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ABSTRACT 
Recent years have brought immense progress in the development of AI technology. This broad
ened its application fields but also led to a surge of interest in many research domains and 
increasing significance of human-AI relations for the development of AI technology. This rapid 
growth and evolvement is reflected by the establishment of a great variety of terms, potentially 
leading to what is known as jingle and jangle fallacies. With our scoping review of the termino
logy used in scientific literature to describe human-AI relations and its evolvement over time (with 
803 records screened, 658 finally included), we capture the variety and development of human-AI 
terminology in accordance with the shift from interaction to collaboration between humans and 
AI. We aim to raise awareness of these developments spanning over different research commun
ities and provide a solid basis for future researchers and practitioners conducting complementary, 
cross-domain research. Our review comprises terminological, bibliometric and thematic analyses, 
e.g., reporting on the historical development of terms and term composition patterns, but also 
identifying key authors and publications, geographic distribution of relevant research, and elabo
rating on term conception and usage, and co-occurrences throughout the literature.
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1. Introduction

The rapid advancements of Artificial Intelligence (AI) tech
nology led to a shift in research and a stronger focus on the 
humans interacting with AI, establishing a trend towards 
human-centered AI which is also reflected by the wealth of 
related recent literature (see, e.g., Bingley et al., 2023; Del 
Giudice et al., 2023; Garibay et al., 2023; Qadir et al., 2022; 
Shneiderman, 2021, 2022). This human-centeredness does 
not only refer to respecting humans’ needs during their 
interaction with AI, but also to their general role in the rela
tion with AI. While this opens up a lot of interesting 
research questions and bears potential for significant cross- 
domain findings, it is especially this interdisciplinarity in 
combination with the speed of progress that holds a risk for 
inconsistencies in the terminology used in scientific litera
ture, as explained by Graziani et al. (2023). They point out 
that inconsistencies between domains frequently occur 
already in the wording of concepts and illustrate this at the 
example of “terms such as interpretable, explainable and 
transparent being often used interchangeably in method
ology papers” while they “convey different meanings and are 
“weighted” differently across domains, for example in the 
technical and social sciences” (Graziani et al., 2023, p. 1). In 

line, Capel and Brereton point out in their recent review 
(Capel & Brereton, 2023) that human-centered AI might 
range from explainable and interpretable AI, “[aiding] a 
human in understanding the decisions or predictions made 
by the AI” (Capel & Brereton, 2023, p. 5) to humans team
ing with AI, where “[t]he strengths of AI and humans com
plement each other, developing the competencies and 
capabilities of both” (Capel & Brereton, 2023, p. 8). In add
ition to these inconsistencies it should also be noted that 
while terms such as “explainability” are usually positively 
connoted in the scientific literature, there are also examples 
of studies that suggest potential detrimental effects (Cabitza 
et al., 2024, 2023; Ebermann et al., 2023) or at least dissatis
faction (Wang & Yin, 2021). For instance, in case explana
tions are misleading, they might further cause misjudgement 
on the user’s side (Cabitza et al., 2024). The general termino
logical inconsistencies impede complementary research and 
consequently also mutual benefit across domains; we might 
observe what Block described as the jingle and jangle fallacies 
(Block, 1995). Jingle fallacies in this context are terms used 
ambiguously, leading to the assumption that the concepts 
they refer to are the same, while they are actually not. Jangle 
fallacies are ambiguities in the other direction, i.e., different 
terms used for the same concept (Block, 1995). 
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The recent intense research interest in AI seems to particu
larly foster such inconsistencies in terminology. Discussions of 
ambiguities and a lack of conventions in scientific literature, 
e.g., Wang pointing out that “there is no widely accepted def
inition of Artificial Intelligence” and that the term AI “has 
been used with many different senses, both within the field 
and outside it” (Wang, 2019, p. 1), but also intensified political 
discourse ultimately led to the development of standardized 
definitions, e.g., provided in the European AI Act,1 where an 
“AI system” is defined as a

machine-based system that is designed to operate with varying 
levels of autonomy and that may exhibit adaptiveness after 
deployment, and that, for explicit or implicit objectives, infers, 
from the input it receives, how to generate outputs such as 
predictions, content, recommendations, or decisions that can 
influence physical or virtual environments.

or in ISO/IEC 22989:2022,2 which emphasizes a system’s 
capability to acquire, process, and apply knowledge and 
skills. Further, the Organization for Economic Co-operation 
and Development (OECD)3 provides a recently updated def
inition,4 describing an AI-based system as

machine-based system that, for explicit or implicit objectives, 
infers, from the input it receives, how to generate outputs such 
as predictions, content, recommendations, or decisions that can 
influence physical or virtual environments.

Further, and in line with the definition in the European AI 
Act as quoted above, the OECD points out that “[d]ifferent AI 
systems may vary in their levels of autonomy and adaptiveness 
after deployment”. However, even though this recent develop
ment towards a shared understanding of AI, the fact that 
inconsistencies used to affect even the general term of AI for 
years suggests that such issues may be even more pronounced 
when dealing with specialized, less established terminology in 
sub-fields of AI. Specifically relating to the human in human- 
centered AI, Langer et al. recently studied the effects of ter
minology and identified considerable differences in humans’ 
perception and evaluation of systems, introduced through dif
ferent wording (Langer et al., 2022). They point out that users 
may judge a system’s competence and technological advance
ment differently solely based on the terminology used to 
describe it, which in turn impacts their willingness to adopt or 
team-up with the system. They compare terms such as 
“algorithm”, “automated system”, “computer program”, “robot” 
or “artificial intelligence”, referring to what they subsume under 
“algorithmic decision-making systems”. Further, Wischnewski 
et al. in their research on measuring and understanding human 
trust calibrations for automated systems, point to terminological 
ambiguities in previous work, explaining that “[a]utomation can 
refer to various different systems with varying capabilities, rang
ing from rather simple rule-based to sophisticated machine- 
learning algorithms” (Wischnewski et al., 2023, p. 4). They also 
hint that this variety imposed challenges for their study because 
it was difficult to actually gain insights into the nature of the sys
tems different authors described as “automated”.

The frequent terminological ambiguities related to AI 
research may have critical implications to society. Benefo et al. 
describe a set of ethical, legal, societal and economic (ELSE) 
implications of AI (Benefo et al., 2022). Terminological 

transparency is essential for adequate assessment especially 
when different stakeholders’ perspectives are included. For 
example, Fern�andez-Llorca et al. investigate definitions of sev
eral key concepts of AI, e.g., AI system, model, or generative 
AI from a technical and legal perspective and highlight that 
“[p]recise definitions accessible to both AI experts and lawyers 
are crucial for the legislation to be effective” (Fern�andez-Llorca 
et al., 2024, p. 1). Benefo et al. state that “[a]ny field that could 
benefit from rapid, aggregate data processing has the potential 
to be shaped and changed by AI” and that “AI could become 
an integral part of medicine, economics, policy, scientific 
research, marketing, customer service, engineering, and 
beyond” (Benefo et al., 2022, p. 10), indicating the magnitude 
of the potential ELSE implications. These examples illustrate 
the urgent need for a shared understanding of concepts and 
terminology around human-AI relations, eventually resulting 
in a global terminology as suggested by Graziani et al. (2023). 
The first necessary step towards this goal is an exhaustive over
view of existing terminology across different domains.

In this article, we thus aim at mapping the landscape of the 
terminology used to describe relations between humans and 
AI in the scientific literature across time and different com
munities. We provide a broad overview of terminology usage 
and its evolution, research coverage and potential research 
gaps, which may serve as a basis for future research in the field 
of human-centered AI. Further, we derive and analyze the
matic clusters in the identified terminology, investigate differ
ent geographic origins of certain terms and look into 
differences in conception and usage. To this end, we perform 
a scoping review (see a detailed description of the method
ology in Section 2) of existing literature with 658 publications 
finally included, 803 screened. Our analysis is structured in 
three blocks (terminological, bibliometric and thematic ana
lysis, see Sections 3–5) and guided by eight concrete research 
questions in total, as described in further detail the following.

First, we aim to provide an overview of the evolvement 
of the scientific field (not targeting development of AI in 
general but its use in human-AI relations), resulting in our 
first research question (RQ1: How did human-AI terminology 
evolve over time in the scientific literature?), also see Section 
3.1. Relatedly, we also aim to study the terminology used to 
refer to what we describe as “human-AI relations” in this 
article, in the existing scientific literature. We expect this to 
be of specific interest to the community since several publi
cations (including such just recently published, e.g., Longo 
et al.’s “manifesto” of open challenges and interdisciplinary 
research directions related to explainable AI (Longo et al., 
2024) from 2024) still point to “inconsistencies” (Graziani 
et al., 2023), “conceptual confusion” (Longo et al., 2024) or 
“considerable ambiguity” (Capel & Brereton, 2023) when it 
comes to terminology, its usage and underlying understand
ings. We reflect these aspects in our research questions RQ2: 
Which term composition patterns can be observed? (see 
Section 3.2) and RQ3: Which terms are used to refer to 
human-AI relations and how consistent are they? (see Section 
3.3). Based on those, we further investigate terminology in 
forming thematic clusters (cf. RQ4: Which thematic clusters 
can be derived from human-AI terminology?). Subsequently, 
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and aiming at identifying the most influential publications 
and authors researching human-AI relations, and thus also 
pointing readers to them, we answer our RQ5: Which key 
authors and publications can be identified in human-AI lit
erature? (see Sections 4.1 and 4.2). In addition to our focus 
on different terminology, its application in scientific work 
and the underlying concepts, in RQ6, we also analyze our 
data based on its geographic distribution (Which geographic 
differences can be seen in human-AI terminology?, as dis
cussed in Section 4.3), in order to be able to potentially 
identify terminological trends that mainly affect specific 
regions of the world (i.e., continents or countries). Finally, 
we, in the scope of our thematic analysis of the literature in 
our corpus, answer our RQ7: Which themes of term concep
tion and usage consist in human-AI literature? (see Section 
5.1), aiming to provide a deeper understanding of how the 
various sources use certain terminology (pointing also to 
specific inconsistencies across specific domains or research 
fields), and RQ8: Which semantic associations can be found 
in human-AI terminology?, for which we identify popular 
co-occurrences of terms (see Section 5.2).

2. Scoping review

A scoping review of scientific literature typically provides a 
broad overview of a certain research area. According to 
Munn et al. it can be used to “identify the types of evidence 
in a given field”, to “clarify key concepts/definitions in the 
literature”, to “examine how research is conducted on a cer
tain topic or field”, to “identify key characteristics or factors 
related to a concept”, or to “identify and analyse knowledge 
gaps” (Munn et al., 2018, p. 2). Similarly, Arksey and 
O’Malley point out that scoping studies might be conducted 
to “examine the extent, range and nature of research 
activity”, “determine the value of undertaking a full system
atic review”, “summarize and disseminate research findings”, 
or “identify research gaps in the existing literature” (Arksey 
& O’Malley, 2005, p. 21). According to Peters et al. scoping 
reviews are commonly used to “clarify working definitions 
and conceptual boundaries of a topic or field” (Peters et al., 
2015, p. 1). Further, they argue that scoping reviews are par
ticularly useful when “a body of literature has not yet been 
comprehensively reviewed, or exhibits a large, complex, and 
heterogeneous nature not amendable to a more precise sys
tematic review” (Peters et al., 2015, p. 1). In the context of 
our research questions raised in Section 1, a scoping review 
is a great methodological fit: we aim at clarifying termino
logy and key concepts behind human-AI relations, we strive 
to analyze potential gaps and clarify conceptual boundaries 
between different fields, and the body of literature is excep
tionally heterogeneous. For our review, we adopted the guide
lines defined by Kitchenham and Charters (Kitchenham & 
Charters, 2007) which have been originally defined for the 
domain of software engineering (e.g., applied by Kitchenham 
& Brereton, 2013), and which have been already employed in 
numerous previous systematic reviews in the broader field of 
HCI, see e.g., (Butler et al., 2021; de Andrade et al., 2024; 
Doherty & Doherty, 2018; Kim, Laine, et al., 2021, Neumayr 

& Augstein, 2020; Klock et al., 2020; Nunes & Jannach, 2017; 
Stefanidi et al., 2023; Stepin et al., 2021). This section further 
explains our process of planning and executing the scoping 
review. The results are then presented in Sections 3–5.

Search queries. Our data collection process contains three 
queries Q1–Q3 that build upon each other and are succes
sively refined to answer our research questions raised in 
Section 1. Hereby, the aim for Q1 was to identify all litera
ture that directly combines “human” with “ai”. The query 
was thus kept as general as possible, to avoid biases as 
potentially introduced by over-specification of search terms. 
This query was expected to lead to a large body of results, 
intended for terminological (see Section 3) and bibliometric 
(see Section 4) analyses, but also as a basis for the literature- 
driven extraction of relevant conjunctive terms that can be 
considered descriptive of human-AI “relations” (e.g., 
“collaboration” in “human ai collaboration”). This approach 
was chosen to ensure objectivity in selection of terms 
describing human-AI relations, and to ensure they actually 
reflect the existing scientific literature. Q2 then built upon 
Q1, adding the most commonly used (i.e., in the body of lit
erature extracted from Q1) “relation” terms to the Q1 query 
(“human ai”), such as “interaction”, “collaboration” or 
“team”. Additionally, we considerably extended the scope 
and reach of Q2 by adding alternative terms for the “ai” 
part of the query, such as “agent”, “system” or “algorithm”. 
These alternative terms were extracted from the body of lit
erature resulting from Q1. The results of Q2 then were 
intended as a basis for the analysis historical development 
and evolvelment of terminology in the field (see RQ1 and 
Section 3.1). Finally, Q3 built upon Q2, again broadening its 
scope and reach with a focus on the “human” part of the 
query, by adding commonly used synonyms for “human”, 
such as “user” (extracted from established dictionaries, see 
Section 2.3). The results of Q3 built the basis for an analysis 
of term composition patterns (see Section 3.2). This iterative 
and reflexive approach (as also depicted in Figure 1) facili
tates a general view of the available literature with deeper 
inspection of specific aspects and is commonly applied in 
scoping reviews according to Arksey and O’Malley. In total, 
this process resulted in the accumulation of 36 specific 
search queries for Q2 (see Section 2.2) and 144 unique 
queries for Q3 (see Section 2.3). The three queries were con
ducted between August and September 2024 and are further 
described in Sections 2.1–2.3.

Database selection. Aiming for a broad overview of estab
lished terminology in different research domains, we 
included three databases for data retrieval in our scoping 
review: Scopus, ACM Digital Library and IEEE Xplore. Two 
of them (Scopus and ACM DL) have been rated as 
“principal” search systems by Gusenbauer and Haddaway’s 
systematic evaluation of academic search systems (assessing 
their suitability for systematic reviews or meta-analyses) 
(Gusenbauer & Haddaway, 2020). IEEE Xplore, by their 
review, was assessed as “supplementary” search system 
(those can be used as supplement to any “principal” system, 
“where they might still provide great benefit” (Gusenbauer 
& Haddaway, 2020)). In summary, the ACM Full Text 
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Collection of the ACM Digital Library5 covers a large pro
portion of scientific literature in computer science with 
obvious relevance to human-AI relations. As human-AI rela
tions however are an interdisciplinary field of research, we 
extended the scope by including Scopus6 as a broader data
base covering a wide range of different domains and further 
the IEEE Xplore7 database. This is in line with the findings 
of Bar-Ilan, who highlights the differences in coverage 
between three databases and urges “to search in multiple 
databases if there is need for comprehensive data” (Bar-Ilan, 
2018, p. 3). She further shows that the overlap of coverage 
may be smaller than expected and that subject-specific data
bases, such as the ACM Digital Library, not necessarily offer 
the most exhaustive coverage for individual search terms 
within that field (Bar-Ilan, 2018). While Gusenbauer lists 
Scopus as an interdisciplinary database, we acknowledge that 
our selected databases still represent a strong focus on 
Computer Science and Engineering (Gusenbauer, 2022). 
Future studies, especially those that examine the relations of 
humans and AI in more depth, may benefit from additional 
reinforced inclusion of perspectives from, e.g., Sociology and 
Psychology.

2.1. Q1: Overview of terminology on human-AI relations

The first query provides an initial overview of existing ter
minology. To obtain unbiased results, we tried to avoid 
assumptions in data collection and framing of the review. 
To satisfy this objective, we decided for a broad search term 
for the initial query, including both “human” and “AI”, as 
explained in detail above. We ran exploratory queries prior 
to the actual review to find a search string broad enough to 
capture the variety of human-AI literature yet narrow enough 
not to include unprocessable amounts of irrelevant data. 
These preliminary queries included specific aspects of or des
ignations for human and AI relations, e.g., “human-AI inter
action” and “human-AI collaboration”, which certainly would 
miss broader parts of human-AI literature. Concurrently, we 
experimented with more general approaches, e.g., using the 
selected databases’ standard search options without the 
requirement of an exact match. Too broad searches returned 
an unmanageable amount of data, including many irrelevant 

publications. With “AI” as a common abbreviation of 
“Artificial Intelligence” (note: case-insensitive), we found 
“human AI” to be a suitable search string covering a large 
variety of human and AI relations.8 The reverse order, “AI 
human”, yielded a smaller number of results. Further, we 
hypothesized based on preliminary queries, that the reversed 
order in “AI human” may implicitly associate differences in 
authority. Also, the results using this version of the query 
contained a lot of false positives where “human” directly fol
lowed “AI” without any direct semantic connection, e.g., 
“[ … ] ethical AI: human rights [ … ]”. The final search string 
was thus defined to be “human AI” and searched for as an 
exact phrase in titles only. We defined the criterion for inclu
sion of relevant data in our scoping review as follows:

� IC: Presence of a specific human-AI term in the publica
tion’s title, including both “human”, “AI” and a supple
mentary term indicating a human-AI relation.

We applied a rule-based approach to ensure structured 
inclusion of data that is relevant to our scoping review on 
human-AI terminology. This approach supports transpar
ency and clarity in decisions of whether or not to consider a 
term and include the respective publication. One main 
researcher judged the resulting publications based on the 
inclusion criterion and marked ambiguous cases for group 
discussion to minimize potential researcher bias, making the 
process consistent with the vast majority of other reviews in 
the field (e.g., Butler et al., 2021; de Andrade et al., 2024; 
Kim, Laine, et al., 2021; Neumayr & Augstein, 2020; Nunes 
& Jannach, 2017; Stefanidi et al., 2023) as pointed out by 
Stefanidi et al.’s review of reviews in HCI (Stefanidi et al., 
2023). The presence of a human-AI term was considered if 
“human”, “AI” and one supplementary term connecting the 
two was present. This led to the inclusion of publications 
using “human-AI interaction”, where interaction is the sup
plementary term connecting human and AI. In contrast, the 
presence of human, AI and a supplementary term in a sen
tence was not sufficient: “humans interacting with AI” was 
not considered a valid term. We further included terms 
which did not follow our three-part compound scheme, but 
describe known concepts and are therefore established in 
the scientific literature, as for example “human-centered 
AI”. Note that the inclusion of these terms did not result 
from additional searches, as that would contradict the sys
tematic search strategy. Some publications used descriptive 
terms, e.g., adjectives indicating the nature or focus of the 
human-AI relation (e.g., trustworthy, collaborative) or add
itional words specifying the context (e.g., human-AI music 
co-creation). Such cases were included if they were directly 
connected to the term, i.e., placed immediately before or 
within the three-part compound term, and were considered 
relevant to the focus and understanding of the term. 
Disregarded adjectives mostly concerned cases where publi
cations aimed to improve a named concept, and therefore 
used “better”, “enhanced” or similar adjectives.

Figure 1. Queries Q1-Q3 subsequently extending the scope to discover a broad 
overview of the terminology used to describe human and AI relations in scien
tific literature.
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Publications were excluded from the review if they 
met at least one of the following three Exclusion 
Criteria (EC):

� EC1: The retrieved item is a non-English language 
publication.

� EC2: The retrieved item is a non-scholarly publica
tion of four or fewer pages (e.g., workshop 
proposals).

� EC3: The retrieved item is not a single publication (e.g., 
retrieved items are collections containing multiple work
shop papers).

We excluded non-English publications (EC1) to avoid 
bias due to translation issues and the resulting impeded 
comparability. Regarding EC2, we excluded particularly 
short papers such as proposals, invitations or abstracts. 
While they may use relevant terminology, their scope likely 
is insufficient for later content-related analyses. EC3, in con
trast, concerns collections of several papers or articles, such 
as books containing chapters, or workshop proceedings con
taining workshop papers. Our unit of analysis consists of 
single publications. We, therefore, include individual book 
chapters, workshop papers of sufficient length, journal 
articles, conference papers and reports but not the collec
tions per se.

The PRISMA flow diagram in Figure 2 summarizes the 
data retrieval process for Q1. All items were screened by 
one main researcher (the first author) to avoid discrepancies 
in assessment; however, uncertain cases were discussed in a 
group of three of the authors to find objective consensus, as 
described above.

Q1 was executed across the selected databases from 
August 7 to 15, 2024, leading to 1,096 results (Scopus: 777, 
ACM Digital Library: 243, IEEE Xplore: 76), of which 293 
duplicates were identified across and within the databases, 
which were consequently removed. Of the remaining 803 
items, 13 did not fulfill the inclusion criterion. In one case, 
a term technically fulfilling the previously defined pattern 
was found, but concerned specific proteins (“ai”) in humans, 
published in the field of biology (e.g., Fidge et al., 1989; 
Morrison et al., 1990). Full-texts of 790 items were sought 
for retrieval and, if not directly available via the publisher, 
searched for using Google’s search engine, authors’ websites 
and ResearchGate.9 For 47 items, full-texts could not be 
retrieved, which resulted in 743 publications with full- 
text available. Further, six articles not written in English 
were excluded (cf. EC1), and 69 were excluded as they 
did not qualify as scholarly publications (e.g., workshop 
invitations, abstracts or position papers, cf. EC2). Ten 
items were collections rather than individual items and 
were therefore excluded (cf. EC3).

Figure 2. Modified PRISMA flow diagram showing the review process for Q1. 658 of 1,096 initially identified records were finally included.
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During the screening process, we extracted all human- 
AI terms in harmonized form, i.e., removed special charac
ters and aligned singular and plural forms as well as 
different spelling of the same term, from the publications’ 
titles. This resulted in a total of 253 unique extracted terms 
for further analysis (see Sections 3–5). The frequency dis
tribution of the terms showed only few very prominent 
terms and a great variety of terms with only single occur
rences (maximum: 139, minimum: 1, mean: 2.6, median: 1) 
resembling a long tail distribution (Anderson, 2006). Terms 
with highest frequencies were “human-AI collaboration” 
(139 occurrences), “human-AI interaction” (94), “human- 
AI team” (31) and “human-AI teaming” (30), where the 
very strong popularity of few terms already becomes obvi
ous. The conjunctive terms of the most prominent human- 
AI terms were later integrated into search string construc
tion for Q2 (see below). “Team” and “teaming” were 
handled as separate terms as they differ regarding the 
application domain (Capel & Brereton, 2023): “team” is 
used for decision-making in which humans seek comple
mentarity rather than relying on one individual decision 
maker’s capabilities, while “teaming” is more related to co- 
creation and creativity.

Subset for thematic analysis. For the thematic analysis in 
Section 5, we extracted terms that occurred at least three 
times in our Q1 data as to capture more established terms 
rather than just single occurrences. Of each of these terms, 
we drew a sample of a maximum of five publications per 
year by citation count to represent the data appropriately. 
This reduced the amount of publications from 139 to 29 for 
“human-AI collaboration” and from 94 to 28 for “human-AI 
interaction”. We decided for this approach to ensure to cap
ture relevant terminology in human-AI relations rather than 
outliers. At the same time however, novel discussions may 
be left out by this decision, as related terminology may not 
yet be sufficiently established to be reflected in publications’ 
titles. To explore the origin and emergence of novel terms 
in more detail, thorough analysis of full-texts rather than 
titles may be required.

2.2. Q2: Alternative AI terms

The notably short temporal coverage of Q1 data with pub
lication dates only ranging from 201110 onwards (see 
Section 3) indicated that other terms might have been used 
to describe human and AI relations in earlier literature. 
Following the commonly reflexive nature of scoping 
reviews (Arksey & O’Malley, 2005), we therefore decided to 
extend our query with alternative AI terms, aiming to con
secutively cover the area of interest more comprehensively. 
We derived alternative AI terms from all identified records 
of Q1 and consulted online dictionaries and thesauri such 
as Merriam-Webster11 and PowerThesaurus12 and the list 
of terms provided in the EU-U.S. Terminology and 
Taxonomy for Artificial Intelligence13 to finally obtain a set 
of eight unique alternative AI terms, shown in the second 
column of Table 1. We further sought alternative terms for 
“AI” and similar systems by screening literature reviews. The 

identified terms were either focused on specific applications, 
e.g., “reasoning”, “recognition” and “segmentation” (Hirzle 
et al., 2023), and did not represent AI in general, or were 
more specific definitions of system or program, as in “decision 
support system” and “computer program” (Langer et al., 
2022). Thus, our list of alternative AI terms was not further 
extended.

Q2 search string construction. We first combined 
“human” with each of the extracted alternative AI terms. As 
this would lead to large amounts of irrelevant data, e.g., 
“human agent” would likely refer to an agent of human 
nature, not the combination of a human and an agent, we 
added the most prominent conjunctive terms from Q1 data 
(see Table 1) and formed three-part compounds, e.g., 
“human agent interaction” or “human system collaboration”. 
While this constraint again narrowed the scope, the distribu
tion of term frequency in Q1 showed that large parts of 
human-AI literature were covered by these terms. We manu
ally evaluated the queries’ results to ensure their effectiveness. 
Cases of uncertainty were resolved in group discussions and 
more in-depth evaluation. For example, combinations with 
autonomy as the alternative AI terms were checked thoroughly 
to indeed refer to human-AI relations rather than the auton
omy of humans (see also Section 3.1). A total of 36 individual 
queries were performed for each database within Q2, with 
search strings including singular and plural versions of the 
conjunctive terms (e.g., “collaboration” and “collaborations”). 
For our analysis, the result counts per individual term com
position were essential. For this reason, we only used Boolean 
operators to combine singular and plural versions of the same 
conjunctive term, e.g., “human agent collaboration” OR 
“human agent collaborations”. A comprehensive overview of 
all queries and result counts of Q2 and Q3 (see Section 2.3) is 
available in the Supplementary Material.

Q2 result counts. For Q2 and Q3, only the result counts 
per query, and for Q2 per year were collected, as the goal 
was different from Q1, and the number of queries led to 
unmanageable amounts of publications to analyze individu
ally. The reduction to result counts is suitable for giving 
broad overviews, however, it should be noted that a certain 
share of irrelevant data may be included. We intentionally 
disregarded certain terms that yielded an unmanageable 
number of results, where a large part can be expected to be 
false positive as these terms are known to be widely used in 
contexts other than AI. We investigated this expectation 
prior to our actual search and e.g., found more than 6,200 

Table 1. Alternative terms for “AI” and “human”, and most prominent con
junctive terms describing relations between humans and AI (listed in alphabet
ical order).

Human terms AI terms Conjunctive terms

Human Agent Collaboration(s)
Man Ai Interaction(s)
Person Algorithm Teaming
User Autonomy Team(s)

Computer
Machine
Robot
System
Technology
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results for the term Human-Computer Interaction(s) (see 
below), 4,600 in one single database (Scopus). Similarly, a 
query for Human-Robot Interaction(s) yielded more than 
7,300, and for Human-Robot Collaboration(s) more than 
2,200 results. Subsequently we estimated the false positive 
rate based on further queries adding requirements of occur
rences of “AI” in title, abstract or keywords of the articles. 
For instance, on Scopus only about 180 of the 4,600 articles 
fulfilled this criterion, suggesting an overall false positive 
rate of more than 96%. After these preliminary test runs, we 
thus excluded the following terms:

� Human-Computer Interaction(s), Human-Machine 
Interaction(s) and Human-Robot Interaction(s): these are 
strong research fields regarding the interaction between 
humans and different systems, which not necessarily relate 
to AI. The broadness of these research fields may intro
duce separate terminology, which enables further cross- 
domain investigations but exceeds the scope of our review 
of human-AI terminology.

� Human-Robot Collaboration(s): This mostly concerns the 
collaboration between humans and industrial robots and 
can arguably be regarded a separate research field.

In total, we retrieved 2,755 results for Q2 (Scopus: 1,962, 
ACM Digital Library: 358, IEEE Xplore: 435): 580 for com
binations with “robot”, 469 for “machine”, 521 for “agent”, 
626 for “AI”, 166 for “system”, 100 for “technology”, 215 for 
“autonomy”, 61 for “computer” and 17 for “algorithm”. 
Note that as reasoned above, combinations with “robot” 
(2,255 results across databases) were removed from result 
counts for “collaboration(s)” as were combinations with 
“computer” (6,233), “machine” (1,765), and “robot” (7,333) 
for “interaction(s)”.

2.3. Q3: Alternative human terms

Although not present in our Q1 data, it is most likely that 
alternative human terms exist, which could further enhance 
the comprehensiveness of our scoping review. After using 
Power Thesaurus14 and DeepL Translator15 to identify syno
nyms, we included “person” and “man”16 as general terms 
as well as “user”, considering the context. Three-part com
pounds were formed as in Q2, connecting all terms of all 

columns in Table 1. This resulted in unique search strings 
like “human agent collaboration” and “person system team
ing” (all individual queries and their result counts per data
base are listed in the Supplementary Material). For each of 
the selected databases, 144 individual queries were per
formed, from which only the total result counts were 
retrieved. Overall, 20,341 items were retrieved (Scopus: 
14,147, ACM Digital Library: 1,862, IEEE Xplore: 4,332), 
which we visualized to analyze term composition patterns in 
human-AI terminology in Section 3.2.

Table 2 summarizes the specifics and differences of 
queries Q1–Q3. All queries were applied to the same set of 
databases as exact matches in publications’ titles. 
Differences can be seen in the expansion of the search 
strings and resulting numbers of retrieved and included 
items in the review. While Q1 search string only contains 
human and AI (resulting in “human ai”), both Q2 and Q3 
use a set of different potential AI terms in combination 
with terms that describe the relation between humans and 
AI, e.g., collaboration or interaction. Q3 further contains 
synonyms for human to further extend the scope. The 
numbers of retrieved and included items per query show a 
strong increase in scope when including different AI terms 
from Q1 to Q2 while the exclusion of highly generic terms 
(e.g., HCI) is reflected in the drastic gap between retrieved 
and included items in Q2 and Q3. The inclusion of syn
onymous human terms did not substantially expand the 
scope further.

The following sections contain results of our analyses 
structured in three blocks. Section 3 gives an overview of 
the terminology, its development and derived topics of 
interest. Later sections include analyses of influential authors 
and publications and the geographic distribution of contri
butions (Section 4) and more in-depth thematic analyses 
focusing on the conception, usage and co-occurrence of the 
found terms (Section 5).

3. Terminological analysis

Analyses in this section are based on the presence and 
phrasing of terms in human-AI literature. In Section 3.1, 
visualizations of data obtained through Q2 and Q3 show the 
temporal development of term usage, Section 3.2 shows 
term composition patterns using alternative human- and AI- 

Table 2. Overview of search strings, included terms and result counts for Q1-Q3.

Q1 Q2 Q3

Individual Queries 1 36 144
Results Retrieved 1,096 20,341 20,881
Results Included 658 2,755 3,295
Databases Scopus, IEEE, ACM DL Scopus, IEEE, ACM DL Scopus, IEEE, ACM DL
Searched In Publications’ Titles, Exact Match Publications’ Titles, Exact Match Publications’ Titles, Exact Match
Human Terms Human Human Human, Man, Person, User
AI Terms AI Agent, Algorithm, AI, Autonomy, 

Computer, Machine, Robot, 
System, Technology

Agent, Algorithm, AI, Autonomy, 
Computer, Machine, Robot, 
System, Technology

Relation Terms None Collaboration(s), Interaction(s), 
Teaming, Team(s)

Collaboration(s), Interaction(s), 
Teaming, Team(s)

Example Query “human ai” “human agent collaboration” OR 
“human agent collaborations”

“user ai teaming”
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terms. We investigate the variety of human-AI terms found 
through Q1 in Section 3.3 and form thematic clusters in 
Section 3.4.

3.1. Historical development

Developments such as the shift of AI research towards com
plementarity between humans and AI are likely represented 
in dynamically changing terminology. As the terms in use 
often implicitly convey characteristics and influence the per
ception of the AI system (Langer et al., 2022), we investigate 
with RQ1 whether and how human-AI terminology has 
changed over time, including alternative terms and term 
combinations.

RQ1: How did human-AI terminology evolve over time in 
the scientific literature? We first investigate Q1 data, where 
earliest retrieved items were published in 2011 and 2012. 
The initial sparse coverage is followed by an almost expo
nential increase in publication counts from 2017 to 2023.17

We concluded from this rapid development and the appar
ent gap before 2011 that “human-AI” terms may have 
evolved with the shift towards human focus and comple
mentarity, and that other terminology may have been popu
lar before.

We first focused on “AI” possibly being a trending term 
with less prominence in earlier research. In Q2, we therefore 
searched for alternative terms (see Section 2.2) describing 
similar topics before the sharp increase in human-AI 
research interest. We used alternative AI terms in combin
ation with the key supplementary terms (see Table 1, e.g., 
“human algorithm teaming”). Figure 3 shows absolute num
bers of publications summed per alternative AI term (e.g., 
for “algorithm”, results stem from queries including 
“human”, “algorithm” and each of the key supplementary 

terms). We excluded combinations that are popular terms in 
other research fields and less specifically relevant to human- 
AI relations, such as “Human-Computer Interaction”, from 
this visualization (see also Section 2.2). Still, “computer” 
remained in the visualization, as e.g., “human-computer col
laboration” may indeed refer to collaborative AI systems. 
The remaining sparsely covered area in the visualization 
indicates that “computer” is mainly associated with inter
action rather than collaborative approaches. We used the 
same procedure for combinations of “machine” and “robot” 
with “interaction” as well as “robot” with “collaboration” (cf. 
Section 2.2). The graph still shows large areas for remaining 
combinations with “machine” and “robot”, indicating that 
research in these fields goes beyond interaction. We specific
ally reviewed “human-autonomy” combinations, double- 
checking whether they actually refer to a relation, not the 
autonomy of humans (despite our search terms being quite 
specific). Against our expectations, all publications in our 
sample actually used the term to refer to a relation between 
humans and autonomous systems, most prominently, 
autonomous aviation (Demir et al., 2019) and marine 
(Thieme & Utne, 2017) systems, indicating it might be spe
cific to these domains. Figure 3 further shows that some 
terms were used consistently with small fluctuations 
throughout the years, e.g., “robot” and “agent” with large 
proportions of the overall data, or “computer”, “system” and 
“technology”, covering small proportions. Other terms 
emerged in recent years (“AI”, “algorithm”, “autonomy”) or 
experienced a sharp increase in research interest (“AI”, 
“machine”), with publication counts for “AI” exceeding 
other combinations greatly in recent years.

Figures A1(a to i) (see Appendix A) allow for a more 
detailed analysis of the development of human-AI termino
logy by splitting up Q2 data with respect to the individual 

Figure 3. Development of the popularity of different terms in the human-AI context ranging from 1989 to September 2024 with respective publication counts on 
the y-axis. Alternative AI terms were extracted from Q1 results. Terms describing separate research fields, e.g., HCI, were excluded for this visualization.
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AI terms and supplementary terms (Table 1, second and 
third column). Note that Figures A1(g) (related to “robot”), 
Figure A1(f) (related to “machine”) and Figure A1(e)
(related to “computer”) do not include “interaction” and 
Figure A1(g) does also not include “collaboration”, as men
tioned earlier. Therefore, the respective dashed lines represent 
only zero-values. Earliest data is available for combinations 
with “computer” (without combinations including 
“interaction”) and “system”. Combinations of both “system” 
and “technology” with “interaction” are steadily covered 
over time, with an increase after 2005 of “system” followed 
by an increase of “technology”. This may be due to significant 
technological advancements around that time, such as the 
emergence of cloud computing (Garc�ıa-Valls et al., 2018) and 
increased popularity of smartphones (O’Regan & O’Regan, 
2008). Further increases can be found for “human machine 
collaboration” around 2014 and 2017, followed by a remark
able rise of “human AI collaboration” popularity starting 
around 2017, indicating a strong shift towards collaborative 
relationships.

3.2. Term composition

In multi-part terms, term composition patterns and frequent 
combinations may give information about the attributed 
properties of combinations, for example, competence or 
sociality in the context of “human” and “AI” combinations. 
RQ2 concerns observed patterns in human-AI terminology.

RQ2: Which term composition patterns can be observed? 
As explained in Section 2.3, we combined all human, AI 
and supplementary terms to three-part compounds, e.g., 
“human agent collaboration” or “user computer interaction” 

in Q3. Figure 4 shows the connections between all included 
terms and gives a general overview of commonly used com
binations. Strongly dominant terms are visualized with large 
bars, where the size is determined by the connection 
strength to each of the terms in the neighboring column. 
The magnitude of “human” and “interaction” in comparison 
to all other terms is particularly noticeable. This again stems 
from a certain combination of terms, e.g., “Human- 
Computer Interaction”, referring to separate research fields 
that do not necessarily concern human-AI relations. For this 
reason, we removed these compounds in Figure 5 to obtain 
a less cluttered view and set a focus on the apparently less 
dominant, yet relevant terms.

There are two perspectives to this more detailed view. 
The connections between the first and second column show 
which human synonyms are combined with which potential 
AI terms. E.g., the connection to “user” is stronger for 
“system” and “computer”, while barely present for the other 
terms. This links to “computer” and “system” typically being 
used in combination with “interaction”, as shown previously 
in Section 3.1. Combinations with “user” may indicate a 
lesser degree of autonomy and collaboration between 
humans and AI, unidirectional communication and focus 
more on a tool- rather than partner-relationship. “Man” spe
cifically shows connections to “machine”. This combination 
comes from earlier research conducted decades ago, where 
“man” was used as synonymous for “human” (among them 
Licklider’s prominent early vision of “man-computer 
symbiosis” (Licklider, 1960) or Sutherland’s likewise promin
ent description of a “man-machine graphical communication 
system” (Sutherland, 1963). The connections between the 
second and third column show the relation that is mostly 

Figure 4. Initial Sankey diagram showing connection strength of different three-part compound terms (left: alternative human terms, middle: alternative AI terms, 
right: most popular supplementary terms).
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seen between humans and the respective alternative AI 
term. Notably, “autonomy” is strongly connected specifically 
to “teaming”. This indicates “human autonomy teaming” 
being an established term, which emerged from “human 
automation interaction” according to Lyons et al. (2021). 
“AI” shows the strongest connection to “collaboration”, 
mostly stemming from the recent surge in research interest 
as shown in Section 3.1. The overall picture given by this 
visualization is a likely collaborative, bidirectional partner
ship between humans and AI, contrary to terms connected 
to “user” on the left side of the diagram tending to focus on 
“interaction” rather than “collaboration”, which supports the 
assumption of rather unidirectional tool usage.

3.3. Human-AI terminology

Given the rapidly increasing popularity of explicit human-AI ter
minology in Section 3.1, RQ3 suggests an overview of the var
iety of supplementary terms specific to human and AI relations.

RQ3: Which terms are used to refer to human-AI relations 
and how consistent are they? For this initial overview, we 
extracted all terms during the screening process of Q1 (see 
Section 2.1) in a harmonized form to reach 253 unique terms. 
We included words descriptive of the task or application of the 
human-AI relation in brackets, whereas adjectives were consid
ered part of the term if they satisfied the pattern for human-AI 
terms described in Section 2.1. Table B1 contains a list of indi
vidual terms (third column). Note that, due to the inclusion of 
descriptive words, the table may include seemingly redundant 
terms, such as different terms including interaction. For a less 
cluttered view, Figure 6 shows only the most prominent terms 
(i.e., those with more than two occurrences in our Q1 data). It 
becomes clear that only few of the large amount of individual 
terms occur more than twice in our data at all, which may 
reflect the essential research focus in human-AI relations. The 

inclusion of descriptive words and adjectives may provide add
itional insights into term usage, existing challenges or research 
goals and potentially affect term conception, while the strong 
popularity of few terms remains clearly discernible in Table 
B1. Further, we hypothesize that a large amount of individually 
used terms in combination with few prominent terms in a yet 
evolving field may stem from the ongoing development and 
search for conventions, with a variety of emerging terms and 
few trending ones rapidly gaining popularity. To investigate 
this further, we focus on thematic patterns in the usage of 
popular terms in Section 5.1. Note that this overview is specific 
to terminology explicitly using “human-AI” combinations, 
given our search string for Q1. Human-AI relations are further 
referred to with a variety of terms that are not included in this 
view even though they may be highly relevant, e.g., hybrid 
intelligence (Dellermann, Ebel, et al., 2019). While including all 
possible terms may be infeasible in terms of systematic 
searches and exceeds the scope of our review, our overview 
may serve as a starting point for further analyses.

3.4. Thematic clusters

The given terminology may include similar terms or topics, 
from which we derive thematic clusters with respect to RQ4. 
In the later thematic analysis we aim for deeper analysis of 
the actual usage, conception and interpretation (see Section 
5.1), which may hint towards hidden similarities or differen
ces as well as jingle and jangle fallacies between terms.

RQ4: Which thematic clusters can be derived from 
human-AI terminology? Clustering based on the termino
logy used in a specific field can unveil frequently discussed 
challenges and opportunities, applications and domains. 
We clustered the terms extracted through Q1 based on ter
minological and semantic similarity, following a human 
clustering approach inspired by what Holtzblatt et al. 

Figure 5. Connection strength of different terms after removing terms of separate research fields. A less cluttered view allows for different views on the connec
tions and conclusions on the nature of the connections to be drawn.
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(2005) describe for their “affinity building” phase within 
the Contextual Design methodology. As a first step in this 
process, one main researcher judged similarities to find ini
tial clusters. Then, a group of three researchers, including 
the one that did the first clustering (all among the authors 
of this article) discussed and rearranged the clusters in an 
interactive team process to find consensus. This process 
facilitated transparency and structure, and mitigated 
researcher bias despite human judgment. We identified a 
total of 30 clusters, which then were clustered again in four 
resulting higher-level clusters: Applications, Connection, 
Design and Working Together. Subsequently, the 30 clusters 
(see Table B1, second column) will be referred to as sub
clusters. The four main clusters with their respective sub
clusters are described in Sections 3.4.1 to 3.4.4, the 
concrete assignment of publications to (sub)clusters can be 
found in Table B1 in Appendix B. While some of the clus
ters are clearly larger than others, this does not necessarily 
mean that the same proportion of our corpus of literature 
concerned this cluster. More accurately, these clusters can 
span a wider range of different individual terms, which 
could reflect research interest in the area, great focus on 
adjectives describing individual terms, but also hint a lack 
of accepted conventions.

3.4.1. Connection
Terms in this cluster may indicate social connections such 
as friendship or partnership but also include differences and 
dissimilarities as well as complementarity and resulting ben
efits. The concrete subclusters (highlighted in bold below) 
can be described as follows. In contrast to the commonly 
collaborative and target-oriented nature of teams, the con
cept of Relationship does not necessarily imply working 
towards a shared goal, but may include friendships and 
intimate relationships (Brandtzaeg et al., 2022), that indicate 
some degree of social binding. Integration relates to a seam
less combination of humans and AI. Mutual Benefit may 
refer to synergistic effects and complementarity of humans 
and AI, taking advantage of each others’ capabilities. 
Network, e.g., including human-AI “(eco)systems”, can be 
seen to describe the connection between humans and AI 
regarding their communication and information sharing. 
Hybrid “approaches” and “systems” imply bi-directional 
contribution of human and AI parts and may partially be 
seen as a degree of involvement. As “hybrid”-terms were fre
quently used to describe the union of humans and AI as 
one, we decided to create a separate subcluster. Team is the 
most prominent subcluster with several terms related to 
teams, teamwork and teaming constellations with human 

Figure 6. Excerpt of prominent terms in human-AI relations stemming from Q1 data. All terms with more than two occurrences are included in this visualization, 
along with the respective subcluster. An overview of all terms is available in Table B1 in Appendix B.
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and AI teammates. We included “team” and “teaming” as 
separate terms, as Capel and Brereton explain different con
texts: “teaming” is associated with a more creative context, 
whereas “team” is used for decision making in which 
humans do not want to rely on their own or the AI’s deci
sion alone, but take advantage of the complementarity 
(Capel & Brereton, 2023).

3.4.2. Working together
This cluster contains the aspects commonly associated 
with Computer Supported Cooperative Work (CSCW). 
The focus of this cluster is collaborative work and cre
ation, including topics such as task distribution as well as 
ways of communication and interaction between humans 
and AI. There are many different approaches how to 
define and interrelate individual concepts in the CSCW 
domain, such as collaboration and cooperation. According 
to Schmidt and Bannon, cooperation involves inter
dependence of tasks with different goals, while collabor
ation involves joint work on resources with common goals 
(Bannon & Schmidt, 1989; Schmidt & Bannon, 1992). 
Dillenbourg distinguishes cooperation and collaboration 
based on task distribution (“In cooperation, partners split 
the work, solve sub-tasks individually and then assemble 
the partial results into the final output. In collaboration, 
partners do the work ‘together’” (Dillenbourg, 1999, p. 8)) 
as well as cognitive processes (Dillenbourg, 1999). We 
mostly follow the structure and nesting of CSCW concepts 
proposed by Shah (2010). Collaboration implies product
ively working on a shared goal including task-related 
communication, interaction and task distribution to reach 
complementary performance. Cooperation is one essential 
part of collaboration and includes contributing together to 
a shared goal (contrary to the categorization of Schmidt & 
Bannon, 1992; Bannon & Schmidt, 1989). In contrast to 
collaboration, the outcome does not exceed the result of the 
shared contributions (Shah, 2010). Coordination is nested 
within cooperation according to Shah (Shah, 2010) and 
includes communication and task distribution (which are 
described as separate subclusters) to ensure smooth collabor
ation and the best usage of resources within a team. 
Communication as an essential part of coordination may 
concern communication direction, modalities and interfaces. 
We also included conversation in this cluster if the term indi
cated a focus on the peculiarities of communication between 
humans and AI, while terms focusing on application cases of 
dialog systems are found in the Applications cluster. Co-cre
ation can be seen as a specific collaboration aiming at joint 
creation, often of innovative or creative content, e.g., “music 
co-creation”. Task Distribution is another aspect of coordin
ation, while Work and Tasks focuses on the joint work or 
specific tasks and their implications rather than their efficient 
assignment. Terms in the Interaction subcluster mainly focus 
on the way and nature of interaction and also include 
dynamics, interplay and interactive approaches. Experience 
and Trust in human-AI relations may influence appropriate 
reliance and the willingness to work together.

3.4.3. Applications
Several publications reflected specific application cases of 
human-AI relations in their titles. Human-AI Decision 
Making includes both parties to find decisions based on 
hybrid knowledge. The Learning subcluster involves learn
ing and teaching. Learning includes joint efforts to support 
human learning (van den Bosch et al., 2019) as well as 
mutual learning about the collaboration partners 
(Schoonderwoerd et al., 2022). Control rarely reflects the 
intuitive interpretation of human control and autonomy in 
the interaction with AI (Lundberg et al., 2021), most terms 
in this cluster rather describe a complementary approach of 
sharing control of some external aspect, e.g., the switch 
from one learning situation to another (Echeverria et al., 
2020; Li, Huang, et al., 2022). The subcluster Reading and 
Authoring suggests reading, writing and editing as collab
orative applications with focus on interaction dynamics 
(Yang et al., 2022), capabilities of large language models 
(LLMs) (Lee, Liang, et al., 2022) and complementarity dur
ing the respective process (Chen, Wu, et al., 2023). Dialog 
Systems include conversational systems and chatbots. Data 
Processing and Analysis includes collaborative approaches 
of humans and AI aiming to facilitate data analysis, e.g., by 
coding and labeling (Brachman et al., 2022; Gebreegziabher, 
Zhang, et al., 2023). Publications regarding human-AI 
Sensemaking are either directed towards the mutual under
standing of the interaction partners themselves to be able to 
interact and collaborate effectively (Shen et al., 2021) or 
towards the shared effort to make sense of some external, 
complex data (Dorton & Hall, 2021). Collaborative Design 
refers to applications where humans and AI design together, 
rather than the design of human-AI interactions as describes 
in the Design cluster and respective subcluster. Exploration 
and Detection includes joint detection of patterns or infor
mation (Schmitt et al., 2024; van Zoelen et al., 2023) and 
exploration of design spaces (Viros-I-Martin & Selva, 2021). 
Terms which describe specific application cases outside the 
scope of the described subclusters and were only found once 
in the data even after harmonizing the terms were collected 
separately in a Miscellaneous pool.

3.4.4. Design
This cluster focuses on foundations to build on, guidance 
for practitioners or researchers and guidelines to be followed 
to potentially support the development of suitable solutions 
for interaction and collaboration between humans and AI. 
Design terms mostly concern frameworks and interfaces 
(Guimaraes et al., 2021; Marhraoui et al., 2022), protocols 
and workflows (Fogliato et al., 2022; Liu et al., 2020).

4. Bibliometric analysis

Identifying key authors and publications in a field can reveal 
developments initiated by influential researchers or networks 
among them, as well as key findings that may have strongly 
influenced the research landscape. In the context of this 
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work, emerging terminology may have been shaped by 
highly popular publications. To complement the findings 
directly related to the terms themselves, we thus conducted 
a bibliometric analysis (cf. RQ5), aiming at focusing on a 
small number of both authors and publications, in order to 
specifically point readers to them. Due to the high number 
of overall publications in our review, these outstanding 
researchers and pieces of work would be hard to localize in 
the corpus otherwise.

RQ5: Which key authors and publications can be identified 
in human-AI literature? We extracted key authors and key 
publications from Q1 data, based on numbers of publica
tions they were involved with for key authors and citations 
for key publications as metrics. We considered not only 
absolute, but also average citation counts per year for 
publications.

4.1. Key authors

We identified key authors on the basis of Q1 and referring 
to the number of publications the individual authors were 
involved in, where authorship was generally considered 
regardless of the authors’ order or role in the papers. 
Overall, 2,254 individual authors were found, 589 of which 
were first authors in at least one publication. Most authors 
(1,958) contributed to only one publication. Table 3 shows 
the key authors listed by publication counts including their 
affiliations and publications. We selected all authors within 
the 99th percentile of publication counts in our corpus of 
literature (please note that several authors have identical 
publication counts). Most of the selected key authors con
tributed as first authors in only a small share of their publi
cations. Notable exceptions are Ant�onio Correia and Jeba 
Rezwana who are both listed as first authors for six of their 
seven publications shown in Table 3.

4.2. Key publications

Key publications are relevant to a comprehensive under
standing of the research landscape and its development. The 
large impact of, usually, a small number of outstandingly 
influential, publications can be observed by their absolute 
citation count on one hand (which is however generally 
biased with regard to publication date), which indicates that 
a large portion of the literature refers to concepts and find
ings described in these publications. On the other hand, cit
ation counts could also be averaged per year, which allows 
for a more inclusive approach related to more recent publi
cations (we acknowledge that this reduces but does not fully 
removes the aging bias which generally prevails in such list
ings). Additionally, differences in coverage of different data
bases may however influence the computation of citation 
counts, as Bar-Ilan states that “each database draws the cita
tions only from the items covered by it” (Bar-Ilan, 2018, p. 
3). Further, databases may show differences regarding publi
cation type of most frequently cited publications. Bar-Ilan 
shows that proceedings being a popular publication format 

in computer science is reflected in the most cited publica
tions in the ACM Digital Library in comparison to the 
popularity of journal articles in Scopus (Bar-Ilan, 2018). For 
better comparability of publications from the different data
bases, we therefore retrieved citations counts from Google 
Scholar using SerpAPI’s Google Scholar API.18 Table B2 in 
Appendix B shows both total (cumulative) and average (per 
year) citation counts per publication along with extracted 
keywords and a brief summary.

Tables 3 and B2 show little overlap: only two publications 
(Amershi et al., 2019; Bansal et al., 2019a) are also found in 
the publications of key authors. Notably, both are joint 
efforts by researchers affiliated with Microsoft Research, 
indicating the institution’s impact in the field. The publica
tions mainly focus on complementarity, perception and 
interaction in human-AI relations. Designing and facilitating 
human-AI interaction seems particularly challenging yet cru
cial for complementary performance. Besides interaction 
design, human perception greatly impacts team-up willing
ness. Overall, the key publications show a collective shift 
towards working together rather than competing against 
each other, aiming for performance that neither of the par
ties could reach alone.

4.3. Geographic analysis

The worldwide distribution of researchers within a research 
field implies a variety of cultural backgrounds, local develop
ments and research directions. By conducting a geographic 
analysis of their affiliations, we investigate the geographic dis
tribution of human-AI terminology but also focal areas and 
global coverage of the overall research field to answer RQ6.

RQ6: Which geographic differences can be seen in human- 
AI terminology? We extracted country and continent from 
authors’ affiliations using OpenAI’s GPT-4o mini,19 which is 
one of the most recent Large Language Models (LLMs). 
LLMs have the capability of including context into their 
analysis and offer intuitive interaction, making them a useful 
tool for text analysis (Rathje et al., 2024), where GPT-4o 
mini is particularly suitable for extracting searched for infor
mation, e.g., location details. In our data extraction process, 
we considered each country only once per publication if 
more than one author was affiliated with the respective 
country. Results were continuously cross-checked by one 
main researcher. The locations in combination with the 
associated subclusters per publication yield visualizations 
that allow for geographic analysis on country and continent 
level.

Continent-level. Figure 7a is based on the absolute numbers 
of publications per terminology subcluster and continent. The 
heatmap indicates pronounced research contribution in North 
America, followed by Europe and Asia. Focal points based on 
continents can be seen for “collaboration” and “interaction” in 
North America, Europe and Asia and “team” in North 
America and Europe. Human-AI research was sparsely covered 
in Australia, South America and Africa. This might be due to 
disadvantageous legal regulations (Jackson Bert�on, 2021) or 
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limited economic resources and necessary infrastructure 
(Kiemde & Kora, 2020). Further, the absolute numbers of 
human-AI publications are of course also affected by general 
aspects such as continent size, number of higher education and 
other research institutes there and similar. For instance, 
according to the uniRank directory,20 there are currently 62 
officially recognized higher-education institutions in Oceania 
(including Australia) versus 1,858 in North America or 2,706 

in Europe. Additionally, as pointed out by Williams (who also 
states that “Australia does not yet have an artificial intelligence 
strategy or roadmap”; Williams, 2019, p. 111), the investment 
in research and development in general, differs for different 
nations (e.g., 0.4% of the GDP in Australia compared to 1.18% 
in South Korea or 0.75% in the US in 2015) (Williams, 2019).

Also, the discrepancies of human-AI research coverage in 
absolute numbers, do not fully allow for within-continent 

Table 3. Key authors in human-AI literature with contributions to up to 14 publications, considering not only first-authorship.

Author Count Affiliation Publications

Nathan J. McNeese 14 Clemson University (Canonico et al., 2020; Flathmann et al., 2021, 2023, 2024; Hauptman 
et al., 2023, 2024; Mallick et al., 2024; McNeese et al., 2021; 
Schelble et al., 2021, 2023, 2024; Zhang, McNeese, et al., 2021; 
Zhang, Duan, et al., 2023; Zhang, Flathmann, et al., 2024)

Beau G. Schelble 9 Clemson University (Flathmann et al., 2021, 2023; Hauptman et al., 2023, 2024; McNeese 
et al., 2021; Schelble et al., 2021, 2023, 2024; Zhang, Flathmann, 
et al., 2024)

Vincent Aleven 8 Carnegie Mellon University (Echeverria et al., 2020, 2023; Holstein et al., 2020; Holstein & 
Aleven, 2022; Karumbaiah et al., 2023; Thomas et al., 2024; Yang 
et al., 2021, 2023)

Christopher Flathmann 8 Clemson University (Flathmann et al., 2021, 2023, 2024; Hauptman et al., 2024; Mallick 
et al., 2024; Schelble et al., 2021; Zhang, Duan, et al., 2023; 
Zhang, Flathmann, et al., 2024)

Kenneth Holstein 8 Carnegie Mellon University (Echeverria et al., 2020; Gmeiner et al., 2024; Holstein et al., 2020, 
2023; Holstein & Aleven, 2022; Kawakami et al., 2022; Morrison 
et al., 2023; Yang et al., 2023)

Mary Lou Maher 8 University of North Carolina at 
Charlotte

(Karimi et al., 2020; Kim, Maher, et al., 2021; Rezwana et al., 2021; 
Rezwana & Maher, 2023a, 2021, 2023c, 2023b, 2022)

Ant�onio Correia 7 University of Jyv€askyl€a, University of 
Nebraska at Omaha, INESC TEC 
and University of Tr�as-os-Montes e 
Alto Douro

(Correia, 2024; Correia et al., 2020, 2021, 2024, 2023; Correia & 
Lindley, 2022; Guimaraes et al., 2021)

Toby Jia-Jun Li 7 University of Notre Dame (Gebreegziabher, Zhang, et al., 2023; Ning et al., 2024: Zhang, Ning, 
et al., 2023; Suh et al., 2024; Yang et al., 2022; Zhang, Xu, et al., 
2022; Zhang, Gao, et al., 2023)

Jeba Rezwana 7 University of North Carolina at 
Charlotte

(Karimi et al., 2020; Rezwana et al., 2021; Rezwana & Maher, 2023a, 
2021, 2023c, 2023b, 2022)

Casey Dugan 6 IBM Research (Ashktorab et al., 2020, 2021, 2023; Brachman et al., 2022; Munyaka 
et al., 2023; Wang et al., 2019)

Niklas K€uhl 6 University of Bayreuth 
Karlsruhe Institute of Technology

(Jakubik et al., 2023; Morrison et al., 2024; Schemmer et al., 2022; 
Schoeffer et al., 2024: Schemmer et al., 2023; V€ossing et al., 2022)

Q. Vera Liao 6 Microsoft Research (Ashktorab et al., 2020; Chen, Liao, et al., 2023; Fan et al., 2022; Lai 
et al., 2022, 2023; Prabhudesai et al., 2023)

Besmira Nushi 6 Microsoft Research (Amershi et al., 2019; Bansal et al., 2019a, 2019b; Fogliato et al., 
2022; Inkpen et al., 2023; Peng et al., 2022)

Nikol Rummel 6 Ruhr-Universit€at Bochum (Echeverria et al., 2020, 2023; Holstein et al., 2020; Karumbaiah et al., 
2023; Yang et al., 2021, 2023)

Michael V€ossing 6 Karlsruhe Institute of Technology (Hemmer et al., 2022, 2023; Jakubik et al., 2023; Schemmer et al., 
2022; V€ossing et al., 2022; Westphal et al., 2023)

Rui Zhang 6 Clemson University (Flathmann et al., 2021, 2024; Schelble et al., 2024; Zhang, McNeese, 
et al., 2021; Zhang, Duan, et al., 2023; Zhang, Flathmann, et al., 
2024)

Zahra Ashktorab 5 IBM Research (Ashktorab et al., 2020, 2021, 2023; Brachman et al., 2022; Munyaka 
et al., 2023)

Wen Duan 5 Clemson University (Flathmann et al., 2024; Hauptman et al., 2024; Schelble et al., 2023; 
Zhang, Duan, et al., 2023; Zhang, Flathmann, et al., 2024)

Vanessa Echeverria 5 Carnegie Mellon University, Esc. 
Superior Polit�ecnica del Litoral, 
Monash University

(Echeverria et al., 2020, 2023; Yan et al., 2024; Yang et al., 2021, 
2023)

Eric Horvitz 5 Microsoft Research (Amershi et al., 2019; Bansal et al., 2019a, 2019b; Fogliato et al., 
2022; Segal et al., 2022)

Kori Inkpen 5 Microsoft Research (Amershi et al., 2019; Fogliato et al., 2022; Inkpen, 2024; Inkpen 
et al., 2023; Peng et al., 2022)

Ece Kamar 5 Microsoft Research (Bansal et al., 2019a, 2019b; Liu et al., 2020; Peng et al., 2022; Segal 
et al., 2022)

Qian Pan 5 IBM Research (Ashktorab et al., 2020, 2021, 2023; Brachman et al., 2022; Munyaka 
et al., 2023)

Gerhard Satzger 5 Karlsruhe Institute of Technology (Hemmer et al., 2022, 2023; Schemmer et al., 2023; V€ossing et al., 
2022; Westphal et al., 2023)

Zheng Zhang 5 University of Notre Dame (Gebreegziabher, Zhang, et al., 2023; Ning et al., 2024; Zhang, Gao, 
et al., 2023; Zhang, Xu, et al., 2022; Zhang, Ning, et al., 2023)
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analysis of research interests and terminology usage. For this 
reason, numbers in Figure 7b are normalized by the overall 
number of publications per continent to provide a more 
detailed view of research interests within continents. This 
visualization can be read line-wise and reveals focal points 
within continents that vanished in Figure 7a. While collab
oration, interaction and team subclusters still stand out in 
the normalized figure, research activity in South America 
and Africa does not necessarily seem to align with the main 
streams visible for other continents. For example, publica
tions affiliated with South America most frequently concern 
“network”, “control”, “hybrid” and “relationship” subclusters 
and “dialog systems” is the most prominent subcluster for 
publications affiliated with Africa. Normalized values for the 
“team” subcluster are surprisingly low for Asia, while values 
for “co-creation” and “reading and authoring” are compara
tively high. Europe and North America show similar focal 
areas with only slight deviations, e.g., higher “co-creation” 
and “relationship” values for North America and higher 
“collaboration” and “learning” values for Europe. Note that, 

due to the sparse coverage of human-AI literature in Africa, 
Australia and South America, their focal points, e.g., on 
“hybrid” for South America, are strongly visible, while focal 
points stand out less strongly for continents with overall 
broad coverage.

Country-level. Subsequently refining the perspective on 
the global distribution, countries within continents may con
tribute to research to different degrees. Especially for conti
nents that consist of a large number of individual countries, 
such as Europe, differences may be discovered by investigating 
the countries’ focal areas. Figures A2(a to f) in Appendix A
show all countries within their respective continents with color 
intensities indicating their overall contribution in the respective 
subcluster.

5. Thematic analysis

This section extends our analyses by including the respective 
publications’ contents rather than just the presence of terms 
in their titles. According to Braun and Clarke, thematic 

Figure 7. Geographic distribution of human-AI terminology on continent-level based on the subclusters found in human-AI literature.
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analysis is “a method for identifying, analysing and report
ing patterns (themes) within data” (Braun & Clarke, 2006, p. 
79), which, even though flexible in nature, commonly 
“involves the searching across a data set—[ … ]—to find 
repeated patterns of meaning” (Braun & Clarke, 2006, p. 
86). In our analysis, we aim to find patterns in the concep
tion, usage, perception and co-occurrence of specific ter
minology in a subset of publications based on terms that 
occurred at least three times in our Q1 data as described in 
Section 2.1.

5.1. Term conception and usage

The usage and conception of terminology can unveil hidden 
discrepancies, similarities and relationships. RQ7 focuses on 
different themes of conception and usage potentially stem
ming from a lack of clear definitions and awareness.

RQ7: Which themes of term conception and usage consist in 
human-AI literature? We extracted the usage and conception 
of different terms manually by either using explicit definitions 
stated in the text or by inferring them, e.g., from descriptions of 
application cases and study tasks the participants were con
fronted with. We briefly describe each of the terms and their 
usages and then summarize the findings based on the previously 
defined thematic clusters (see Section 3.4). The Design cluster 
did not contain any terms with at least three occurrences and is 
therefore not addressed in this section.

5.1.1. Connection
In our corpus of selected literature, Human-AI Teams are 
seen as collaborative relationships between humans and AI, 
aiming for complementary performance, e.g., (Bansal et al., 
2019b; Zhang, Lee, et al., 2022) and mutual benefit (Babbar 
et al., 2022). Zhang et al. more specifically describe human- 
AI teams as “an integrated unit where human and AI team
mates, each with a significant degree of agency, coordinate 
and collaborate to complete team tasks with a shared goal” 
(Zhang, Flathmann, et al., 2024, p. 2) and state that for 
potentially superior performance in comparison to human- 
only teams “both a focus on the technical/task-focused con
tributions and the human-factors contributions of AI” 
(Zhang, Flathmann, et al., 2024, p. 2) are crucial. Challenges 
specific to human-AI teams include awareness (Endsley, 
2023) and understanding of teammates (Munyaka et al., 
2023), autonomy and interdependence (Ulfert et al., 2024) 
as well as individual and team trust (Georganta & Ulfert, 
2024; Hou et al., 2025; Ulfert-Blank et al., 2023). Berretta 
et al. define Human-AI Teaming as “a process between one 
or more human(s) and one or more (partially) autonomous 
AI system(s) acting as team members with unique and com
plementary capabilities, who work interdependently toward 
a common goal” (Berretta, Tausch, Ontrup, et al., 2023, p. 
23). Literature on human-AI teaming tends to focus on 
establishing functioning human-AI teams (Hauptman et al., 
2023; McNeese et al., 2021) and factors that may enable or 
influence their effectiveness (Berretta, Tausch, Ontrup, et al., 

2023; Koehl & Vangsness, 2023; Milella et al., 2023). 
Authors describe the need for understanding and awareness, 
adaptivity and the importance of the AI system being a 
“real” member of the team rather than a tool, with expecta
tions and standards applied similar to those in human teams 
(Berretta, Tausch, Ontrup, et al., 2023; Hauptman et al., 
2023; McNeese et al., 2021; Schelble et al., 2024). Berretta 
et al. further point to human-technology teaming and 
human-autonomy teaming as related research fields, which 
we could also identify in Section 3.1. With Human-AI 
Teamwork, researchers investigate interactions and dynam
ics between human and AI teammates (Jorge et al., 2023; 
Mallick et al., 2024; Peng et al., 2022; Schecter et al., 2023) 
and what may be specific to human-AI rather than human- 
only teams (Schecter et al., 2023).

Kawakami et al. summarize Human-AI Partnerships as 
“configurations of humans and AI systems that can draw 
upon complementary strengths of each” (Kawakami et al., 
2022, p. 1). Further, Xu et al. describe “a genuine human-AI 
partnership capable of mimicking the dynamic adaptability 
of humans” (Xu, Hong, et al., 2023, p. 1) and humans and 
AI as “fellow team members who can both reactively and 
proactively collaborate” (Xu, Hong, et al., 2023, p. 1). 
Partnerships may thus be collaborative relationships 
(Omidvar-Tehrani et al., 2024; Xu, Hong, et al., 2023, Weisz 
et al., 2021) with discussions including involvement, roles 
(Omidvar-Tehrani et al., 2024; Waefler & Schmid, 2020), 
acceptance and reliance (Kawakami et al., 2022; Nguyen 
et al., 2018; Weisz et al., 2021) and resulting design implica
tions. A Human-AI System may broadly be a combination 
of humans and AI, described as an intertwined sociotechni
cal system (Naikar et al., 2023). Publications emphasize the 
importance of human focus in the design of AI interfaces 
and interactions (Correia & Lindley, 2022; Subramonyam 
et al., 2022). Human-AI Complementarity emphasizes 
superior performance that can only be reached by combin
ing human and AI capabilities strategically. Publications 
focus on the optimal integration of human and AI contribu
tions (Tan et al., 2022; Yang, Zhang, et al., 2024), impact 
factors (Steyvers et al., 2022) and the design and tuning of 
AI to complement the individual human’s capabilities 
(Holstein & Aleven, 2022; Inkpen et al., 2023). Human-AI 
Symbiosis may be similar to complementarity and collabor
ation at first glance, focusing on working together and aim
ing for AI to support rather than replace humans (Mahmud 
et al., 2024; Jarrahi, 2018). The distinctive feature of symbi
osis appears to be the trigger of an advantageous situation 
(Bendoly et al., 2024; Ilapakurti et al., 2019; Vuppalapati 
et al., 2020) that enables humans to act upon. Human-AI 
Synergy may describe a holistic view on complementarity 
and human focus, taking affordances (Bao et al., 2023) and 
behavioral science (Van Rooy & Vaes, 2024) into account. 
Fabri et al. adopt a definition of Human-AI Hybrids 
as “combinations of capabilities of human agents and 
AI-enabled systems” (Fabri et al., 2023, p. 625). They high
light the importance of clear definitions and investigating 
human-AI hybrids as close interworking of humans and AI 
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from more than one perspective (Fabri et al., 2023), for 
which they develop a taxonomy including archetypes of 
human-AI hybrids ranging from automation to co-evolution. 
Fahse and Schmitt refer similarly to the concept while focus
ing on real-life settings (Fahse & Schmitt, 2023). Allred 
et al. describe a complementary human-AI hybrid that is 
superior to established techniques for author masking 
(Allred et al., 2020).

5.1.2. Working together
Human-AI Interaction addresses the characteristics of 
interaction with AI in comparison to conventional HCI 
(Amershi et al., 2019; Shin et al., 2019; Wienrich & 
Latoschik, 2021). Researchers investigate what makes inter
action with AI special and which new challenges arise with 
it (Liu, 2021; Sundar, 2020; Yang et al., 2020), especially 
considering the uncertainty of the AI’s outcome. While 
commonly the human is in the focus rather than technical 
aspects, discussions concerning human-AI interaction in our 
literature range from mere acceptance of an AI system and 
its decisions (Liu, 2021) to actually investigating the ways 
humans can interact with AI (Kim et al., 2023) and an over
all shift from HCI to human-AI interaction. Crompton 
describes human-AI interaction in decision making, where 
“the human agent (re-)acts on the output of the AI, and the 
AI (re-)acts on the output of the human agent” (Crompton, 
2021, p. 1). Human-AI Collaboration takes advantage of 
the complementary skills of both parties, i.e., humans’ ability 
to use intuition and reason based on experience and AI’s 
computational power. In human-AI literature, a range of 
applications are considered collaborative with different 
degrees of involvement and focus on enhancement of either 
party. Including an AI collaborator may facilitate human col
laboration and educate human collaborators (Sharma et al., 
2023; Wang et al., 2019) or reduce the required human effort. 
Collaboration in decision making frequently refers either to 
decision support systems or conditional delegation. In this con
text, it is noteworthy to mention human-AI collaboration proto
cols which specify “how human decision makers should 
interact with the machines that support them” (Cabitza et al., 
2021, p. 2) and deal with the interaction process and questions 
such as when to present what (decision-related) information. 
For instance, the sequence of advice presentation (e.g., human- 
first vs. AI-first) can play in important role in the design of 
human-AI systems (Cabitza et al., 2023). In summary, decision 
support systems provide AI recommendations or advice to 
support humans in their final decision and therefore integrate 
additional knowledge (Bossen & Pine, 2023; Cabitza et al., 

2021; Cabrera et al., 2023; Holstein et al., 2023; Schmidt & 
Biessmann, 2020). In conditional delegation, both humans and 
AI delegate decision tasks to the better suited collaboration 
partner for efficient use of the complementary capabilities (Lai 
et al., 2022). Integrating human knowledge in AI model devel
opment (Siirtola & R€oning, 2019) may reflect the AI commun
ities’ perspective of human-AI collaboration, where the goal is 
to improve model performance. Another stream of literature 

investigates human-AI collaboration in exploratory applica
tions, where the human provides guidance to approach a 
desired goal (Strobelt et al., 2022). Literature contains critical 
arguments towards the collaborative nature especially of deci
sion support systems. Simple decision support systems do not 
include factors frequently considered essential to collaboration, 
such as reciprocity, equal contribution and learning from each 
other (Dellermann, Calma, et al., 2019). Several publications 
concerning human-AI collaboration discuss the importance of 
feedback, awareness of information available to the collaborator 
(Holstein et al., 2023) and the calibration of appropriate trust 
and reliance (Cabrera et al., 2023; Okamura & Yamada, 
2020a). Despite the unresolved challenges, human-AI collabor
ation literature does show endeavors towards hybrid intelli
gence (Sowa et al., 2021). The term Human-AI Collaborative 
Approach is more frequently used for systems that are 
intended to perform or enable collaboration, not necessarily 
focusing on the process and team aspect of collaboration (Lee 
et al., 2021). In Human-AI Co-Creation, humans and genera
tive AI aim to create or explore something new. Examples 
include, however may not be limited to, areas with a focus on 
creativity and personal expression, such as painting and music 
co-creation (Huang et al., 2020; Lyu et al., 2022). Even though 
intuition and expression as human abilities are difficult for AI 
to adopt or imitate, human creativity can be enhanced by 
including AI in the process of collaborative creation (Yu et al., 
2022). This is specifically of interest in Human-AI Co- 
Creativity, which “involves humans and AI collaborating on a 
shared creative product” (Rezwana & Maher, 2023a, p. 62) and 
is being researched by Computational Creativity and HCI 
researchers (Kim, Maher, et al., 2021; Moruzzi & Margarido, 
2024). Rather than creativity support (Rezwana & Maher, 
2023a) or generative creativity (Kim, Maher, et al., 2021), 
human-AI co-creation reflects a collaborative approach of 
designing, making music (Rezwana & Maher, 2023a) or creat
ing artwork together. The collaborative and uncertain nature of 
creating and creativity may shape the specific kind of inter
action in human-AI co-creation and co-creativity. Publications 
using Human-AI Co-Creative System focus on the design and 

Summary
The Connection cluster highlights the importance of human-centered approaches in human-AI relations. This is reflected by the relationship-focused perspec
tive, investigating how connections between humans and AI should be designed and what may impact them. Forming teams or partnerships between 
humans and AI mostly aims for collaborative and complementary relationships, where human-AI teaming may be the process of establishing functioning 
human-AI teams and research concerning human-AI partnerships may even more focus on AI as a capable fellow team member. A holistic approach may be 
reflected in literature describing human-AI synergies, while in human-AI symbiosis leveraging human and AI knowledge to spark a symbiotic effect to help 
humans may be a different approach to human-centeredness.
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dynamics in such collaborative relationships (Buschek et al., 
2021; Rezwana & Maher, 2021, 2023b). Application cases of 
Human-AI Cooperation include the assignment of tasks to 
the better suited (human or AI) teammate for optimal per
formance (He et al., 2023; Salikutluk et al., 2023), cooperative 
games (Atkins et al., 2021; Le Guillou et al., 2023; Schelble 
et al., 2021) and decision making, where “human partici
pants make their initial decision first, observe their team
mate’s decision, and then make their final decision” (Zhang, 
Chong, et al., 2023, p. 2). Among other topics, researchers 
investigate trust (Okamura & Yamada, 2020b, Zhang, 
Chong, et al., 2023, Schelble et al., 2021), adaptive autonomy 
(Salikutluk et al., 2023) and mental models (He et al., 2023; 

Le Guillou et al., 2023) in human-AI cooperation. In 
Human-AI Communication, Pan et al. and Brandtzaeg 
et al. investigate agency and perception of conversational AI 
systems (e.g., ChatGPT, communicating in human language) 
in human-AI communication (Pan et al., 2024, Brandtzaeg 
et al., 2022). Koçak et al. aim to account for semantic ambi
guities different humans may bring into human-AI commu
nication, using potential ambiguities in communication 
codes in an advantageous manner (Koçak et al., 2022). 
Zero-Shot Human-AI Coordination aims “to develop an 
agent capable of collaborating with humans without relying 
on human data” (Yan et al., 2023, p. 1). Zero-shot 
approaches are relevant to various application cases where 
adaptation to humans is necessary, yet the collection and 
integration of human data in the training process is costly, 
such as conversational systems, robotics, self-driving vehicles 
and gaming (Lou et al., 2023; Yan et al., 2023; Zhao, Song, 
et al., 2023). Human data is therefore simulated by agents in 
approaches such as self-play or population-based methods to 
train RL models (Yan et al., 2023; Zhao, Song, et al., 2023: 
Lou et al., 2023). Human-AI Work concerns the impact of 
the introduction of AI in work contexts on work practices, 
dynamics and workers (Berretta, Tausch, Peifer, et al., 2023; 
Ruissalo, 2024) as well as configurations of humans and AI 
working together and technology adoption, e.g., in agricul
tural settings (H€ullmann et al., 2023). A lack of Human-AI 
Trust commonly stems from the black-box nature of AI 
models (Lou & Wei, 2023; Wang & Ding, 2024), making it 
difficult for humans to appropriately calibrate to them. For 
example, Wang and Ding state that “the lack of trust in 
algorithms sealed in the “black box” is one of the most 

challenging barriers to taking advantage of AI in human 
decision-making” (Wang & Ding, 2024, p. 1). Common 
approaches to enhance transparency and therefore trust 
include explanations, however, researchers have noticed the 
importance of not only establishing, but maintaining trust: 
Zerick et al. highlight the importance of human-AI trust 
and specifically focus on recognizing and restoring trust 
once lost, stating that “by its nature, adoption of AI necessi
tates more than mere acceptance: it requires trust” (Zerick 
et al., 2024, p. 1). Further, Li et al. address trustworthiness 
of AI and human trust towards humans, automation and AI 
(Li, Wu, et al., 2024), proposing a framework of AI trust 
informed by psychological perspectives to trust.

5.1.3. Applications
Human-AI Decision Making refers to AI assisting the 
human in the decision making process. Commonly, the 
human decision maker is provided with AI recommenda
tions or predictions and can then either accept or reject 
them for the final decision. The noticeably strong focus on 
explanations (Jakubik et al., 2023; Morrison et al., 2024; 
Schemmer et al., 2022; Schoeffer et al., 2024) shows an aim for 
supporting the human decision maker in the decision whether 
or not to rely on the AI recommendation. Publications on 
human-AI decision making mention various high-stakes appli
cation domains, such as medicine, law and finance. Several 
publications additionally describe an aim for complementarity. 
Puranam refers to Human-AI Collaborative Decision Making 
as a setting where “humans and AI algorithms through some 
form of collaboration, together produce a decision that is 
implemented by a third party” (Puranam, 2021, p. 75). While 
the specific terminology may not necessarily reflect a strong 
difference between decision making and collaborative decision 
making in this case (Cai et al., 2019), Wang et al. emphasize 
the importance of restoring trust to enable collaboration in 
human-AI decision making and aim to address explanations 
and autonomy in collaborative decision making (Wang, Yuan, 
et al., 2024). Authors further integrate human knowledge in 
reinforcement learning processes (Mentzas et al., 2021) or 
focus on the onboarding and introduction to AI assistants (Cai 
et al., 2019). In Human-AI Collaborative Writing, textual 
content is created jointly by humans and AI. Collaboratively 
created content is commonly influenced by prompts to retrieve 
LLM outputs, but also by human the human decision of 
whether or not to adopt the generated text or to possibly adapt 

Summary
The uncertainty of AI output seems to shape a different kind of interaction which poses new challenges in the design and development in comparison to 
conventional HCI research. AI and humans possess complementary strengths for a range of different tasks, which may enable and encourage collaboration 
to reach superior joint performance that could not be reached by either party alone. Complementarity and uncertainty are necessary for specific contexts, 
e.g., human-AI co-creation in art, as creativity requires uncertainty on the AI side.
Publications refer to a range of settings with different degrees of involvement and directions of support as collaborative. Two main streams of research 
describing “human-AI collaboration” are related to decision support systems and conditional delegation, which differ from each other in the partition of deci
sions. In addition, human-AI collaboration includes facilitation and mediation of human collaboration, education and improvement of human capabilities, 
joint problem solving, guided joint exploration and improvement of AI performance. This wide range of settings considered “collaborative” calls for a more 
thorough investigation of the definition of collaboration in human-AI relations to avoid jingle fallacies. This is emphasized by arguments in existing literature 
regarding the collaborative nature of, e.g., decision support systems. A potential risk for jangle fallacies can be seen in some instances of similar use of col
laboration and cooperation in human-AI literature.
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it according to the individual needs (Richburg et al., 2024). 
Richburg et al. specifically focus on authorship analysis for col
laboratively generated content, which becomes increasingly 
challenging with interdependent contributions of both parties 
(Richburg et al., 2024). Further, authors investigate LLMs’ 
capabilities in different collaborative writing contexts (Lee, 
Liang, et al., 2022) and the practical impact of contemporary 
collaborative writing approaches, i.e., text generation with 
LLMs, on professional writing (Knowles, 2022). In Human-AI 
Pair Programming, “the practice of two programmers working 
together on the same task using a single computer, keyboard, 
and mouse” (Ma, Wu, et al., 2023, p. 1) is applied to humans 
and AI as programming partners. Authors investigate the dif
ferences and potentials of human-AI pair programming in 
comparison to the conventional setting of human pair pro
gramming (Ma, Wu, et al., 2023) and aim to address the com
mon black-box problem in (AI) model development by 
providing AI advice and visualizations to the human developer 
(Jiang, Ahmadon, et al., 2024; Jiang, Bin Ahmadon, et al., 
2023; Zhang, Wei, et al., 2022).

5.2. Co-occurrence

Shared discussions and research interests can indicate concep
tual relationships between terms, e.g., communication may be 
relevant in the context of teaming. With RQ8, we investigate 
such conceptual relationships and semantic associations.

RQ8: Which semantic associations can be found in 
human-AI terminology? We performed a co-occurrence ana
lysis on document level to find conceptually related terms. 
Such an analysis is suitable for investigating term-specific 
semantic associations and supports the inference of concep
tual relations between the different terms in the same docu
ment. In our case, rather general, more prominent terms 
(e.g., “collaboration” or interaction”) may have more co- 
occurrences with other terms than those tailored to one spe
cific problem (e.g., “trustworthy human-AI collaboration”). 
Thus, our analysis is focused on the most prominent 
human-AI terms with more than two occurrences as 
described in Section 5, as including all proved to result in a 
largely “empty” co-occurrence matrix in preliminary imple
mentations. Figure 8 shows the co-occurrence of the most 
prominent terms, with connection strength between terms 
depicted by color intensity.

For the analysis, all co-occurring terms were automatically 
extracted from all publications in a machine-readable PDF 
format using a Python script. A co-occurrence was considered 
if one term occurred with another term in the same file but 
not with itself. Furthermore, multiple occurrences of the same 
terms were not quantified, resembling a Boolean data type or 
nominal scale. The list of terms extracted from Q1 (see 
Section 2.1) served as a basis to be searched for in the papers. 

We harmonized both the PDF files and the set of search 
terms as described in Section 2.1 and Section 3.3 and ana
lyzed the data based on the connection strength shown in 
Figure 8.

Strong connections among the most popular terms sug
gest that they do not necessarily represent different research 
directions but build a strongly intertwined core around 
“collaboration”, “interaction” and “team” in human-AI 
research. This core focus possibly indicates the need for 
intuitive interaction between humans and AI to enable col
laboration and is also visible in combination with several 
other terms, such as HAI partnership, HAI decision making, 
HAI collab. decision making, HAI system and HAI symbi
osis. A focus on complementarity is visible for HAI collab
oration, HAI team and HAI decision making. HAI collab. 
decision making, while interpreted similarly to HAI decision 
making in Section 5.1, seems to be discussed as a 
“collaborative approach”, possibly enabling collaboration in 
human-AI decision making. With terms related to joint cre
ation and creativity, e.g., “HAI co creation”, “HAI co crea

tivity” and “HAI co creative system”, concepts otherwise 
relevant to human-AI relations are hardly discussed: They 
show weak or no connections to “HAI trust”, “HAI com
plementarity” or “HAI cooperation”. Complementarity 
though is frequently discussed in combination with “HAI 
collaboration”, “HAI interaction” and “HAI decision making”, 
reflecting the use of complementary strengths for optimal per
formance, which may not be the goal in co-creative settings. 
Some terms show overall weaker connections. This may sug
gest research performed separately from others, specificity of a 
term (e.g., “HAI pair programming” may not be discussed fre
quently as a common part of human-AI relations, but rather 
reflect a specific approach or application case) or, in contrast, a 
concept commonly discussed without the need for an explicit 
human-AI term. For example, trust may be relevant to many 
discussions in human-AI relations, yet, authors may not expli
citly refer to it as “human-AI trust” in publications concerning 
human-AI relations. Investigating such cases may require a 
more thorough, focused co-occurrence analysis including rele
vant terms and descriptions of specific concepts rather than 
our overview of human-AI terminology.

6. Discussion

With our scoping review, we aimed at mapping the land
scape of terminology used in scientific human-AI literature 
to provide a broad overview of the usage and consistency of 
terms, discussed topics, and the evolvement over time. In 
the following, we discuss the implications and limitations of 
our research and identify our main contributions.

Summary
Human-AI decision making by itself appears to be a well-defined concept. There is a particularly strong focus on tuning appropriate reliance on the AI’s rec
ommendations, but also on complementarity between humans and AI to surpass individual performance of each. The Applications cluster further shows a 
surge in research interest in human-AI collaborative writing, which poses challenges concerning the differentiation of authorship of jointly generated content 
and the adaptation to and impact on humans. In human-AI pair programming, AI is seen as a partner facilitating programming of, e.g., complex models.
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6.1. Implications and contributions

As explained in Section 1, the rapid advancements in AI 
research in general as well as a shift of its focus towards 
human-centered AI hold the risk of emerging two-sided 
inconsistencies (e.g., ambiguities) in the terminology used to 
characterize relations between humans and AI.

First, as shown in Table 1, we extracted a set of different 
alternative terms for “AI” from the literature. This is in line 
with the findings of Langer et al., (2022) and (Graziani 
et al., 2023), investigating terms used to refer to AI systems. 
Both Langer et al. (2022) as well as Graziani et al. (2023) 
already found significant differences in the perception of 
and expectations towards AI systems depending on the 
wording. Awareness of the variety of terms and their usage 
and conception is therefore crucial to identify possible 
inconsistencies in terminology and facilitate purposeful 
selection of appropriate terms. Besides the appropriate cali
bration of individuals’ expectations and trust towards AI 
systems, inconsistent terminology holds risk for societal 
implications: In legal contexts, precise definition of individ
ual terms may be critical to ensure fair jurisdiction. For 
instance, in the European Union region, the General Data 

Protection Regulation (GDPR),21 regulates how personal 
data of individuals may be processed and transferred. 
According to the GDPR, humans are entitled to human 
judgment in automated decisions, requiring the terminology 
to be clear on human involvement and authority in the deci
sion-making process. In high-stakes settings, e.g., autono
mous vehicles or medical applications of AI, liability of 
human vs. AI may be decided based on the term precisely 
describing the situation. Further, inconsistent terminology 
may impede complementary research especially in interdisci
plinary fields.

Our findings confirm and extend Langer et al.’s and 
Graziani et al.’s observations: as our review indicates, 
human-AI terminology largely appears to be influenced by 
the development of a new shape of interaction. Contrary to 
conventional systems, AI outputs hold uncertainty which 
leads to potentially unpredictable results. A large proportion 
of literature therefore focuses on the peculiarities of inter
action and the collaborative, complementary relationship of 
humans and AI. Awareness of trending and emerging terms, 
such as “human-AI collaboration” or “human-AI symbiosis”, 
supports the consistent use of terminology and development 
of conventions, while clear definitions are yet to be made. 

Figure 8. Co-Occurrence matrix of pairs of most popular human-AI terms.
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To further support clear terminology in human-AI relations, 
existing standard definitions, e.g., in ISO/IEC 22989:2022 or 
the European AI Act, may provide a solid base for future 
research. Researchers may leverage standard definitions and 
focus on contributions, conceptions and influences of differ
ent domains, such as Computer Science including HCI and 
AI, Psychology, Sociology and Linguistics, to find common 
concepts or even important differences. With respect to 
trends and newly emerging terminology in human-AI rela
tions, future research may systematically explore the origin 
and development of individual terms in scientific literature. 
This may reveal relatedness of terms across disciplines, or 
between newly emerging and already established terms. 
Complementarily, we argue that collaborative approaches 
towards establishing precise terminology may be particularly 
suitable for interdisciplinary research. Towards this end, we, 
on one hand, suggest a systematic integration of the ter
minological discussion in the premier scientific venues of 
the relevant communities – e.g., in the form of dedicated 
workshops at conferences such as ACM CHI or ACM IUI 
(where, typically, the HCI and AI audience meets). On the 
other hand, we suggest dedicated studies for the develop
ment and evaluation of a shared terminology across scien
tific communities. One suitable method for such studies 
could be inspired by the Delphi technique, which has been 
originally conceptualized as a systematic method for eliciting 
expert opinion. While various authors reflected overly critic
ally on the original Delphi method, pointing out problematic 
aspects such as “unaccountable sampling” of “experts”, 
“[s]eriously confusing aggregations of raw opinion with sys
tematic prediction”, “capitalizing on forced consensus based on 
group suggestion”, or “denigrating group and face-to-face dis
cussion” (Sackman, 1974, p. 69, 70), or “complicated facilitator 
tasks”, “lack of real-time presentation of results” or “difficulties 
in tracking progress over time” (Gnatzy et al., 2011, p. 1), 
methodologically revised approaches aim to address the weak
nesses of the conventional Delphi method while preserving its 
potentials to establish consensus of a particular topic among a 
group of experts (Turoff, 1970). Related to our use case on the 
establishment of a shared terminology within and across scien
tific communities, Delphi studies have, also in recent years, 
been successfully applied in similar endeavors. For instance, 
Schapira et al. in Schapira et al. (2020) describe a “modified 
Delphi process” for seeking consensus on the terminology of 
value-based transformation of health care. Other recent exam
ples on endeavors for standardization of terminology in the 
health sector can be found in Denman et al., (2021) and Taze 
et al. (2022). Examples for Delphi studies in the broader fields 
of Computer Science and HCI can be found in Danial-Saad 
et al. (2013), where Danial-Saad et al. describe establishment of 
an ontology for assistive technology, in Parekh et al. (2018), 
where Parekh et al. identify core concepts of cybersecurity, or 
in Dawood et al. (2021) where Dawood et al. aim to establish 
a unified criteria model for usability evaluation in the context 
of open source software.

Furthermore, conjunctive terms used to describe human-AI 
relations are ambiguous in the opposite sense. The excessive 
use of trending terms, e.g., “collaboration” or “co-creation” 

indicates either a rapid increase in research interest or term 
ambiguity (or both). The analysis of our comprehensive corpus 
of literature actually revealed considerable disparities in the use 
of specific terms (cf. Section 5.1 and RQ7), a trend which 
seems to persist in literature beyond the scope of our review – 
just lately, Sarkar (Sarkar, 2023) complained about excessive 
use of “human-ai collaboration” in recent scientific literature. 
For instance, in Gebreegziabher, Zhang, et al. (2023), 
“collaboration” between humans and AI is used to refer to a 
scenario in which an AI system and a human actually interact 
in a closely interwoven way (where, however, it remains the 
human who makes the decisions) to solve qualitative coding 
tasks, in Kuang et al. (2023), “collaboration” describes the 
interaction with a conversational AI in a Q & A style in the 
domain of UX evaluation, and in Xu, Lien, et al. (2023), 
“collaboration” is used to refer to AI assistance in annotation 
tasks. Additionally, it is remarkable that most of the recent lit
erature on human-AI relations does not provide an exact def
inition of what is understood by e.g., “collaboration”.

Further, whereas the terms chosen for our review were 
defined to explicitly include “human” and “AI”, there are 
also terms containing only one of these words while impli
citly considering the other party (e.g., “AI-assisted”, “AI- 
enhanced”, or “AI-supported”). While these terms often 
implicitly include humans, we assume that the integration of 
the second party involved can be seen as more single-sided 
and unbalanced or might be absent at all (e.g., in AI- 
enhanced computer systems). The diversity in degrees of 
involvement may range from mostly human- to mostly AI- 
sided involvement, with “collaboration” integrating both 
parties to a similar extent. Different degrees of involvement 
may shift roles and raise questions concerning autonomy, 
responsibility and ethics within the human-AI relationship. 
Subsequent targeted literature reviews could determine the 
differentiation and possibly provide a taxonomy systematic
ally capturing the different degrees of human-AI involvement.

Our geographic analysis revealed that contributions 
mostly stem from countries associated with WEIRD 
(Western, Educated, Industrialized, Rich, Democratic) soci
eties (Henrich et al., 2010). In line with this, Bol et al. high
light the higher prevalence of scientific journals in North 
America and Europe compared to the Global South and 
state that “Global North journals are often associated with 
international and global-level prestige, while Global South 
journals are presumed to be local, national or regional in 
scope” (Bol et al., 2023, p. 1). Legal regulations (Jackson 
Bert�on, 2021) and limited economic resources (Kiemde & 
Kora, 2020) may contribute to this geographic disparity, caus
ing different perspectives of underrepresented populations to 
remain unconsidered in the research and terminology of 
human-AI relations. The academic disadvantage of geograph
ical regions, such as the Global South, may be counteracted by 
conscious citation of respective work or co-publishing of 
Global North and Global South publishing spaces to reach 
greater audiences (Bol et al., 2023). Bol et al. further discuss 
the potential advantage of decentralized editorial boards and 
journal indexing to support geographic equality in academic 
publishing (Bol et al., 2023). Future visions of a culturally 
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more inclusive human-AI research community may offer 
diverse perspectives more representative of the world’s 
population.

Our main contributions can be summarized as follows. 
With this scoping review, we provided a comprehensive over
view of the terminology used in scientific human-AI litera
ture. Our results offer insights into thematic clusters and 
capture the changing nature of human-AI relations over time 
(e.g., from AI as a tool to AI as a team member). Analyses 
with different focal points provide a general overview of the 
research field while enabling researchers to find specific litera
ture. Thematic analyses consider not only the choice of ter
minology, but also differences in conception and usage and 
the consequent co-occurrence with other terms. We strongly 
aim to contribute to the harmonization of human-AI ter
minology and facilitate the establishment of more precise def
initions of prominent terms in the literature. This is of 
utmost importance as, according to Langer et al. (2022), 
consistent and precise terminology does not only impact 
human perception of and expectation towards AI systems, it 
also enhances the robustness and replicability of research 
findings. Our review further intends to facilitate future 
research across domains and communities. To this end, we 
aim to raise awareness of research but also terminology used 
in complementary or contrasting fields. This, according to 
our observation, is imperative because the recent surge of 
scientific activities around human-AI relations has clearly 
revealed that currently, there is a lack of established ter
minology across domains, but also continents and countries. 
This gap is further continuously amplified by intra-domain 
reinforcement (e.g., through names of workshops or newly 
established conferences).

6.2. Limitations

In the following, we summarize the main limitations inher
ent to our scoping review.

Selection of human-AI terms. Our review relies on a cer
tain set of keywords included throughout Q1 to Q3. Even 
though we systematically researched alternative terms for 
both “human” and “AI”, we acknowledge that the selection 
might still not be exhaustive. For instance, Hirzle et al. 
(2023) and Langer et al. (2022) provide more extensive col
lections of alternative AI terms and keywords than those 
listed in Table 1. Examples include adjectives such as 
“supervised”, “generative” or “intelligent”, and terms for spe
cific applications, such as “reasoning”, “recognition” and 
“segmentation” (Hirzle et al., 2023). While combinations of 
these may capture a wider range of human-AI literature, 
they oftentimes focus on specific applications or leave room 
for ambiguous interpretation, depending on the chosen 
combination. Langer et al.’s list of AI terms in use includes 
“algorithm”, “computer” and “robot”, which are also consid
ered in our review. Further suggested terms comprise 
“decision support system”, “automated system”, “technical 
system” and “computer program” (Langer et al., 2022). 
While not explicitly present in our set of keywords, these 
terms are semantically covered by “system” and “computer” 

in Q2 and Q3 of our review. Additional unconsidered terms 
mentioned by Langer et al., (2022) include “machine 
learning” and “sophisticated statistical models”. We are 
aware that our systematic approach to data collection based 
on term composition patterns may lead to the underrepre
sentation of relevant discussions with terminology diverging 
from the defined pattern. For example, Matamoros et al. 
only slightly diverge from our defined pattern by specifying 
a particular group of humans in “Teachers-AI 
Collaboration” (Matamoros et al., 2021). Their publication is 
therefore not included in our review, even though its inves
tigation of educational recommender systems may be a 
highly relevant application case of human-AI collaboration. 
Further, Knijnenburg et al. discuss interaction methods for 
recommender systems (Knijnenburg et al., 2011), which one 
may clearly consider an application case of human-AI rela
tions. Their publication’s title however does not state a spe
cific human-AI term according to our defined pattern and is 
therefore not represented in our work. While we could not 
consider terminology specific to recommender systems, lit
erature was included if it contained a, to our definition, 
valid human-AI term, e.g., in “Towards the design of user- 
centric strategy recommendation systems for collaborative 
Human–AI tasks” (Dodeja et al., 2024). Further, research 
communities such as IUI and Affective Computing are heav
ily engaged with human-centered approaches of AI. The 
relation in this case may be more implicit with a strong 
focus on adaptability derived from, e.g., the context and 
emotional state of the human, not necessarily reflecting a 
two-sided relation with equal consideration of both sides. 
This may be reflected in the terminology and thus, despite 
potentially containing highly relevant topics of human-AI 
relation, these research fields may be underrepresented in 
our work.

Moreover, for the analyses in Section 5, we only consid
ered terms with at least three occurrences, and for popular 
terms, we selected only five publications per year. While we 
chose this sampling method as it represents the data well, it 
leaves out some publications that may include different con
ceptions, interpretations and co-occurrences.

We showed that terminology does not appear to be set
tled, seems to be partly volatile (see, e.g., the dynamic devel
opment reflected in Figure 3) and some terms have entirely 
fallen out of favor (e.g., “man” to mean humanity, which 
we, however, intentionally included to not omit older publi
cations, such as Licklider’s work). As argued above, the 
emergence of new terms may not immediately be reflected 
in terms being used prominently in publications’ titles. 
While we focused on established terminology in our the
matic analysis to capture the conception and underlying dis
cussions of particularly prior and recently prominent terms, 
future studies focused on newly emerging terminology could 
highlight the evolvement of human-AI term usage beyond 
publications’ titles and investigate particularly origin and 
relatedness to established concepts.

Considered combinations. We did not include terms indicat
ing unbalanced involvement of humans and AI (e.g., “AI- 
assisted human labeling”) or ambiguous terms that potentially 
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refer to other parties than humans or AI, or include only one 
party, e.g., “ai-enhanced software”. The combination of 
“human” and “AI” in close proximity within a term ensured 
less ambiguous results. Further analyses concerning all combi
nations of human and AI relations, including those that only 
implicitly include one (e.g., “AI-enhanced learning”, “AI- 
guided navigation”) or both (e.g., “collaborative intelligence”) 
of the two parties, can however add further value and broaden 
the view of the field.

Depth of content-wise insights. Following the goals of a 
scoping review, we aimed for a broad overview rather than 
an in-depth content-wise analysis. We performed thematic 
analyses to complement our findings based on the termino
logy, we, however, consider it an interesting part of future 
work to perform a subsequent systematic literature review to 
gain further insights into the associated content discussed in 
the human-AI literature. This subsequent review should be 
narrowed to specific parts of the field identified in this article, 
such as “collaboration”, “interaction” or “communication” 
among humans and AI.

Database selection. We purposefully selected databases to 
represent the primary context of human-AI relations in 
Computer Science (including, e.g., HCI research), while at 
the same time considering the interdisciplinarity of human- 
AI relations. Thus, we selected Scopus as an interdisciplinary 
primary database and further ACM Digital Library and 
IEEE Xplore as specialized supplementary databases [205, 
206]. This selection provides a broad interdisciplinary inclu
sion of literature with focus on highly relevant areas given 
the specific context, however, we are aware that the strong 
focus on Computer Science and Engineering may under
mine perspectives of further relevant research fields. Despite 
the relevance of diverse research fields to human-AI rela
tions, we decided against the further inclusion of highly spe
cialized databases as they did not yield sufficient amounts of 
relevant data for our specific analysis of human-AI termino
logy due to their narrow scope (Gusenbauer, 2022) and lim
ited full-text availability in our preliminary searches. More 
in-depth content-wise analyses may however require the 
inclusion of further specialized databases, e.g., focusing on 
Social Sciences and Psychology, to holistically capture the 
nature of human-AI relations and potential societal impacts.

7. Summary and conclusion

In this article, we first analyzed the historical development 
(Section 3.1) and term composition patterns (Section 3.2), 
including alternative terms for “human” and “AI” leading to 
the current human-AI terminology. We then provided a 
general overview of the terminology (Section 3.3) present in 
our Q1 data, derived four thematic clusters with 30 subclus
ters and the meaning of terms within them (Section 3.4). 
Further, we identified key authors and the most influential 
publications in Sections 4.1 and 4.2 and described the geo
graphic distribution of terms to refer to human-AI relations 
by researchers all over the world (Section 4.3). Finally, we 
investigated the conception and interpretation of terms in 

human-AI literature (Section 5.1) and co-occurrences of spe
cific terms (Section 5.2).

Our analysis revealed that the rapid advancement of AI 
and shift towards HCAI spiked research interest in a newly 
shaped kind of interaction different from conventional HCI. 
This led to the emergence of a variety of terms to describe 
collaborative relationships and efforts toward seamless inte
gration of humans and AI with a lack of conventions and 
precise definitions. We could identify a large pool of terms 
relevant across domains and communities and investigated 
their conception and usage, where we could identify ambi
guities in the evolving terminology. We further backed our 
findings with additional analyses for a comprehensive over
view of the historical and current terminology in human 
and AI relations to provide a profound basis for future 
cross-domain research activities. While arguing for the 
development of terminological conventions in scientific lit
erature, the rapid evolvement of AI technology and its ter
minology may limit the longevity of our own work. While 
longevity concerning the frequently discussed publish-or- 
perish mentality (Van Dalen & Henkens, 2012) and the lim
ited lifespan of publications frequently poses challenges to 
researchers, we are confronted with obsolescence of research 
findings due to terminology evolvement. Though, we aim to 
capture the variety of terminology and advocate for its clear 
definition at the present time.

In conclusion, our scoping review opens a range of 
research questions to be further investigated. In our own 
future work, we foremost aim at analyzing in depth the con
cept of “human-AI collaboration”, establishing not only a 
profound definition but also a global and cross-domain tax
onomy of prerequisites, components and characteristics.

Notes

01. https://artificialintelligenceact.eu/article/3/, last access: 
2024-10-13.

02. https://www.iso.org/standard/74296.html, last access: 2024- 
10-14.

03. https://www.oecd.org/en.html, last access: 2024-10-14.
04. https://oecd.ai/en/wonk/definition, last access: 2024-10-14.
05. https://dl.acm.org/, last access: 2024-10-12.
06. https://www.scopus.com/, last access: 2024-10-12.
07. https://ieeexplore.ieee.org/, last access: 2024-10-12.
08. We also experimented with “Artificial Intelligence” but 

found a significantly lower number of results (1,450 for the 
query using “AI” vs. 175 for “Artificial Intelligence”).

09. https://www.researchgate.net/.
10. Please keep in mind that we explicitly did not restrict our 

review to publications after a certain publication date.
11. https://www.merriam-webster.com/.
12. https://www.powerthesaurus.org/.
13. https://digital-strategy.ec.europa.eu/en/library/eu-us- 

terminology-and-taxonomy-artificial-intelligence.
14. https://www.powerthesaurus.org/.
15. https://www.deepl.com/translator.
16. By “man” we do not specifically refer to male persons but to 

any persons in general (especially older literature regularly 
uses it to mean “mankind”). To ensure inclusiveness we ran a 
test search with “woman” as alternative human term which 
however did not yield any results.

17. 2024 data is only available until September 2024, we 
however expect an ongoing development to be likely.

14270 K. BRECKNER ET AL.

https://artificialintelligenceact.eu/article/3/
https://www.iso.org/standard/74296.html
https://www.oecd.org/en.html
https://oecd.ai/en/wonk/definition
https://dl.acm.org/
https://www.scopus.com/
https://ieeexplore.ieee.org/
https://www.researchgate.net/.
https://www.merriam-webster.com/.
https://www.powerthesaurus.org/.
https://digital-strategy.ec.europa.eu/en/library/eu-us-terminology-and-taxonomy-artificial-intelligence
https://digital-strategy.ec.europa.eu/en/library/eu-us-terminology-and-taxonomy-artificial-intelligence
https://www.powerthesaurus.org/.
https://www.deepl.com/translator.


18. https://serpapi.com/google-scholar-api.
19. https://platform.openai.com/docs/models/gpt-4o-mini.
20. https://www.4icu.org/.
21. https://eur-lex.europa.eu/eli/reg/2016/679/oj, last access: 

2024-12-16.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This research has been conducted within the scope of the Human- 
Centered Artificial Intelligence (HCAI) project, funded by the Austrian 
Science Fund (FWF) [DFH 23-N].

ORCID

Karin Breckner http://orcid.org/0009-0007-5249-9412 
Thomas Neumayr http://orcid.org/0000-0003-3607-8873 
Martina Mara http://orcid.org/0000-0003-3447-0556 
Marc Streit http://orcid.org/0000-0001-9186-2092 
Mirjam Augstein http://orcid.org/0000-0002-7901-3765 

References

Abbass, H. A., Petraki, E., & Hunjet, R. (2022). JSwarm: A jingulu-inspired 
human-AI-teaming language for context-aware swarm guidance. 
Frontiers in Physics, 10, 1–14. https://doi.org/10.3389/fphy.2022.944064

Abedin, B., Meske, C., Junglas, I., Rabhi, F., & Motahari-Nezhad, H. R. 
(2022). Designing and managing human-AI interactions. Information 
Systems Frontiers, 24(3), 691–697. https://doi.org/10.1007/s10796-022- 
10313-1

Adam, M., Diebel, C., Goutier, M., & Benlian, A. (2024). Navigating 
autonomy and control in human-AI delegation: User responses to 
technology- versus user-invoked task allocation. Decision Support 
Systems, 180, 114193. https://doi.org/10.1016/j.dss.2024.114193

Adan, O., & Houben, S. (2023). CollEagle; Tangible human-AI inter
action for collocated collaboration. In P. Lukowicz, S. Mayer, J. 
Koch, J. Shawe-Taylor, & I. Tiddi (Eds.), Proceedings of the Second 
International Conference on Hybrid Human-Machine Intelligence 
(pp. 416–418). Frontiers Artificial Intelligence and Applications, 
Vol. 368. IOS Press. https://doi.org/10.3233/FAIA230115

Agarwal, O. (2024). MS slide designer: A study on human-AI collabor
ation for content creation. In Proceedings of the 16th Conference on 
Creativity & Cognition (C&C ‘24) (pp. 499–503). Association for 
Computing Machinery. https://doi.org/10.1145/3635636.3664259

Ahn, J., Kim, J., & Sung, Y. (2024). The role of perceived freewill in 
crises of human-AI interaction: The mediating role of ethical 
responsibility of AI. International Journal of Advertising, 43(5), 847– 
873. https://doi.org/10.1080/02650487.2023.2299563

Akintunde, M., Young, V., Yazdanpanah, V., Salehi Fathabadi, A., 
Leonard, P., Butler, M., & Moreau, L. (2023). Verifiably safe and trusted 
human-AI systems: A socio-technical perspective. In Proceedings of the 
First International Symposium on Trustworthy Autonomous Systems 
(TAS ‘23) (pp. 1–6). Association for Computing Machinery. https://doi. 
org/10.1145/3597512.3599719

Al, P. (2023). (E)-Trust and its function: Why we shouldn’t apply trust 
and trustworthiness to human-AI relations. Journal of Applied 
Philosophy, 40(1), 95–108. https://doi.org/10.1111/japp.12613

Ala-Luopa, S., Koivunen, S., Olsson, T., & V€a€an€anen, K. (2024). 
Considerations on human-AI collaboration in knowledge work – 
Recruitment experts’ needs and expectations. In T. X. Bui (Ed.), 
Proceedings Annual Hawaii International Conference on System Science 
(pp. 197–206). IEEE Computer Society.

Allen, R. A., White, G. R. T., Clement, C. E., Alexander, P., & Samuel, 
A. (2022). Servants and masters: An activity theory investigation of 
human-AI roles in the performance of work. Strategic Change, 
31(6), 581–590. https://doi.org/10.1002/jsc.2530

Allred, J., Packer, S., Dozier, G., Aykent, S., Richardson, A., & King, 
M. C. (2020). Towards a human-AI hybrid for adversarial author
ship. In Confernce Proceding IEEE Southeastcon (pp. 1–8), Vol. 
2020–March. Institute of Electrical and Electronics Engineers Inc. 
https://doi.org/10.1109/SoutheastCon44009.2020.9249682

Alon-Barkat, S., & Busuioc, M. (2023). Human-AI interactions in pub
lic sector decision making: “Automation bias” and “selective 
adherence” to algorithmic advice. Journal of Public Administration 
Research and Theory, 33(1), 153–169. https://doi.org/10.1093/jopart/ 
muac007

Amershi, S., Weld, D., Vorvoreanu, M., Fourney, A., Nushi, B., 
Collisson, P., Suh, J., Iqbal, S., Bennett, P. N., Inkpen, K., Teevan, J., 
Kikin-Gil, R., & Horvitz, E. (2019). Guidelines for Human-AI 
Interaction. In Proceedings of the 2019 CHI Conference on Human 
Factors in Computing Systems (CHI ‘19) (pp. 1–13). Association for 
Computing Machinery. https://doi.org/10.1145/3290605.3300233

Amresh, A., Cooke, N., & Fouse, A. (2023). A minecraft based simu
lated task environment for human AI teaming. In Proceedings of the 
23rd ACM International Conference on Intelligent Virtual Agents 
(IVA ‘23) (pp. 1–3). Association for Computing Machinery. https:// 
doi.org/10.1145/3570945.3607305

Anderson, A., Guevara, J. N., Moussaoui, F., Li, T., Vorvoreanu, M., & 
Burnett, M. (2024). Measuring user experience inclusivity in human- 
AI interaction via five user problem-solving styles. ACM 
Transactions on Interactive Intelligent Systems, 14(3), 1–90. https:// 
doi.org/10.1145/3663740

Anderson, C. (2006). The long tail: Why the future of business is selling 
less of more. (American first edition ed.). Hyperion.

Andre, F., Fortner, P., Aurich, M., Seitz, S., Jatsch, A.-K., Sch€obinger, M., 
Wels, M., Kraus, M., G€uls€un, M. A., Frey, N., Sommer, A., G€orich, J., 
& Buss, S. J. (2023). Human AI teaming for coronary CT angiography 
assessment: Impact on imaging workflow and diagnostic accuracy. 
Diagnostics, 13(23), 3574. https://doi.org/10.3390/diagnostics13233574

Andrews, R. W., Lilly, J. M., Srivastava, D., & Feigh, K. M. (2023). The 
role of shared mental models in human-AI teams: A theoretical 
review. Theoretical Issues in Ergonomics Science, 24(2), 129–175. 
https://doi.org/10.1080/1463922X.2022.2061080

Arai, N. H., Masukawa, R., & Miyashita, H. (2023). Designing research
map: A revolutionary scholar support platform achieved through 
human-AI collaboration. In Meen T.-H. (Ed.), Proceeding IEEE 
International Conference on Knowledge Innovation and Invention, 
ICKII (pp. 367–371). Institute of Electrical and Electronics 
Engineers Inc. https://doi.org/10.1109/ICKII58656.2023.10332787

Arias-Rosales, A. (2022). The perceived value of human-AI collabor
ation in early shape exploration: An exploratory assessment. PLoS 
One, 17(9), e0274496. https://doi.org/10.1371/journal.pone.0274496

Arksey, H., & O’Malley, L. (2005). Scoping studies: Towards a methodo
logical framework. International Journal of Social Research Methodology, 
8(1), 19–32. https://doi.org/10.1080/1364557032000119616

Armaselu, F. (2024). Playing the imitation game: Human-AI simulators 
in pedagogic design. In F. Lorig, J. Tucker, A. D. Lindstrom, F. 
Dignum, P. Murukannaiah, A. Theodorou, & P. Yolum (Eds.), 
HHAI 2024: Hybrid human AI systems for the social good (pp. 46– 
54). Vol. 386. IOS Press BV. https://doi.org/10.3233/FAIA240181

Arous, I., Yang, J., Khayati, M., & Cudr�e-Mauroux, P. (2020). 
OpenCrowd: A human-AI collaborative approach for finding social 
influencers via open-ended answers aggregation. In Proceedings of 
The Web Conference 2020 (WWW ‘20) (pp. 1851–1862). Association 
for Computing Machinery. https://doi.org/10.1145/3366423.3380254

Arun Kumar, A. V., Rana, S., Shilton, A., & Venkatesh, S. (2022). 
Human-AI Collaborative Bayesian Optimisation. In S. Koyejo, S. 
Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (Eds.), 
Advances in neural information processing systems (pp. 1–13, Vol. 
35). Neural Information Processing Systems Foundation.

Ashktorab, Z., Desmond, M., Johnson, J. M., Pan, Q., Dugan, C., 
Brachman, M., & Spina, C. (2023). SME-in-the-loop: Interaction 

INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION 14271

https://serpapi.com/google-scholar-api.
https://platform.openai.com/docs/models/gpt-4o-mini.
https://www.4icu.org/.
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://doi.org/10.3389/fphy.2022.944064
https://doi.org/10.1007/s10796-022-10313-1
https://doi.org/10.1007/s10796-022-10313-1
https://doi.org/10.1016/j.dss.2024.114193
https://doi.org/10.3233/FAIA230115
https://doi.org/10.1145/3635636.3664259
https://doi.org/10.1080/02650487.2023.2299563
https://doi.org/10.1145/3597512.3599719
https://doi.org/10.1145/3597512.3599719
https://doi.org/10.1111/japp.12613
https://doi.org/10.1002/jsc.2530
https://doi.org/10.1109/SoutheastCon44009.2020.9249682
https://doi.org/10.1093/jopart/muac007
https://doi.org/10.1093/jopart/muac007
https://doi.org/10.1145/3290605.3300233
https://doi.org/10.1145/3570945.3607305
https://doi.org/10.1145/3570945.3607305
https://doi.org/10.1145/3663740
https://doi.org/10.1145/3663740
https://doi.org/10.3390/diagnostics13233574
https://doi.org/10.1080/1463922X.2022.2061080
https://doi.org/10.1109/ICKII58656.2023.10332787
https://doi.org/10.1371/journal.pone.0274496
https://doi.org/10.1080/1364557032000119616
https://doi.org/10.3233/FAIA240181
https://doi.org/10.1145/3366423.3380254


preferences when supervising bots in human-AI communities. In 
Proceedings of the 2023 ACM Designing Interactive Systems 
Conference (DIS ‘23) (pp. 2281–2303). Association for Computing 
Machinery. https://doi.org/10.1145/3563657.3596100

Ashktorab, Z., Dugan, C., Johnson, J., Pan, Q., Zhang, W., Kumaravel, 
S., & Campbell, M. (2021). Effects of communication directionality 
and AI agent differences in human-AI interaction. In Proceedings of 
the 2021 CHI Conference on Human Factors in Computing Systems 
(CHI ‘21), (pp. 1–15). Association for Computing Machinery. 
https://doi.org/10.1145/3411764.3445256

Ashktorab, Z., Liao, Q. V., Dugan, C., Johnson, J., Pan, Q., Zhang, W., 
Kumaravel, S., & Campbell, M. (2020). Human-AI collaboration in a 
cooperative game setting: Measuring social perception and out
comes. Proceedings of the ACM on Human-Computer Interaction, 
4(CSCW2), 1–20. https://doi.org/10.1145/3415167

Askarisichani, O., Bullo, F., Friedkin, N. E., & Singh, A. K. (2022). 
Predictive models for human-AI nexus in group decision making. 
Annals of the New York Academy of Sciences, 1514(1), 70–81. 
https://doi.org/10.1111/nyas.14783

Atkins, A. A., Brown, M. S., & Dancy, C. L. (2021). Examining the 
effects of race on human-AI cooperation. In R. Thomson, M. N. 
Hussain, C. Dancy, & A. Pyke (Eds.), Lecture Notes in Computer 
Science, LNCS (Vol. 12720, pp. 279–288). Springer Science and 
Business Media Deutschland GmbH. https://doi.org/10.1007/978-3- 
030-80387-2_27

Attig, C., Wollstadt, P., Schrills, T., Franke, T., & Wiebel-Herboth, C. B. 
(2024). More than task performance: Developing new criteria for suc
cessful human-AI teaming using the cooperative card game Hanabi. In 
Extended Abstracts of the 2024 CHI Conference on Human Factors in 
Computing Systems (CHI EA ‘24) (pp. 1–11). Association for 
Computing Machinery. https://doi.org/10.1145/3613905.3650853

Babbar, V., Bhatt, U., & Weller, A. (2022). On the utility of prediction 
sets in human-AI teams. In L. De Raedt & L. De Raedt (Eds.), 
IJCAI International Joint Conferences on Artificial Intelligence (pp. 
2457–2463).

Bach, T. A., Kristiansen, J. K., Babic, A., & Jacovi, A. (2024). 
Unpacking human-AI interaction in safety-critical industries: A sys
tematic literature review. IEEE Access, 12, 106385–106414. https:// 
doi.org/10.1109/ACCESS.2024.3437190

Baniecki, H., Sobieski, B., Bombi�nski, P., Szatkowski, P., & Biecek, P. 
(2023). Hospital length of stay prediction based on multi-modal 
data towards trustworthy human-AI collaboration in radiomics. In 
J. M. Juarez, M. Marcos, G. Stiglic, & A. Tucker (Eds.), Lecture 
Notes in Computer Science, Vol. 13897, LNAI (pp. 65–74). Springer 
Science and Business Media Deutschland GmbH. https://doi.org/10. 
1007/978-3-031-34344-5_9

Bannon, L. J., & Schmidt, K. (1989). CSCW – Four characters in search 
of a context. DAIMI Report Series, 18(289), 1–20. https://doi.org/10. 
7146/dpb.v18i289.6667

Bansal, G., Nushi, B., Kamar, E., Weld, D. S., Lasecki, W. S., & 
Horvitz, E. (2019a). Beyond accuracy: The role of mental models in 
human-AI team performance. In E. Law & J. W. Vaughan (Eds.), 
Proceedings AAAI. Conference on Human Computer Crowdsourcing 
(pp. 2–11, Vol. 7). Association for the Advancement of Artificial 
Intelligence. https://doi.org/10.1609/hcomp.v7i1.5285

Bansal, G., Nushi, B., Kamar, E., Weld, D. S., Lasecki, W. S., & 
Horvitz, E. (2019b). Updates in human-AI teams: Understanding 
and addressing the performance/compatibility tradeoff. In AAAI 
Conf. Artif. Intell., AAAI, Innov. Appl. Artif.igence Conf., IAAI AAAI 
Symp. Educ. Adv. Artif. Intell., EAAI (pp. 2429–2437). AAAI Press.

Bao, Y., Cheng, X., Vreede, T. d., & de Vreede, G.-J. (2021). 
Investigating the relationship between AI and trust in human-AI 
collaboration. In Bui T.X. (Ed.), Proceedings Annual Hawaii 
International Conference on System Science. (Vol. 2020, pp. 607– 
616). IEEE Computer Society.

Bao, Y., Gong, W., & Yang, K. (2023). A literature review of human-AI 
synergy in decision making: From the perspective of affordance 
actualization theory. Systems, 11(9), 442. https://doi.org/10.3390/ 
systems11090442

Bar-Ilan, J. (2018). Tale of three databases: The implication of coverage 
demonstrated for a sample query. Frontiers in Research Metrics and 
Analytics, 3, 6.

Baruwal Chhetri, M., Tariq, S., Singh, R., Jalalvand, F., Paris, C., & 
Nepal, S. (2024). Towards human-AI teaming to mitigate alert 
fatigue in security operations centres. ACM Transactions on Internet 
Technology, 24(3), 1–22. https://doi.org/10.1145/3670009

Boy, G. A. (2024). Human systems integration of human-AI teaming. 
In M. Hou, T. H. Falk, A. Mohammadi, A. Guerrieri, and D. Kaber 
(Eds.)., IEEE Int. Conf. Hum.-Mach. Syst., ICHMS. Institute of 
Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ 
ICHMS59971.2024.10555843

Ben Chaaben, E (2024). Exploring human-AI collaboration and 
explainability for sustainable ML. In F. Lorig, J. Tucker, A. D. 
Lindstrom, F. Dignum, P. Murukannaiah, A. Theodorou, and P. 
Yolum (Eds.), HHAI 2024: Hybrid Human AI Systems for the Social 
Good (pp. 363–370, Vol. 386). IOS Press BV. https://doi.org/10. 
3233/FAIA240209

Bendell, R., Williams, J., Fiore, S. M., & Jentsch, F. (2021). Supporting 
social interactions in human-AI teams: Profiling human teammates 
from sparse data. In Proc Hum Factors Ergon Soc. (pp. 665–669, Vol. 
65). SAGE Publications Inc. https://doi.org/10.1177/1071181321651354b

Bendoly, E., Chandrasekaran, A., Lima, M. D. R. F., Handfield, R., 
Khajavi, S. H., & Roscoe, S. (2024). The role of generative design 
and additive manufacturing capabilities in developing human-AI 
symbiosis: Evidence from multiple case studies. Decision Sciences, 
55(4), 325–345. https://doi.org/10.1111/deci.12619

Benefo, E. O., Tingler, A., White, M., Cover, J., Torres, L., Broussard, 
C., Shirmohammadi, A., Pradhan, A. K., & Patra, D. (2022). Ethical, 
legal, social, and economic (ELSE) implications of artificial intelli
gence at a global level: A scientometrics approach. AI and Ethics, 
2(4), 667–682. https://doi.org/10.1007/s43681-021-00124-6

Berberian, B., Guillou, M. L., & Pagliari, M. (2023). Communicating AI 
intentions to boost human AI cooperation. In P. K. Murukannaiah 
and T. Hirzle (Eds.), CEUR Workshop Proceeding (pp. 145–149, Vol. 
3456). CEUR-WS.

Bernardo, E. L., & Seva, R. R. (2024). Exploration of explainable AI for 
trust development on human-AI interaction. In Proceedings of the 
2023 6th Artificial Intelligence and Cloud Computing Conference 
(AICCC ‘23) (pp. 238–246). Association for Computing Machinery. 
https://doi.org/10.1145/3639592.3639625

Berretta, S., Tausch, A., Ontrup, G., Gilles, B., Peifer, C., & Kluge, A. 
(2023). Defining human-AI teaming the human-centered way: A 
scoping review and network analysis. Frontiers in Artificial 
Intelligence, 6, 1250725. https://doi.org/10.3389/frai.2023.1250725

Berretta, S., Tausch, A., Peifer, C., & Kluge, A. (2023). The Job percep
tion inventory: Considering human factors and needs in the design 
of human-AI work. Frontiers in Psychology, 14, 1128945. https://doi. 
org/10.3389/fpsyg.2023.1128945

Bhardwaj, A., Yang, J., & Cudr�e-Mauroux, P. (2020). A human-AI loop 
approach for joint keyword discovery and expectation estimation in 
micropost event detection. In AAAI—AAAI Conf. Artif. Intell. (pp. 
2451–2458). AAAI press.

Bhattacharya, A. (2024). Towards directive explanations: Crafting 
explainable AI systems for actionable human-AI interactions. In 
Extended Abstracts of the 2024 CHI Conference on Human Factors in 
Computing Systems (CHI EA ‘24). Association for Computing 
Machinery. https://doi.org/10.1145/3613905.3638177

Bian, W., Song, Y., Gu, N., Chan, T. Y., Lo, T. T., Li, T. S., Wong, 
K. C., Xue, W., & Trillo, R. A. (2023). MoMusic: A motion-driven 
human-AI collaborative music composition and performing system. 
In Williams B., Chen Y., and Neville J. (Eds.), Proceeding AAAI 
Conf. Artif. Intell., AAAI (Vol. 37, pp. 16057–16062). AAAI Press.

Bienefeld, N., Keller, E., & Grote, G. (2024). Human-AI teaming in 
critical care: A comparative analysis of data scientists’ and clinicians’ 
perspectives on AI augmentation and automation. Journal of 
Medical Internet Research, 26, e50130. https://doi.org/10.2196/50130

Bienefeld, N., Kolbe, M., Camen, G., Huser, D., & Buehler, P. K. 
(2023). Human-AI teaming: Leveraging transactive memory and 

14272 K. BRECKNER ET AL.

https://doi.org/10.1145/3563657.3596100
https://doi.org/10.1145/3411764.3445256
https://doi.org/10.1145/3415167
https://doi.org/10.1111/nyas.14783
https://doi.org/10.1007/978-3-030-80387-2_27
https://doi.org/10.1007/978-3-030-80387-2_27
https://doi.org/10.1145/3613905.3650853
https://doi.org/10.1109/ACCESS.2024.3437190
https://doi.org/10.1109/ACCESS.2024.3437190
https://doi.org/10.1007/978-3-031-34344-5_9
https://doi.org/10.1007/978-3-031-34344-5_9
https://doi.org/10.7146/dpb.v18i289.6667
https://doi.org/10.7146/dpb.v18i289.6667
https://doi.org/10.1609/hcomp.v7i1.5285
https://doi.org/10.3390/systems11090442
https://doi.org/10.3390/systems11090442
https://doi.org/10.1145/3670009
https://doi.org/10.1109/ICHMS59971.2024.10555843
https://doi.org/10.1109/ICHMS59971.2024.10555843
https://doi.org/10.3233/FAIA240209
https://doi.org/10.3233/FAIA240209
https://doi.org/10.1177/1071181321651354b
https://doi.org/10.1111/deci.12619
https://doi.org/10.1007/s43681-021-00124-6
https://doi.org/10.1145/3639592.3639625
https://doi.org/10.3389/frai.2023.1250725
https://doi.org/10.3389/fpsyg.2023.1128945
https://doi.org/10.3389/fpsyg.2023.1128945
https://doi.org/10.1145/3613905.3638177
https://doi.org/10.2196/50130


speaking up for enhanced team effectiveness. Frontiers in Psychology, 
14, 1208019. https://doi.org/10.3389/fpsyg.2023.1208019

Biloborodova, T., & Skarga-Bandurova, I. (2023). Human-AI collabor
ation in decision making: An initial reliability study and method
ology. In Proceeding IEEE Int. Conf. Intell. Data Acquis. Adv. 
Comput. Syst.: Technol. Appl., IDAACS (pp. 1151–1155). Institute of 
Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ 
IDAACS58523.2023.10348928

Bingley, W. J., Curtis, C., Lockey, S., Bialkowski, A., Gillespie, N., 
Haslam, S. A., Ko, R. K. L., Steffens, N., Wiles, J., & Worthy, P. 
(2023). Where is the human in human-centered AI? Insights from 
developer priorities and user experiences. Computers in Human 
Behavior, 141, 107617. https://doi.org/10.1016/j.chb.2022.107617

Biyani, P., Bajpai, Y., Radhakrishna, A., Soares, G., & Gulwani, S. 
(2024). RUBICON: Rubric-based evaluation of domain-specific 
human AI conversations. In Proceedings of the 1st ACM 
International Conference on AI-Powered Software (AIware 2024) (pp. 
161–169). Association for Computing Machinery. https://doi.org/10. 
1145/3664646.3664778

Block, J. (1995). A contrarian view of the five-factor approach to per
sonality description. Psychological Bulletin, 117(2), 187–215. https:// 
doi.org/10.1037/0033-2909.117.2.187

Bogdanova, K. (2024). Aesthetics of algorithmic care: Designing alter
native human-AI collaboration practices for digital phenotyping. In 
Companion Publication of the 2024 ACM Designing Interactive 
Systems Conference (DIS ‘24 Companion) (pp. 59–61). Association 
for Computing Machinery. https://doi.org/10.1145/3656156.3665127

Boggust, A., Hoover, B., Satyanarayan, A., & Strobelt, H. (2022). Shared 
interest: Measuring human-AI alignment to identify recurring patterns 
in model behavior. In Proceedings of the 2022 CHI Conference on 
Human Factors in Computing Systems (CHI ‘22). Association for 
Computing Machinery. https://doi.org/10.1145/3491102.3501965

Bol, J. A., Sheffel, A., Zia, N., & Meghani, A. (2023). How to address 
the geographical bias in academic publishing. BMJ Global Health, 
8(12), e013111. https://doi.org/10.1136/bmjgh-2023-013111

Bondi, E., Koster, R., Sheahan, H., Chadwick, M., Bachrach, Y., 
Cemgil, T., Paquet, U., & Dvijotham, K. (2022). Role of human-AI 
interaction in selective prediction. In Proceeding AAAI Conf. Artif. 
Intell., AAAI., (pp. 5286–5294, Vol. 36). Association for the 
Advancement of Artificial Intelligence.

Bossen, C., & Pine, K. H. (2023). Batman and Robin in healthcare 
knowledge work: Human-AI collaboration by clinical documentation 
integrity specialists. ACM Transactions on Computer–Human 
Interaction, 30(2), 1–29. https://doi.org/10.1145/3569892

Bousdekis, S., Wellsandt, E., Bosani, K., Lepenioti, D., Apostolou, K., 
Hribernik., & G., Mentzas. (2021). Human-AI Collaboration in 
Quality Control with Augmented Manufacturing Analytics. In A. 
Dolgui, A. Bernard, D. Lemoine, von G. Cieminski, and D. Romero 
(Eds.), IFIP Advances in Information and Communication Technology 
(pp. 303–310, Vol. 633). Springer. https://doi.org/10.1007/978-3-030- 
85910-7_32

Bozdag, A. A. (2023). AIsmosis and the pas de deux of human-AI 
interaction: Exploring the communicative dance between society and 
artificial intelligence. Online Journal of Communication and Media 
Technologies, 13(4), e202340. https://doi.org/10.30935/ojcmt/13414

Brachman, M., Ashktorab, Z., Desmond, M., Duesterwald, E., Dugan, 
C., Nath Joshi, N., Pan, Q., & Sharma, A. (2022). Reliance and auto
mation for human-AI collaborative data labeling conflict resolution. 
Proceedings of the ACM on Human–Computer Interaction, 
6(CSCW2), 1–27. https://doi.org/10.1145/3555212

Brandtzaeg, P. B., Skjuve, M., & Følstad, A. (2022). My AI friend: How 
users of a social chatbot understand their human-AI friendship. 
Human Communication Research, 48(3), 404–429. https://doi.org/10. 
1093/hcr/hqac008

Brandtzaeg, P. B., You, Y., Wang, X., & Lao, Y. (2023). Good” and “Bad” 
Machine Agency in the Context of Human-AI Communication: The 
Case of ChatGPT. In Degen H., Ntoa S., and Moallem A. (Eds.), 
Lecture Notes in Computer Science, LNCS (Vol. 14059, pp. 3–23) LNCS. 
Springer. https://doi.org/10.1007/978-3-031-48057-7_1

Braun, M., Greve, M., & Gnewuch, U. (2023). The new dream team? A 
review of human-AI collaboration research from a human teamwork 
perspective. In International Conference on Information Systems, 
ICIS: Rising like Phoenix: Emerg. Pandemic Reshaping Hum. 
Endeavors Digit. Technol. Association for Information Systems.

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. 
Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10. 
1191/1478088706qp063oa

Bruni, S. (2024). A retrospective engineering analysis of human-AI teams 
using the sidekick principles. In Conf Proc IEEE SOUTHEASTCON (pp. 
1368–1369). Institute of Electrical and Electronics Engineers Inc. https:// 
doi.org/10.1109/SoutheastCon52093.2024.10500218

Brusilovsky, P. (2024). AI in education, learner control, and human-AI col
laboration. International Journal of Artificial Intelligence in Education, 
34(1), 122–135. https://doi.org/10.1007/s40593-023-00356-z

Bui, L., Pezzola, M., & Bandara, D. (2023). How do AI explanations 
affect human-AI trust?. In Lecture Notes in Computer Science, H. 
Degen & S. Ntoa (Eds.) (Vol. 14050, pp. 175–183). Springer. https:// 
doi.org/10.1007/978-3-031-35891-3_12

Burukina, O. (2020). Human-AI collaboration development: Interim com
munication rivalry of generation. In Ahram T. (Ed.), Adv. Intell. Sys. 
Comput. (Vol. 965, pp. 70–82). Springer. https://doi.org/10.1007/978-3- 
030-20454-9_7

Buschek, D., Mecke, L., Lehmann, F., & Dang, H. (2021). Nine poten
tial pitfalls when designing human-AI co-creative Systems. InD. 
Glowacka & V. Krishnamurthy (Eds.), CEUR Workshop Proceeding, 
Vol. 2903. CEUR-WS.

Butler, M., Holloway, L. M., Reinders, S., Goncu, C., & Marriott, K. 
(2021). Technology developments in touch-based accessible graphics: 
A systematic review of research 2010–2020. In Proceedings of the 
2021 CHI Conference on Human Factors in Computing Systems (pp. 
1–15). ACM. https://doi.org/10.1145/3411764.3445207
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T€ul€ubaş, T. (2023). A conversation with ChatGPT about digital lead
ership and technology integration: Comparative analysis based on 
human-AI collaboration. Administrative Sciences, 13(7), 157. https:// 
doi.org/10.3390/admsci13070157

Karimi, P., Rezwana, J., Siddiqui, S., Maher, M. L., & Dehbozorgi, N. 
(2020). Creative sketching partner: An analysis of human-AI co-cre
ativity. In Proceedings of the 25th International Conference on 
Intelligent User Interfaces (IUI ‘20) (pp. 221–230). Association for 
Computing Machinery. https://doi.org/10.1145/3377325.3377522

Kariyawasam, H., Niwarthana, A., Palmer, A., Kay, J., & Withana, A. 
(2024). Appropriate incongruity driven human-AI collaborative tool 
to assist novices in humorous content generation. In Proceedings of 
the 29th International Conference on Intelligent User Interfaces (IUI 
‘24) (pp. 650–659). Association for Computing Machinery. https:// 
doi.org/10.1145/3640543.3645161

Karumbaiah, S., Liu, P., Maksimova, A., De Vylder, L., Rummel, N., & 
Aleven, V. (2023). Multimodal analytics for collaborative teacher reflec
tion of human-AI hybrid teaching: Design opportunities and con
straints. In O. Viberg, I. Jivet, P. J. Mu~noz-Merino, M. Perifanou, & T. 
Papathoma (Eds.), Lecture Notes in Computer Science, LNCS (Vol. 
14200, pp. 580–585). Springer Science and Business Media Deutschland 
GmbH. https://doi.org/10.1007/978-3-031-42682-7_45

Kawakami, A., Sivaraman, V., Cheng, H.-F., Stapleton, L., Cheng, Y., 
Qing, D., Perer, A., Wu, Z. S., Zhu, H., & Holstein, K. (2022). 
Improving human-AI partnerships in child welfare: Understanding 
worker practices, challenges, and desires for algorithmic decision 
support. In Proceedings of the 2022 CHI Conference on Human 
Factors in Computing Systems (CHI ‘22). Association for Computing 
Machinery. https://doi.org/10.1145/3491102.3517439

Khadpe, P., Krishna, R., Fei-Fei, L., Hancock, J. T., & Bernstein, M. S. 
(2020). Conceptual metaphors impact perceptions of human-AI col
laboration. Proceedings of the ACM on Human-Computer Interaction, 
4(CSCW2), 1–26. https://doi.org/10.1145/3415234

Khan, S., Kaklis, P., & Goucher-Lambert, K. (2023). How does agency 
impact human-AI collaborative design space exploration? A case study 
on ship design with deep generative models. In Proceeding ASME Des. 
Eng. Tech. Conf. (Vol. 3B). American Society of Mechanical Engineers 
(ASME). https://doi.org/10.1115/DETC2023-112570

Khushk, A., Zhiying, L., Yi, X., & Zhang, X. (2024). Navigating 
human-AI dynamics: Implications for organizational performance 
(SLR). International Journal of Organizational Analysis. https://doi. 
org/10.1108/IJOA-04-2024-4456

Kiemde, S. M. A. & Kora, A. D. (2020). The challenges facing the 
development of AI in Africa. In 2020 IEEE International Conference 
on Advent Trends in Multidisciplinary Research and Innovation 
(ICATMRI) (pp. 1–6). IEEE.

Kilic, K., Weck, S., Kampik, T., & Lindgren, H. (2023). Argument- 
based human-AI collaboration for supporting behavior change to 
improve health. Frontiers in Artificial Intelligence, 6, 1069455. 
https://doi.org/10.3389/frai.2023.1069455

Kim, E., Hong, J., Lee, H., & Ko, M. (2022). Colorbo: Envisioned man
dala coloring through human-AI collaboration. In Proceedings of the 
27th International Conference on Intelligent User Interfaces (IUI ‘22) 
(pp. 15–26). Association for Computing Machinery. https://doi.org/ 
10.1145/3490099.3511135

Kim, J., Maher, M. L., & Siddiqui, S. (2021). Collaborative ideation 
partner: Design ideation in human-AI co-creativity. In H. P. Silva, 

INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION 14281

https://doi.org/10.1080/10447318.2022.2093863
https://doi.org/10.1080/10447318.2022.2093863
https://doi.org/10.1145/3449168
https://doi.org/10.1109/ICCE59016.2024.10444384
https://doi.org/10.1109/ICIET56899.2023.10111108
https://doi.org/10.1108/IMDS-03-2022-0152
https://doi.org/10.1016/j.ipm.2022.103074
https://doi.org/10.1016/j.dim.2024.100078
https://doi.org/10.1080/10447318.2022.2129277
https://doi.org/10.1109/VLHCC.2018.8506580
https://doi.org/10.1177/02666669241249744
https://doi.org/10.1108/JOSM-03-2023-0104
https://doi.org/10.1108/JOSM-03-2023-0104
https://doi.org/10.1109/TAI.2024.3396421
https://doi.org/10.1109/TAI.2024.3396421
https://doi.org/10.1109/BigData55660.2022.10020844
https://doi.org/10.1109/BigData55660.2022.10020844
https://doi.org/10.1093/jcmc/zmac014
https://doi.org/10.1177/21695067231192223
https://doi.org/10.1177/21695067231192223
https://doi.org/10.22521/edupij.2023.123.1
https://doi.org/10.3390/admsci13070157
https://doi.org/10.3390/admsci13070157
https://doi.org/10.1145/3377325.3377522
https://doi.org/10.1145/3640543.3645161
https://doi.org/10.1145/3640543.3645161
https://doi.org/10.1007/978-3-031-42682-7_45
https://doi.org/10.1145/3491102.3517439
https://doi.org/10.1145/3415234
https://doi.org/10.1115/DETC2023-112570
https://doi.org/10.1108/IJOA-04-2024-4456
https://doi.org/10.1108/IJOA-04-2024-4456
https://doi.org/10.3389/frai.2023.1069455
https://doi.org/10.1145/3490099.3511135
https://doi.org/10.1145/3490099.3511135


L. Constantine, & A. Holzinger (Eds.), International Conference on 
Computer-Human Interaction Research and Applications, CHIRA— 
Proceedings (Vol. 2021, pp. 123–130). Science and Technology 
Publications, Lda.

Kim, J. C., Laine, T. H., & Åhlund, C. (2021). Multimodal interaction 
systems based on Internet of Things and augmented reality: A sys
tematic literature review. Applied Sciences, 11(4), 1738. https://doi. 
org/10.3390/app11041738

Kim, M. K. & Trewhitt, E. (2022). SatisfAI: A serious tabletop game to 
reveal human-AI interaction dynamics. In R. A. Sottilare & J. 
Schwarz (Eds.), Lecture Notes in Computer Science, LNCS (Vol. 
13332, pp. 174–189). Springer Science and Business Media 
Deutschland GmbH. https://doi.org/10.1007/978-3-031-05887-5_13

Kim, S. S. Y., Watkins, E. A., Russakovsky, O., Fong, R., & Monroy- 
Hern�andez, A. (2023). “ Help me help the AI”: Understanding how 
explainability can support human-AI interaction. In Proceedings of 
the 2023 CHI Conference on Human Factors in Computing Systems 
(CHI ‘23). Association for Computing Machinery. https://doi.org/10. 
1145/3544548.3581001

Kim, T., Shin, D., Kim, Y.-H., & Hong, H. (2024). DiaryMate: 
Understanding user perceptions and experience in human-AI collab
oration for personal journaling. In Proceedings of the CHI 
Conference on Human Factors in Computing Systems (CHI ‘24). 
Association for Computing Machinery. https://doi.org/10.1145/ 
3613904.3642693

Kitchenham, B. & Brereton, P. (2013). A systematic review of system
atic review process research in software engineering. Information 
and Software Technology, 55(12), 2049–2075. https://doi.org/10.1016/ 
j.infsof.2013.07.010

Kitchenham, B. & Charters, S. (2007). Guidelines for performing system
atic literature reviews in software engineering.

Kiyemba, D. M., Marwad, J., Carter, E. J., & Norton, A. (2024). 
Evaluation tools for human-AI interactions involving older adults 
with mild cognitive impairments. In Proceedings of the 2024 ACM/ 
IEEE International Conference on Human-Robot Interaction (HRI 
‘24) (pp. 915–918). Association for Computing Machinery. https:// 
doi.org/10.1145/3610977.3637474

Kleanthous, S. (2024). Human-AI teaming: Following the IMOI frame
work. In H. Degen & S. Ntoa (Eds.), Lecture Notes in Computer 
Science, LNAI (Vol. 14735, pp. 387–406). Springer Science and 
Business Media Deutschland GmbH. https://doi.org/10.1007/978-3- 
031-60611-3_27

Klein, G., Hoffman, R. R., Clancey, W. J., Mueller, S. T., Jentsch, F., & 
Jalaeian, M. (2023). “Minimum necessary rigor” in empirically eval
uating human-AI work systems. AI Magazine, 44(3), 274–281. 
https://doi.org/10.1002/aaai.12108

Klock, A. C. T., Gasparini, I., Pimenta, M. S., & Hamari, J. (2020). 
Tailored gamification: A review of literature. International Journal of 
Human-Computer Studies, 144, 102495. https://doi.org/10.1016/j. 
ijhcs.2020.102495

Knijnenburg, B. P., Reijmer, N. J. M., & Willemsen, M. C. (2011). Each 
to his own: How different users call for different interaction meth
ods in recommender systems. In Proceedings of the Fifth ACM 
Conference on Recommender Systems (pp. 141–148). ACM. https:// 
doi.org/10.1145/2043932.204396

Knowles, A. M. (2022). Human-AI collaborative writing: Sharing the 
rhetorical task load. In IEEE Int. Prof. Commun. Conf. (Vol. 2022, 
pp. 257–261). Institute of Electrical and Electronics Engineers Inc. 
https://doi.org/10.1109/ProComm53155.2022.00053

Kobayashi, M., Wakabayashi, K., & Morishima, A. (2021). HumanþAI 
crowd task assignment considering result quality requirements. In E. 
Kamar & K. Luther (Eds.), Proceeding AAAI Conference on Human 
Computer Crowdsourcing (Vol. 9, pp. 97–107). Association for the 
Advancement of Artificial Intelligence. https://doi.org/10.1609/ 
hcomp.v9i1.18943

Koehl, D. & Vangsness, L. (2023). Measuring latent trust patterns in 
large language models in the context of human-AI teaming. In 
Proceeding Hum. Factors Ergon Soc. (Vol. 67, No. 1, pp. 504–511). 
SAGE Publications Inc. https://doi.org/10.1177/21695067231192869

Kolbjørnsrud, V. (2024). Designing the intelligent organization: Six 
principles for human-AI collaboration. California Management 
Review, 66(2), 44–64. https://doi.org/10.1177/00081256231211020

Kongmanee, J., Chung, M.-H., Luna, A., Zhan, L., Jerath, K., Raman, 
A., & Chignell, M. H. (2024). A human-AI interaction dashboard 
for detecting potentially malicious emails. In M. Hou, T. H. Falk, A. 
Mohammadi, A. Guerrieri, & D. Kaber (Eds.), IEEE Int. Conf. 
Hum.-Mach. Syst., ICHMS. Institute of Electrical and Electronics 
Engineers Inc. https://doi.org/10.1109/ICHMS59971.2024.10555737

Kou, Z., Shang, L., Zhang, Y., Yue, Z., Zeng, H., & Wang, D. (2022). 
Crowd, expert & AI: A human-AI interactive approach towards 
natural language explanation based COVID-19 misinformation 
detection. In L. De Raedt & L. De Raedt (Eds.), IJCAI Int. Joint 
Conf. Artif. Intell. (pp. 5087–5093). International Joint Conferences 
on Artificial Intelligence.
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Appendix A. Additional figures

Figure A1. Historical development of terminology usage with different alternative terms that may refer to AI, ranging from 1989 to 2024. Values show publication 
counts for three-part compounds of “human”, alternative AI terms, and the key supplementary terms introduced in Section 1.

INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION 14297



Figure A1. Continued.
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Figure A2. Geographic distribution of human-AI terminology on country-level, per continent. Only countries and subclusters with publication counts > 0 are 
considered.
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Appendix B. Additional tables

Table B1. Overview of all clusters, subclusters, individual terms and the included publications.

Cluster Subcluster Term Publications

Connection Team HAI Team (Andrews et al., 2023; Babbar et al., 2022; Bansal et al., 2019b; 
Bendell et al., 2021; Bruni, 2024; Carolina Centeio et al., 2022; 
Cummings et al., 2021; de Visser et al., 2023; Endsley, 2023; 
Flathmann et al., 2023; 2024; Frattolillo et al., 2024; Georganta & 
Ulfert, 2024; Hagemann et al., 2023; Harris-Watson et al., 2023; 
Hauptman et al., 2024; Hou et al., 2025; Kraus et al., 2023; 
Lemmer et al., 2023; Liang et al., 2019; Munyaka et al., 2023; 
Naser & Bhattacharya, 2023; Schelble et al., 2023; Siu et al., 
2021; Tag et al., 2023; Ulfert et al., 2024; Ulfert-Blank et al., 
2023; Westby & Riedl, 2023; Zhang, Lee, et al., 2022; Zhang, 
Duan, et al., 2023; Zhang, Flathmann, et al., 2024)

HAI Teaming (Amresh et al., 2023; Andre et al., 2023; Attig et al., 2024; Baruwal 
Chhetri et al., 2024; Boy, 2024; Berretta, Tausch, Ontrup, et al., 
2023; Bienefeld et al., 2024; 2023; Dubey et al., 2020; Gopinath 
et al., 2022; Haindl, Hoch, et al., 2022; Haindl, Buchgeher, et al., 
2022; Hauptman et al., 2023; Hobbs & Li, 2024; Hong et al., 
2024; Hughes et al., 2022; Kannally et al., 2023; Kleanthous, 
2024; Koehl & Vangsness, 2023; Largent et al., 2018; Li, Li, et al., 
2024; McNeese et al., 2021; Milella et al., 2023; Samadi et al., 
2024; Schelble et al., 2024; Shukla et al., 2019; Sim�on et al., 
2024; Stephens et al., 2023; 2021; Zhang, McNeese, et al., 2021)

HAI Teamwork (Jorge et al., 2023; Mallick et al., 2024; Peng et al., 2022; Schecter 
et al., 2023)

HAI Team Performance (Bansal et al., 2019a; Subramanian et al., 2024)
Effective HAI Team (Hemmer et al., 2022; Mozannar et al., 2023)
HAI Team Accuracy (Nguyen et al., 2022; Singh et al., 2023)
HAI Robot Teaming (Holder et al., 2021; Lematta et al., 2022)
HAI (Military) Team (Devitt, 2024)
HAI (Diagnostic) Team (Zhao et al., 2024)
HAI Cognitive Teaming (Vold, 2024)
HAI Teaming Language (Abbass et al., 2022)
Adaptive HAI Teaming (Malakis et al., 2023)
HAI Teaming Intelligence (Hoch et al., 2022)
Collective HAI Teaming (Zhao et al., 2022)
HAI Teaming Approach (Seveso et al., 2021)
Ethical HAI Team (Flathmann et al., 2021)
Hybrid HAI Teaming (Caldwell et al., 2022)
HAI Hybrid Team (Fuchs et al., 2024)

Relationship HAI Partnership (Canonico et al., 2020; Kawakami et al., 2022; Metcalfe et al., 2021; 
Nguyen et al., 2018; Omidvar-Tehrani et al., 2024; Waefler & 
Schmid, 2020; Weisz et al., 2021; Xu, Hong, et al., 2023)

HAI Friendship (Brandtzaeg et al., 2022; Weijers & Munn, 2022)
HAI Partnership Roles (Tran, 2024)
HAI Relationship Perception (Tschopp & Sassenberg, 2024)
HAI Resource Relations (Kaartemo & Helkkula, 2024)
HAI Companionship (Ciriello et al., 2024)
HAI Expert (Virvou & Tsihrintzis, 2023)
HAI Relations (Al, 2023)
Trustworthy HAI Partnership (Ramchurn et al., 2021)
HAI Copilot (Li, Peng, et al., 2022)
HAI Copilot System (Wang, 2023)

Integration HAI Integration (Collazo et al., 2024; Rago, 2022)
HAI Co Evolution (Ziegler & Donkers, 2024)
HAI Roles (Allen et al., 2022)
HAI Loop Approach (Bhardwaj et al., 2020)
Adaptive, Explainable HAI Loop (Orzikulova et al., 2024)
Human-Aware AI (Sreedharan, 2023)
HCAI (Xu & Gao, 2024)

Network HAI System (Correia & Lindley, 2022; Naikar et al., 2023; Subramonyam et al., 
2022)

HAI Ecosystem (Contucci et al., 2022; Mulder & Meyer-Vitali, 2023)
HAI Centric (Performance  

Evaluation) System
(Graça & Camarinha-Matos, 2024)

HAI Co Orchestration (Yang et al., 2023)
HAI Community (Ashktorab et al., 2023)
HAI Ensemble (Choudhary et al., 2025)
HAI Entities (Swan & Dos Santos, 2023)
HAI Nexus (Askarisichani et al., 2022)
HAI Society (Peeters et al., 2021)
HAI Work Systems (Klein et al., 2023)
Hybrid HAI Orchestration (Echeverria et al., 2023)

(continued)
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Table B1. Continued.

Cluster Subcluster Term Publications
Proactive HAI System (Grosinger, 2022)
Safe, Trusted HAI System (Akintunde et al., 2023)

Hybrid HAI Hybrid (Allred et al., 2020; Fabri et al., 2023; Fahse & Schmitt, 2023)
HAI Hybrid Approach (Paiva & Bittencourt, 2020; Zhang, Kaushik, et al., 2023)
HAI Hybrid System (Fuchs et al., 2023; Pereira et al., 2021)
Hybrid HAI Tool (Correia et al., 2023)

Mutual Benefit HAI Symbiosis (Bendoly et al., 2024; Ilapakurti et al., 2019; Jarrahi, 2018; Mahmud 
et al., 2024; Vuppalapati et al., 2020; Zhang, Wei, et al., 2022)

HAI Complementarity (Holstein & Aleven, 2022; Inkpen et al., 2023; Steyvers et al., 2022; 
Tan et al., 2022; Yang, Zhang, et al., 2024)

HAI Synergy (Bao et al., 2023; Cau & Spano, 2024; Van Rooy & Vaes, 2024)
HAI Enrichment (Su et al., 2022)
HAI Collab. (Bayesian)  

Optimization
(Arun Kumar et al., 2022)

Distance HAI Alignment (Boggust et al., 2022)
HAI Chasm (Kambhampati et al., 2022)
HAI Gap (Liu-Thompkins et al., 2022)
HAI (Team Mate) Gap (Ong et al., 2012)

Comparison Direct HAI Comparison (Voudouris et al., 2022)
HAI Confrontation (Zhang, Wei, et al., 2022)

Working  
Together

Collaboration HAI Collaboration (Agarwal, 2024; Ala-Luopa et al., 2024; Arai et al., 2023; Arias- 
Rosales, 2022; Ashktorab et al., 2020; Bao et al., 2021; Ben 
Chaaben, 2024; Biloborodova & Skarga-Bandurova, 2023; Bossen 
& Pine, 2023; Bousdekis et al., 2021; Braun et al., 2023; 
Brusilovsky, 2024; Burukina, 2020; Cabrera et al., 2023; Cabrero- 
Daniel et al., 2024; Cao et al., 2023; Chakravorti et al., 2023; 
Chang & Huang, 2021; Chen et al., 2024; Cichocki & Kuleshov, 
2021; De Brito Duarte, 2023; Dellermann, Calma, et al., 2019; 
Dhillon et al., 2024; Erdogan et al., 2024; Eriksson et al., 2023; 
Erlei et al., 2024; Fan et al., 2022; Feuston & Brubaker, 2021; 
Figoli et al., 2022; Gamboa et al., 2022; Gao et al., 2021; Gass, 
2023; Gaurav et al., 2024; Gianet et al., 2024; G€obel et al., 2022; 
Goel et al., 2023; Gu et al., 2024; Gupta et al., 2023; Hartikainen 
et al., 2024; Hassany, Ke, et al., 2024; Haupt et al., 2025; 
Hemmer et al., 2023; Heyman et al., 2024; Hitsuwari et al., 2023; 
Hohenstein et al., 2022; Holstein et al., 2023; Holter & El-Assady, 
2024; Hong et al., 2021; Hou et al., 2023; Hu, Zhang, et al., 
2024; Huang & Xiong, 2024; Introzzi et al., 2024; Jacobsen et al., 
2020; Jaszcz et al., 2023; Jiang et al., 2021; Jiang, Liu, et al., 
2023; Jones & Tanimoto, 2018; Karakose, Demirkol, Aslan, et al., 
2023; Karakose, Demirkol, Yirci, et al., 2023; Khadpe et al., 2020; 
Kilic et al., 2023; Kim et al., 2022; 2024; Kolbjørnsrud, 2024; 
Kwon, Sun, et al., 2024; Lai et al., 2022; 2021; Laney & Dewan, 
2024; Lauer & Wieland, 2021; Lee, Yu, et al., 2022; Li, Wang, 
et al., 2024; 2020; Lindner & Schulte, 2024; Linnyk & Teetz, 
2023; Loo et al., 2023; Loske & Klumpp, 2021a; 2021b; Lu & 
Peng, 2024; Mehta et al., 2023; Meier & Glinka, 2023; Memmert 
& Bittner, 2024; 2022; Mlyn�a�r et al., 2024; Mohanty et al., 2024; 
Neuwirth & Migliorini, 2022; Okamura & Yamada, 2020a; 
Padovano & Cardamone, 2024; Papachristos et al., 2021; Pereira 
et al., 2023; Petrescu & Krishen, 2023; Prajwal et al., 2023; 
Puerta-Beldarrain et al., 2023; Puig et al., 2021; Qian & Wexler, 
2024; Rana & Bansal, 2023; Rastogi et al., 2023; Rinott & Shaer, 
2024; Sachan et al., 2024; Sadeghian et al., 2024; Saffiotti et al., 
2020; Salah et al., 2023; Salikutluk et al., 2024; Sarkar, 2023; 
Sarkar et al., 2023; Schmidt & Biessmann, 2020; Schroder et al., 
2022; Segal et al., 2022; Sharma et al., 2023; Shenoi et al., 2024; 
Siemon, 2022; Siirtola & R€oning, 2019; S€ollner et al., 2023; Song 
et al., 2024; Sowa et al., 2021; Strobelt et al., 2022; Sun et al., 
2024; Svensson & Keller, 2024; Tian, 2024; Tkiouat et al., 2022; 
T€ul€ubaş et al., 2023; Tuncer & Ramirez, 2022; Tutul et al., 2023; 
2024; Vodrahalli, Gerstenberg, et al., 2022; Wang et al., 2019; 
Wang, Liu, et al., 2023; Wang, Nan, et al., 2024; Weber et al., 
2023; Wellsandt et al., 2023; Westphal et al., 2023; Wiegreffe 
et al., 2022; Wienrich et al., 2024; Xu et al., 2020; Yan et al., 
2024; Yiwen et al., 2024; You & Lowd, 2022; Yu et al., 2024; 
Zhang, Yu, et al., 2024; Zhao, Zhu, et al., 2023)

HAI Collab. Approach (Arous et al., 2020; Gomez et al., 2022; Huang, Wood, et al., 2024; 
Lee et al., 2021; Mesbah et al., 2023)

Effective HAI Collaboration (Nols et al., 2023; Reverberi et al., 2022; V€ossing et al., 2022)
Trustworthy HAI Collaboration (Baniecki et al., 2023; Li, Karim, et al., 2023; Razmerita et al., 2022)
HAI Collaboration Type (Smirnov, Levashova, et al., 2023; Yue & Li, 2023)
HAI Collab. Tool (Kariyawasam et al., 2024; Zhang, Ning, et al., 2023)
Process Oriented HAI Collaboration (Heinzl et al., 2024)

(continued)
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Table B1. Continued.

Cluster Subcluster Term Publications
Expert Knowledge Driven HAI Collaboration (Kamboj et al., 2024)
HAI Collaboration Patterns (Nguyen et al., 2024)
HAI Collab. Process (Sankaran et al., 2022)
Adaptive HAI Collaboration (Shih et al., 2021)
Constructive HAI Collaboration (S€uße et al., 2021)
Collab. HAI (Codella et al., 2018)
Intuitive HAI Collab. (3D Modeling) Approach (Cai, 2024)
HAI Collaboration Practices (Bogdanova, 2024)
HAI Collab. Analysis (Kuang, 2023)
Critical-Reflective HAI Collaboration (Glinka & M€uller-Birn, 2023)
HAI Collab. System (Shi et al., 2023)
HAI Collab. Work (Muller et al., 2024)
Graphical HAI Collaboration (Hong et al., 2022)
HAI Collab. (Navigation) System (Gu, Yang, et al., 2023)

Cooperation HAI Cooperation (Atkins et al., 2021; Okamura & Yamada, 2020b; Berberian et al., 
2023; He et al., 2023; Li, Huang, et al., 2022; Salikutluk et al., 
2023; Schelble et al., 2021; Spina et al., 2023; Zhang, Chong, 
et al., 2023)

HAI (Agent) Cooperation (Le Guillou et al., 2023)
Effective HAI Cooperation (Wittmann & Morschheuser, 2022)
Cooperative HAI Games (Chattopadhyay et al., 2017)
Intention Aware HAI Cooperation (He et al., 2024)

Coordination (Zero Shot) HAI Coordination (Lou et al., 2023; Yan et al., 2023; Zhao, Song, et al., 2023)
HAI Coordination (Carroll et al., 2019; Hu & Sadigh, 2023)
(Real Time) HAI Coordination (Liu, Yu, et al., 2024)

Communication HAI Communication (Brandtzaeg et al., 2023; Koçak et al., 2022; Pan et al., 2024)
HAI Negotiation (Sato et al., 2023)
HAI Collab. Conversation (Wei et al., 2022)

Co Creation HAI Co Creation (Du et al., 2024; Fu & Zhou, 2020; Gmeiner et al., 2024; Suh et al., 
2024; Hassany, Ke, Brusilovsky, Arun, et al., 2024; Hofmann & 
Preiß, 2023; Huang et al., 2020; Lyu et al., 2022; Ning et al., 
2024; Rezwana & Maher, 2023a; Turchi et al., 2023; Wang, Ning, 
et al., 2024; Wang, Nan, et al., 2024; Wu, Kim, et al., 2022; 
Zhong & Zheng, 2023; Zhu et al., 2024)

HAI Co Creativity (Kim, Maher, et al., 2021; Moruzzi & Margarido, 2024; Rezwana & 
Maher, 2023c; Karimi et al., 2020; Wan et al., 2024)

HAI Co Creative System (Buschek et al., 2021; Rezwana & Maher, 2023b; Rezwana & Maher, 
2021)

HAI Knowledge Co-Construction (Robertson et al., 2024)
HAI System Co Creativity (Serbanescu, 2024)
HAI Text Co Creation (Ding et al., 2023)
(Real-Time) HAI Co Creation (Zheng, 2023)
HAI Co Creation Model (Wu et al., 2021)
HAI Co Creative Songwriting (Micchi et al., 2021)
HAI Co Creative (Design) Ideation (Rezwana et al., 2021)
HAI (Music) Co Creation (Zhang, Xia, et al., 2021)
Generative HAI Co Creation (Chung et al., 2022)
Creative HAI (Image) Co Creation (Fan et al., 2024)
HAI Co Creation Practice (Yu et al., 2022)
HAI Co Creative Drawing (Lawton et al., 2023)

Task Distribution HAI Delegation (Adam et al., 2024; Grisold & Schneider, 2023)
HAI Crowd Task Assignment (Kanda et al., 2022; Kobayashi et al., 2021)
Integrated HAI Forecasting (Li, Yin, et al., 2024)
Hybrid HAI Forecasting (Li & Lafond, 2023)

Interaction HAI Interaction (Abedin et al., 2022; Ahn et al., 2024; Alon-Barkat & Busuioc, 2023; 
Amershi et al., 2019; Anderson et al., 2024; Ashktorab et al., 
2021; Bach et al., 2024; Bernardo & Seva, 2024; Bondi et al., 
2022; Bozdag, 2023; Calisto et al., 2022; Chen & Schmidt, 2024; 
Cheng et al., 2022; Cotino Arbelo et al., 2023; Crompton, 2021; 
Correia et al., 2021; Ding, 2024; Dynel, 2023; El-Assady & 
Moruzzi, 2022; Giudici et al., 2024; Gammelgård-Larsen et al., 
2024; Guingrich & Graziano, 2024; Guttman et al., 2021; Gurney 
et al., 2023; He & Jazizadeh, 2024; Heyder et al., 2023; Hois 
et al., 2019; Hu, 2024; Hu, Liu, et al., 2024; Jang & Nam, 2022; 
Jiang et al., 2022; Jiang, Sun, et al., 2024; Jiang, Karran, et al., 
2023; Jin & Youn, 2023; Judkins et al., 2024; Kiyemba et al., 
2024; Kim et al., 2023; Krakowski et al., 2024; Krueger & Roberts, 
2024; Kwon, Yoo, et al., 2024; La Sala et al., 2024; Lee, Hong, 
et al., 2023; Lee, Lee, et al., 2023; Legaspi et al., 2024; Li, 
Vorvoreanu, et al., 2023; Li & Lu, 2024; Liu, 2021; Liu & Siau, 
2023; Lu et al., 2023; Ma & Huo, 2024; Maadi et al., 2021; 
Maeda & Quan-Haase, 2024; Maletzki et al., 2024; Meske & 
Bunde, 2020; Mucha et al., 2021; Muijlwijk et al., 2024; Navidi & 
Landry, 2021; Park et al., 2021; Pham et al., 2022; Raees et al., 
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Table B1. Continued.

Cluster Subcluster Term Publications
2024; Rajagopal & Vedamanickam, 2019; Roeder et al., 2023; 
Schoenherr & Thomson, 2024; Shergadwala & El-Nasr, 2021; Shin 
et al., 2019; Snatos et al., 2024; Sqalli et al., 2021; Sreedharan, 
2023; Sreedharan et al., 2021; S€uße et al., 2023; Sundar, 2020; 
Tenhundfeld, 2023; Tchemeube et al., 2023; Thieme et al., 2020; 
Tsiakas & Murray-Rust, 2024; Ueno et al., 2022; van Berkel et al., 
2021; Vassilakopoulou et al., 2023; Veitch & Alsos, 2022; 
Villareale et al., 2023; Vorm, 2020; Vodrahalli, Daneshjou, et al., 
2022; Wallinheimo et al., 2023; Wang et al., 2021; Wang, Liu, 
et al., 2023; Wienrich & Latoschik, 2021; Wu, Kim, et al., 2022; 
Xu & Ge, 2024; Yang et al., 2020; Yang, Xie, et al., 2024; Yao 
et al., 2024; Kang & Lou, 2022; Liao & Sundar, 2021; Hwang & 
Won, 2022)

HAI Dynamics (Khushk et al., 2024)
HAI Metaphorical Interplay (Correia, 2024)
HAI Interaction Dashboard (Kongmanee et al., 2024)
Tangible HAI Interaction (Adan & Houben, 2023)
Multimodal HAI Interaction (Scotte & De Silva, 2023)
HAI Robot Interaction (Feng & Wang, 2023)
HAI Information Interaction (Pawlick-Potts, 2022)
Dynamic HAI Interplay (Meyer & Voigt, 2022)
HAI Interactive Approach (Kou et al., 2022)
HAI Interaction Dynamics (Kim & Trewhitt, 2022)
Purposeful HAI Interaction (Hinsen et al., 2022)
HAI Interface (Holzinger & M€uller, 2021)
Explainable HAI Interaction (Guerdan et al., 2021)
Voice-Based HAI Interaction (Shin et al., 2021)
HAI Interaction Patterns (Grabe et al., 2022)
HAI Attention (Zhang et al., 2020)
HAI Hybrid Adaptivity (Holstein et al., 2020)
HAI Social Interaction (Mou & Xu, 2017)
Actionable HAI Interaction (Bhattacharya, 2024)
Beginner Friendly HAI Platform (Overney et al., 2024)
HAI Interaction Model (Hussain et al., 2024)
HAI Physical Interface (EL-Zanfaly et al., 2022)
Transparent, Controllable HAI Interaction (Wu, Terry, et al., 2022)
Conversational HAI Interaction (Zheng et al., 2022)
HAI Interaction Loop (Ou et al., 2022)
HAI Interaction Design Space (Zhang, Liu, et al., 2021)
Bidirectional HAI Interaction (Yasser & Abu-Elkhier, 2022)
Combined HAI Personalization (Chine et al., 2022)

Experience and Trust HAI Trust (Bui et al., 2023; Li, Wu, et al., 2024, Lou & Wei, 2023; Schwalb 
et al., 2022; Wang & Ding, 2024; Zerick et al., 2024)

HAI Experience (Inkpen, 2024; Sergeyuk et al., 2024; Weekes & Eskridge, 2022)
HAI Interaction Satisfaction (Xie et al., 2023)
HAI Performance (Hoffman et al., 2023)
HAI Trust Dynamics (Gerlich, 2024)
HAI Trust Factors (Pham et al., 2022)
Hybrid HAI Performance (Lemus et al., 2023)

Work and Tasks HAI Work (Berretta, Tausch, Peifer, et al., 2023, H€ullmann et al., 2023; 
Ruissalo, 2024)

HAI Collab. Task (Dodeja et al., 2024; Weerawardhana et al., 2024)
HAI Collaboration Task (Sharma et al., 2024; Xu, Lien, et al., 2023)
HAI Coworking (Huang, Chen, et al., 2024)
HAI Crowdsourcing (Tamura et al., 2024)
Effective HAI Work Design (Jain et al., 2023)
HAI Collab. (Sub-Goal) Optimization (Ma, Vo, et al., 2023)
HAI Complex Task Planning (Nikookar, 2023)
HAI Joint Task Performance (Constantinides et al., 2024)

Applications Decision Making HAI Decision Making (Salimzadeh et al., 2024; Jakubik et al., 2023; Morrison et al., 2024; 
Schoeffer et al., 2024; Goyal et al., 2024; Chen, Wu, et al., 2023; 
Prabhudesai et al., 2023; Salimzadeh et al., 2023; Lai et al., 2023; 
Schemmer et al., 2022; Liu et al., 2021)

HAI Collab. Decision Making (Wang, Yuan, et al., 2024, Mentzas et al., 2021; Puranam, 2021; Cai 
et al., 2019)

Effective HAI Decision Making (Schemmer et al., 2023; Buçinca 2024)
Collab. HAI Decision Making System (Oksana et al., 2022; Dolgikh & Mulesa, 2021)
HAI Collab. Decision Support System (Smirnov, Ponomarev, et al., 2023)
HAI Visual Decision Making (Morrison et al., 2023)
HAI Collab. (Clinical) Decision Making (Lee & Chew, 2023)
HAI Collab. (Clinical) Decision Support System (Lee, Siewiorek, et al., 2022)

Learning HAI Co Learning (Schoonderwoerd et al., 2022; van den Bosch et al., 2019)
Hybrid HAI Regulation (Molenaar, 2022a)
Hybrid HAI Tutoring (Thomas et al., 2024)
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Table B1. Continued.

Cluster Subcluster Term Publications
Hybrid HAI Curriculum Development (Tavakoli et al., 2022)
HAI Learning Performance (Pandya et al., 2019)
HAI Hybrid Teaching (Karumbaiah et al., 2023)
Hybrid HAI Learning Technologies (Molenaar, 2022b)
HAI (Sleep Coaching) Model (Liu, Ito, et al., 2024)

Control HAI Control (Yang et al., 2021; Echeverria et al., 2020)
HAI Shared Control (Li, Huang, et al., 2022)
Joint HAI Control (Lundberg et al., 2021)
Collab. HAI Control (Niehaus & Weyhrauch, 2011)

Reading and Authoring HAI Pair Programming (Jiang, Ahmadon, et al., 2024; Ma, Wu, et al., 2023; Jiang, Bin 
Ahmadon, et al., 2023; Zhang, Wei, et al., 2022)

HAI Collab. Writing (Richburg et al., 2024; Knowles, 2022; Lee, Siewiorek, et al., 2022)
HAI Music Composition (Correia et al., 2024)
HAI Collab. Music Composition (Bian et al., 2023)
Mixed HAI Authoring (Chugh et al., 2019)
HAI Collab. Authoring (Choi et al., 2024)
HAI Authoring Tool (Liapis et al., 2023)

Dialog Systems HAI Simulator (Armaselu, 2024)
Knowledge-Aware HAI Dialogue (Huang, Li, et al., 2024)
Thoughtful HAI Conversation (Varshini Devi et al., 2024)
HAI Dialog (Demidova, 2018)
Domain-Specific HAI Conversation (Biyani et al., 2024)
HAI Hybrid Conv System (Gao & Jiang, 2021)
HAI Collab. Chatbot (Zhang, Xu, et al., 2022)
HAI Hybird Conv Assistant (Cannanure et al., 2020)

Data Proc. and Analysis HAI Collab. Image Retrieval (Ray et al., 2019)
HAI Collab. Qualitative Coding (Gebreegziabher, Zhang, et al., 2023)
HAI Collab. Data Labeling (Brachman et al., 2022)
HAI Hybrid (Knowledge Graph) Annotation (Lee, Chung, Kim, et al., 2022)

Sense Making Collab. HAI Sensemaking (Dorton & Hall, 2021)
HAI Interactive Continuous Sensemaking (Shen et al., 2021)

Collab. Design HAI Design Collaboration (Lee et al., 2025)
HAI Collab. (Architectural) Concept Design (Dai et al., 2023)
HAI Collab. (Font) Design (Zeng et al., 2022)
HAI Collab. (In-Situ Fashion) Design (Zhao & Ma, 2018)

Exploration and Detection HAI Collab. (Design Space) Exploration (Viros-I-Martin & Selva, 2021; Khan et al., 2023)
Shared HAI Recognition (van Zoelen et al., 2023)
Collab. HAI Disinformation Detection (Schmitt et al., 2024)
Hybrid HAI Misinformation Detection (Zeng et al., 2024)

Miscellaneous HAI Co Dancing (Pataranutaporn et al., 2024)
Hybrid HAI Enabled Scientometrics (Correia et al., 2020)
Pathological HAI Collab. Diagnosis (Zhang, He, et al., 2023)
HAI Joint (Face Matching) Task (Salehi et al., 2021)
HAI Scoring System (Liu et al., 2022)
HAI Diagnosis System (Gu, Yang, et al., 2023)
HAI Collab. (Recidivism) Risk Assessment (Chiang et al., 2023)
HAI Collab. Gameplay (Lobo et al., 2024)

Design Design HAI Interaction Design (Hwang et al., 2024; Rezwana & Maher, 2022)
HAI Interaction Paradigm (Desolda et al., 2024; Franklin & Lagnado, 2022)
HAI Workflow (Shin et al., 2024; Fogliato et al., 2022)
HAI Collaboration Protocols (Cabitza et al., 2023; 2021)
HAI Guidelines (Yildirim et al., 2023)
HAI Engineering (Meyer-Vitali & Mulder, 2024)
Integrated HAI Framework (Marhraoui et al., 2022)
HAI Framework (Nazarenko & Camarinha-Matos, 2024)
HAI Hybrid Framework (Guimaraes et al., 2021)
Conversational HAI Interaction Design (Marri, 2023)
HAI Collaboration Framework (Muller & Weisz, 2022)
HAI (Agent) System Design (Duncan et al., 2023)
HAI Protocols (Ogiela et al., 2022)
HAI Collaboration Workflow (Casini et al., 2023)
HAI (Quantum Experience) Design Paradigm (Germanakos, 2024)
Continuous Learning HAI Interface (Daish et al., 2024)
Hybrid HAI Workflow (Liu et al., 2020)
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Table B2. Key publications with citation counts within the 99th percentile, average citation counts per year are shown in brackets.

Publication Authors Year Cites (Avg.) Cluster Keywords and Description

(Jarrahi 2018) Jarrahi 2018 2,027 (290) Connection Artificial intelligence; Organizational decision making; 
Human-machine symbiosis; Human augmentation; 
Analytical and intuitive decision making

This paper attempts to mitigate fears of human 
replacement and loss of employment with AI 
emergence in business contexts. It highlights the 
opportunity for enhancement rather than 
replacement of human capabilities due to the 
human-AI complementarity in complex decision 
making processes.

(Amershi et al., 2019) Amershi et al. 2019 1,563 (261) Working Together Human-AI interaction; AI-infused systems; design 
guidelines

A set of 18 evaluated guidelines for human-AI 
interaction is proposed to account for the rapid 
advances of AI systems and the adoption of human- 
AI systems, overgrowing the research in past 
decades. Guidelines are categorized by the time of 
occurrence ranging from before to during the 
interaction, error handling and over time 
adaptability.

(Yang et al., 2020) Yang et al. 2020 527 (105) Working Together User experience, artificial intelligence, sketching, 
prototyping

The design of human-AI interaction proves to be more 
challenging to HCI researchers and practitioners 
than regular prototyping and sketching of complex 
systems. This paper shifts away from focusing on 
the technical complexity of AI systems and rather 
identifies properties such as uncertainty and 
adaptability of AI systems as challenges in 
interaction design.

(Cai et al., 2019) Cai et al. 2019 462 (77) Applications Human-AI interaction; machine learning; clinical health
A qualitative lab study shows that explanations in 

human-AI collaboration are not enough for human 
medical experts. Comprehensive information about 
the general function, expectable capabilities and 
limitations helps in finding a compatible partner 
that can be relied on for collaborative decision 
making.

(Bansal et al., 2019a) Bansal et al. 2019 456 (76) Connection no keywords
Human-AI teams can exceed individual performance. 

To be able to utilize the complementary capabilities, 
however, it is essential that the two parties can 
estimate each other’s capabilities and how to 
complement them. This study focuses on the impact 
of human mental models of AI systems in AI-advised 
decision making.

(Sundar 2020) Sundar 2020 444 (89) Working Together Source Interactivity; Machine Heuristic; Artificial 
Intelligence (AI); Algorithms; User Experience; 
Human-AI Interaction (HAII); Theory of Interactive 
Media Effects (TIME)

Research in computer-mediated communication (CMC) 
no longer focuses solely on supporting human 
communication but has shifted towards humans 
actually communicating with the technology itself, 
too. The different degrees of agency and 
interactivity shape the human-AI collaboration 
potential and the authors expect a conversion from 
HCI to HAII (Human-AI Interaction) research.

(Carroll et al., 2019) Carroll et al. 2019 397 (66) Working Together no keywords
In human-AI coordination there is a gap in agent’s 

capability to adapt to agents or to human partners. 
To reach complementarity rather than individual 
peak performance, agents need to encounter 
humans during the training process, which is 
missing in the common training strategies.
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