the readability of scatterplots with many items.
However, large datasets also pose challenges in creating
structures and relationships, as well as in exploring subsets
of the data. We discuss our thoughts on Focus + Context
analysis and give an outlook on narrative automatic cluster-
ing to better handle large amounts of data in the following
sections.

8.1 Focus + Context Exploration
Once users have uncovered notable structures and iden-
tified interesting groups in a dataset, they may want to
perform a subsequent analysis that focuses on a particu-
lar group or a single level of a hierarchy. As part of the

reprojection feature of our prototype, we already support
a subspace reprojection. Users select a group of items, for
which a new embedding will be calculated within the items’
bounding box. The remaining points of the scatterplot are
left untouched. We have found that this subspace reprojec-
tion is useful to focus on a specific group, especially when a
different attribute set has been identified as relevant within
that group. However, this approach introduces the challenge
of correctly providing context, since (apart from the coarse
positioning within the previous bounding box) the newly
created embedding space is completely decoupled from
the rest of the embedding. Neighborhoods between points
within and outside the reprojected part of the embedding
may not be interpretable. We are currently investigating
how to address this challenge arising from changing only
parts of the embedding, potentially based on one of the
promising strategies discussed by Höllt et al. [29] and
Marcı́lio et al. [66].

A different approach that could allow users to focus
on specific substructures is what Nonato and Aupetit call
spatially structured enrichment [2]. Here, the embedding space
is subdivided into segments that are enriched with addi-
tional information, resulting in a space-filling layout that
resembles a tree map [67]. Depending on the application
domain, it may be possible to optimize the design of our
summary visualizations to better support such a subdi-
vided, space-filling layout. If this approach is additionally
made adaptive/interactive (e.g., based on the current zoom
level, or directly bound to the data similarity in specific re-
gions), it could potentially help users to navigate and create
even deep hierarchies. The resulting problem of effectively
comparing groupings across multiple levels of the hierarchy
could be elegantly solved with storytelling, discussed in the
next section, where the summary visualizations for higher
levels could be “stored” while users zoom in to explore
deeper levels.

8.2 Towards Automated Analysis and Storytelling
Our current prototype already supports automatic group
generation by density-based clustering. Users can combine
this approach with manual selections of items to set up hi-
erarchical relationships. The feedback from the two domain
experts also revealed opportunities for automation.

In future work, we aim to improve upon the automation
capabilities and enable an online, automated creation of
hierarchical structures. To this end, we plan to support
techniques such as Haisu [27] or HSNE [25], which take
preexisting hierarchical information into account, and tech-
niques such as tree-SNE [26], which perform hierarchical
clustering and DR simultaneously. Combinations of dimen-
sion reduction and clustering algorithms are also discussed
by Wenskovitch et al. [68] and offer directions for further
improvements.

In addition to automatically creating groups and struc-
tures, it may also be possible to automate the creation of
meaningful relationships and stories by connecting groups
based on predefined rules. In the case of sequentially con-
nected items, we already experimented with trajectory data
mining techniques [69]. This way, we could automatically
detect clusters that form trajectory bundles along chess
game trajectories.
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After automatically creating clusters and finding rela-
tionships, an initial automatic arrangement could be pre-
sented to the users. Consequently, users can inspect the
results and validate or improve the findings. We imagine
that this validation step can be smoothly integrated into our
existing comparison pane. We already realized the potential
of expanding our prototype with storytelling features, such
as the support for annotations or presentation following
a Vistories approach [70]. This would not only close the
loop between exploration, authoring, and presentation, but
these features would be especially useful in the context of
automation, as they would help users make sense of the
suggested stories.

9 CONCLUSION

Extracting meaning from high-dimensional data is a major
challenge [2], [3]. In this paper, we presented an inter-
active visual exploration approach for structural relation-
ships in embeddings of high-dimensional data. We support
the exploratory analysis of items in the low-dimensional
space through layout enrichment, the interactive creation
of groups and relationships, and means of comparison
thereof. We introduced tailored summary and difference
visualizations for various data types and semantic contexts.
We are confident that the combination of embedding-based
explorations with structural analysis and creation can be
applied to various domains and applications.
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[29] T. Höllt, A. Vilanova, N. Pezzotti, B. Lelieveldt, and
H. Hauser, “Focus+Context Exploration of Hierarchical
Embeddings,” Computer Graphics Forum (EuroVis ’19),
vol. 38, no. 3, pp. 569–579, Jun. 2019. [Online]. Available:
https://onlinelibrary.wiley.com/doi/10.1111/cgf.13711

[30] P. Cui, X. Wang, J. Pei, and W. Zhu, “A Survey on Network
Embedding,” IEEE Transactions on Knowledge and Data Engineering,
vol. 31, no. 5, pp. 833–852, 2019.

[31] Q. Li, K. S. Njotoprawiro, H. Haleem, Q. Chen, C. Yi, and X. Ma,
“EmbeddingVis: A Visual Analytics Approach to Comparative
Network Embedding Inspection,” in IEEE Conference on Visual
Analytics Science and Technology (VAST ’18), 2018, pp. 48–59.

[32] A. Boggust, B. Carter, and A. Satyanarayan, “Embedding
Comparator: Visualizing Differences in Global Structure and
Local Neighborhoods via Small Multiples,” arXiv:1912.04853,
2019. [Online]. Available: http://arxiv.org/abs/1912.04853

[33] Z. Jin, Y. Wang, Q. Wang, Y. Ming, T. Ma, and H. Qu, “GNNLens:
A Visual Analytics Approach for Prediction Error Diagnosis
of Graph Neural Networks,” arXiv:2011.11048, 2021. [Online].
Available: http://arxiv.org/abs/2011.11048

[34] N. Cao, D. Gotz, J. Sun, and H. Qu, “DICON: Interactive Visual
Analysis of Multidimensional Clusters,” IEEE Transactions on Vi-
sualization and Computer Graphics (InfoVis ’11), vol. 17, no. 12, pp.
2581–2590, 2011.

[35] D. J. Lehmann, F. Kemmler, T. Zhyhalava, M. Kirschke, and
H. Theisel, “Visualnostics: Visual Guidance Pictograms for
Analyzing Projections of High-dimensional Data,” Computer
Graphics Forum (EuroVis ’15), vol. 34, no. 3, pp. 291–300, Jun. 2015.
[Online]. Available: http://doi.wiley.com/10.1111/cgf.12641

[36] P. Joia, F. Petronetto, and L. G. Nonato, “Un-
covering Representative Groups in Multidimensional
Projections,” Computer Graphics Forum (EuroVis ’15),
vol. 34, no. 3, pp. 281–290, 2015. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12640

[37] W. E. Marcı́lio-Jr, D. M. Eler, R. E. Garcia, R. C. M. Correia,
L. F. Silva, and L. F. Silva, “A Hybrid Visualization Approach to
Perform Analysis of Feature Spaces,” in International Conference
on Information Technology–New Generations (ITNG ’20), vol. 1134.
Springer International Publishing, 2020, pp. 241–247. [Online].

Available: http://link.springer.com/10.1007/978-3-030-43020-7
32

[38] J. Jo, F. Vernier, P. Dragicevic, and J.-D. Fekete, “A Declarative
Rendering Model for Multiclass Density Maps,” IEEE Transactions
on Visualization and Computer Graphics (InfoVis ’18), vol. 25, no. 1,
pp. 470–480, 2019.

[39] N. Elmqvist and J.-D. Fekete, “Hierarchical Aggregation for Infor-
mation Visualization: Overview, Techniques, and Design Guide-
lines,” IEEE Transactions on Visualization and Computer Graphics,
vol. 16, no. 3, pp. 439–454, 2010.

[40] A. Sarikaya, M. Gleicher, and D. A. Szafir, “Design Factors for
Summary Visualization in Visual Analytics,” Computer Graphics
Forum (EuroVis ’18), vol. 37, no. 3, pp. 145–156, Jun. 2018. [Online].
Available: http://doi.wiley.com/10.1111/cgf.13408

[41] E. Catmull and R. Rom, “A class of local interpolating splines,”
in Computer Aided Geometric Design, R. E. Barnhill and R. F.
Riesenfeld, Eds. Academic Press, 1974, pp. 317–326.

[42] R. Cabello, “Catmull–rom spline,” 2021, https://threejs.org/
docs/#api/en/extras/core/Interpolations.CatmullRom.

[43] A. Sarikaya and M. Gleicher, “Scatterplots: Tasks, Data, and De-
signs,” IEEE Transactions on Visualization and Computer Graphics
(InfoVis ’17), vol. 24, no. 1, pp. 402–412, Jan. 2018.

[44] C. Partl, A. Lex, M. Streit, D. Kalkofen, K. Kashofer,
and D. Schmalstieg, “enRoute: Dynamic Path Extraction
from Biological Pathway Maps for Exploring Heterogeneous
Experimental Datasets,” BMC Bioinformatics, vol. 14, no. Suppl 19,
p. S3, 2013. [Online]. Available: http://www.biomedcentral.com/
1471-2105/14/S19/S3/abstract

[45] W. Javed and N. Elmqvist, “Exploring the design space of com-
posite visualization,” in Proceedings of the IEEE Pacific Visualization
Symposium (PacificVis ’12). IEEE, 2012, pp. 1 –8.

[46] A. Karpathy, “tSNEJS,” 2016, https://github.com/karpathy/
tsnejs.

[47] People+AI Research (PAIR) Initiative, “Umap-js,” 2019, https://
github.com/PAIR-code/umap-js.

[48] A. M. Horst, A. P. Hill, and K. B. Gorman, “palmerpenguins:
Palmer Archipelago (Antarctica) penguin data,” 2020. [Online].
Available: https://allisonhorst.github.io/palmerpenguins/

[49] L. McInnes, J. Healy, and S. Astels, “hdbscan: Hierarchical
density based clustering,” The Journal of Open Source Software,
vol. 2, no. 11, p. 205, Mar. 2017. [Online]. Available:
http://joss.theoj.org/papers/10.21105/joss.00205

[50] R. Cabello, “three.js – JavaScript 3D editor,” 2021, https://github.
com/mrdoob/three.js/.

[51] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer,
“Vega-Lite: A Grammar of Interactive Graphics,” IEEE Transactions
on Visualization and Computer Graphics (InfoVis ’16), vol. 23, no. 1,
pp. 341–350, 2017. [Online]. Available: http://ieeexplore.ieee.org/
abstract/document/7539624/

[52] D3, “d3-contour,” 2020, https://github.com/d3/d3-contour.
[53] Facebook Inc., “React – a JavaScript library for building user

interfaces,” 2021, https://reactjs.org/.
[54] P. Havard, “Kingbase – a free chess games database, updated

monthly,” 2019, https://www.kingbase-chess.net/.
[55] D. Kızılırmak, “pgn2gif,” 2018, https://github.com/dn1z/

pgn2gif.
[56] G. Kolata, “How Scientists Shot Down Cancer’s ‘Death Star’,”

The New York Times, Feb. 2021. [Online]. Available: https://www.
nytimes.com/2021/02/05/health/lung-cancer-drug.html

[57] National Cancer Institute, “The cancer genome atlas pro-
gram,” 2019, https://www.cancer.gov/about-nci/organization/
ccg/research/structural-genomics/tcga.

[58] M. Streit, S. Gratzl, H. Stitz, A. Wernitznig, T. Zichner, and
C. Haslinger, “Ordino: a visual cancer analysis tool for ranking
and exploring genes, cell lines and tissue samples,” Bioinformatics,
vol. 35, no. 17, pp. 3140–3142, 2019.

[59] P. Adelberger, K. Eckelt, M. J. Bauer, M. Streit, C. Haslinger,
and T. Zichner, “Coral: a web-based visual analysis tool for
creating and characterizing cohorts,” Bioinformatics, vol. 37,
no. 23, pp. 4559–4561, Dec. 2021. [Online]. Available: https:
//doi.org/10.1093/bioinformatics/btab695

[60] K. Kasai, “GLI1, a master regulator of the hallmark of pancreatic
cancer.” Pathology international, vol. 66, no. 12, pp. 653–660, Dec.
2016.

[61] L. Yang, M. Lin, W.-j. Ruan, L.-l. Dong, E.-g. Chen, X.-
h. Wu, and K.-j. Ying, “Nkx2-1: a novel tumor biomarker
of lung cancer,” Journal of Zhejiang University. Science. B,



IEEE TRANSACTION ON VISUALIZATION AND COMPUTER GRAPHICS 15

vol. 13, no. 11, pp. 855–866, Nov. 2012. [Online]. Available:
https://pubmed.ncbi.nlm.nih.gov/23125078

[62] R. G. Ramsay and T. J. Gonda, “MYB function in normal and
cancer cells,” Nature Reviews Cancer, vol. 8, no. 7, pp. 523–534, Jul.
2008. [Online]. Available: https://doi.org/10.1038/nrc2439

[63] F. Sato, C. Nagata, Y. Liu, T. Suzuki, J. Kondo, S. Morohashi,
T. Imaizumi, Y. Kato, and H. Kijima, “PERIOD1 is an Anti-
apoptotic Factor in Human Pancreatic and Hepatic Cancer Cells,”
The Journal of Biochemistry, vol. 146, no. 6, pp. 833–838, Aug. 2009.
[Online]. Available: https://doi.org/10.1093/jb/mvp126

[64] M. Uhlen, C. Zhang, S. Lee, E. Sjöstedt, L. Fagerberg, G. Bidkhori,
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D. Djureinovic, P. Micke, C. Lindskog, A. Mardinoglu, and
F. Ponten, “A pathology atlas of the human cancer transcriptome,”
Science, vol. 357, no. 6352, p. eaan2507, 2017. [Online]. Available:
https://www.science.org/doi/abs/10.1126/science.aan2507

[65] T. Sainburg, L. McInnes, and T. Q. Gentner, “Parametric UMAP
Embeddings for Representation and Semisupervised Learning,”
Neural Computation, vol. 33, no. 11, pp. 2881–2907, Oct. 2021.
[Online]. Available: https://doi.org/10.1162/neco a 01434

[66] W. E. Marcı́lio-Jr, D. M. Eler, F. V. Paulovich, J. F. Rodrigues-Jr,
and A. O. Artero, “ExplorerTree: A Focus+Context Exploration
Approach for 2D Embeddings,” Big Data Research, vol. 25,
p. 100239, 2021. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S2214579621000563

[67] E. Gomez-Nieto, W. Casaca, D. Motta, I. Hartmann, G. Taubin, and
L. G. Nonato, “Dealing with Multiple Requirements in Geometric
Arrangements,” IEEE Transactions on Visualization and Computer
Graphics, vol. 22, no. 3, pp. 1223–1235, Mar. 2016. [Online].
Available: http://ieeexplore.ieee.org/document/7296669/

[68] J. Wenskovitch, I. Crandell, N. Ramakrishnan, L. House, S. Leman,
and C. North, “Towards a Systematic Combination of Dimension
Reduction and Clustering in Visual Analytics,” IEEE Transactions
on Visualization and Computer Graphics (VAST ’17), vol. 24, no. 1, pp.
131–141, 2018.

[69] Y. Zheng, “Trajectory Data Mining: An Overview,” ACM
Transactions on Intelligent Systems and Technology, vol. 6, no. 3, pp.
1–41, May 2015. [Online]. Available: http://dl.acm.org/citation.
cfm?doid=2764959.2743025

[70] S. Gratzl, A. Lex, N. Gehlenborg, N. Cosgrove, and M. Streit,
“From Visual Exploration to Storytelling and Back Again,” Com-
puter Graphics Forum (EuroVis ’16), vol. 35, no. 3, pp. 491–500, 2016.

Klaus Eckelt is a PhD student at the Institute
of Computer Graphics at Johannes Kepler Uni-
versity Linz, Austria. His main research interests
include biomedical data visualization, visual an-
alytics, and statistics. He received his Diplomin-
genieur (MSc) in Medical Informatics from TU
Wien, Vienna, Austria.
For more information see https://eckelt.info.

Andreas Hinterreiter is a PhD student at the
Institute of Computer Graphics, Johannes Kepler
University (JKU) Linz. His research interests in-
clude dimensionality reduction and explainable
AI. He spent parts of his PhD at the Biomedical
Image Analysis Group at Imperial College Lon-
don. He received his Diplomingenieur (MSc) in
Technical Physics from JKU.

Patrick Adelberger received his master’s de-
gree in Medical Informatics at TU Wien, Vienna,
Austria. Currently, he is a PhD student at the
Institute of Computer Graphics, Johannes Kepler
University (JKU) Linz, Austria. His research in-
terests include visualization for biomedical data
and visual analytics.

Conny Walchshofer is a PhD student at the In-
stitute of Computer Graphics at Johannes Kepler
University Linz, Austria. In her prior research,
she focused on the perception and handling of
multidimensional visualizations. She applies an
interdisciplinary approach to judge cognitive load
during the interpretation of visual representa-
tions by using physiological measurement meth-
ods (e.g., eye-tracking, heart rate variability).

Vaishali Dhanoa is a researcher at Pro2Future
GmbH and PhD student at the Institute of Com-
puter Graphics of the Johannes Kepler Uni-
versity (JKU) Linz, Austria. Her research in-
terests include visual analytics, comprehensible
approaches to user onboarding, and developing
performance optimized interactive tools. In the
past, she worked as a software developer at Intel
GmbH Linz, Austria. She received her Diplomin-
genieur (MSc) in Informatics from JKU.

Christina Humer is a PhD student at the In-
stitute of Computer Graphics, Johannes Kepler
University Linz, Austria. Her research interests
include explainable AI and visual analytics. She
received her Diplomingenieur (MSc) in Com-
puter Science with a focus on Data Science from
JKU.

Moritz Heckmann is a student undertaking a
master’s degree in computer science at the Jo-
hannes Kepler University Linz. He works part
time as technical support at the Institute of Com-
puter Graphics and as a front-end developer for
datavisyn.

Christian Steinparz received his master’s de-
gree in Artificial Intelligence at Johannes Kepler
University Linz, Austria. He is now working at
the Institute of Computer Graphics at JKU. His
scientific areas of interest include explainable
AI, reinforcement learning, and dimensionality
reduction.

Marc Streit is a Full Professor at the Jo-
hannes Kepler University Linz in Austria where
he leads the JKU Visual Data Science Lab
(https://jku-vds-lab.at/). He finished his PhD at
the Graz University of Technology in 2011. His
scientific areas of interest include visualization,
visual analytics, and explainable AI. He won mul-
tiple best paper and honorable mention awards
at major conferences in the field. Marc is also co-
founder and CEO of datavisyn, a spin-off com-
pany that develops data visualization solutions

for pharmaceutical and biomedical R&D. For more information see
http://marc-streit.com.


