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Fig. 1: User interface of Marjorie showing the overview visualization for a user-specifed time range in the panel in the middle. The 
AGP plot at the top summarizes glucose values of the whole time range (1). Underneath, adapted horizon graphs present the data of 
distinct days (2). Both visualizations show data on carbohydrate and bolus insulin intake juxtaposed (3). The statistics panel on the 
right summarizes the most relevant metrics and additionally serves as a legend. 

Abstract—In this work we propose Marjorie, a visual analytics approach to address the challenge of analyzing patients’ diabetes data 
during brief regular appointments with their diabetologists. Designed in consultation with diabetologists, Marjorie uses a combination of 
visual and algorithmic methods to support the exploration of patterns in the data. Patterns of interest include seasonal variations of the 
glucose profles, and non-periodic patterns such as fuctuations around mealtimes or periods of hypoglycemia (i.e., glucose levels below 
the normal range). We introduce a unique representation of glucose data based on modifed horizon graphs and hierarchical clustering 
of adjacent carbohydrate or insulin entries. Semantic zooming allows the exploration of patterns on different levels of temporal detail. 
We evaluated our solution in a case study, which demonstrated Marjorie’s potential to provide valuable insights into therapy parameters 
and unfavorable eating habits, among others. The study results and informal feedback collected from target users suggest that Marjorie 
effectively supports patients and diabetologists in the joint exploration of patterns in diabetes data, potentially enabling more informed 
treatment decisions. A free copy of this paper and all supplemental materials are available at https://osf.io/34t8c/. 
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1 INTRODUCTION 

Type 1 diabetes is a chronic autoimmune disease with a prevalence of 
over 9 million cases globally [18]. As part of their therapy, patients 
need to closely monitor their blood glucose levels and administer fnely 
tuned doses of insulin. The adjustment of therapy parameters requires 
a thorough understanding of past situations and patterns in the patients’ 
blood glucose levels. To this end, patients meet regularly with their 
diabetologists to jointly analyze the recorded blood glucose data [22]. 

From a data analysis and visualization perspective, type 1 diabetes 
data poses interesting challenges. First, diabetologists typically have 
little time. Therefore, patient–physician meetings must be kept short 
and important patterns must be identifed and understood effciently. 

Second, the patient data combines regular or continuous measurements 
of blood glucose levels (i.e., time series data) with potentially irregular 
data about meals and exercise (i.e., event data) [19]. Third, specifc 
patterns, such as periods of hypoglycemia, where the glucose levels fall 
below the normal range, require increased attention as they pose serious 
health risks [22]. Fourth, new visualization approaches have to be 
compatible with standardized visualizations that have been established 
for certain subtasks of analyzing diabetes data [9, 22]. 

Existing visualization tools for type 1 diabetes data focus on display-
ing glucose time series but struggle to effectively visualize additional 
attributes (such as meal or insulin data) without losing clarity. Under-
standing the interactions between the different attributes requires an 
integrated visualization of all attributes in a simple overview, which 
allows users to drill down and identify patterns on varying temporal 
scales. In this work we introduce Marjorie, a visual analytics solution 
that addresses these challenges. We named our tool in honor of the 
experimental dog that Frederick Banting and Charles Best frst success-
fully treated with insulin, enabling clinical trials thereafter [7, 38]. 

The main contribution of this work is Marjorie, a visual analytics 
solution for analyzing diabetes data. Marjorie includes (i) a compact 
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visualization of blood glucose levels based on horizon graphs with a 
range of baselines; (ii) a concise representation of aggregated carbohy-
drate and bolus insulin data, which combines hierarchical clustering 
with semantic zooming; and (iii) the automatic identifcation of charac-
teristic glucose patterns occurring during periods of hypoglycemia or 
mealtimes, enabled by dynamic time warping and hierarchical cluster-
ing. Secondary contributions of our work are a detailed description of 
tasks involved in the visual analysis of type 1 diabetes data, developed 
in consultation with diabetologists; a case study with real patient data; 
and a discussion of feedback by diabetologists and patients. 

2 BACKGROUND 

The term diabetes mellitus encompasses two types of diseases that 
differ in clinical course and treatment. The immune systems of type 1 
diabetes patients attack and destroy the β -cells in the pancreases. The 
destruction of the β -cells, which are responsible for insulin production, 
leads to a lack of insulin in the patients’ bodies. This chronic autoim-
mune disease usually manifests in childhood or early adulthood, and 
requires lifelong treatment. Type 2 diabetes, in contrast, is a metabolic 
disorder characterized by insulin resistance and insuffcient insulin 
production. It usually develops in adults and is often associated with 
obesity, inactivity, and unhealthy eating habits. Our work focuses on 
type 1 diabetes data. Hence, we use the term diabetes throughout our 
paper to refer to type 1 diabetes. 

Patients with diabetes need to keep their blood glucose levels in a 
target range most of the time to avoid long-term complications such as 
permanent damage to organs and nerves [33]. Deviations, both towards 
low blood glucose (hypoglycemia, colloquially referred to as “hypo”) 
and high blood glucose (hyperglycemia, colloquially “hyper”), should 
be kept to a minimum. The patients’ glucose levels can be affected 
by various factors. The most common and predictable infuence fac-
tors are food and insulin intake: food intake—especially carbohydrate 
intake—increases the glucose levels, while administered insulin de-
creases them [6]. Other infuencing factors that can infuence glucose 
levels are physical exercise, alcohol intake, menstruation, stress, and 
infections [6]. 

A patient’s therapy involves regular monitoring of glucose levels and 
administration of insulin. The glucose levels can be measured either by 
a blood glucose meter or with a continuous glucose monitoring (CGM) 
system. A blood glucose meter is a device that measures blood sugar 
levels at a single point in time. A CGM system, in contrast, measures 
glucose levels continuously through a sensor placed under the skin. 
Patients also need to administer insulin on a regular basis, either through 
injections (using a syringe or insulin pen), or with an insulin pump. An 
insulin pump is a small device worn on the body, which delivers insulin 
continuously through a cannula. The pump is programmed to deliver 
small amounts of insulin (known as “basal” insulin) throughout the day, 
mimicking the natural “background” insulin production of the pancreas. 
When the patient consumes carbohydrates, an additional dose of insulin, 
known as “bolus insulin”, is required. The dose is determined based on 
the amount of carbohydrates and the patient’s current glucose levels. 

Appropriate adjustment of therapy parameters requires a thorough 
analysis of past situations, which is usually done in regular time inter-
vals with consultation of a diabetologist. The treatment parameters vary 
depending on the time of day, as the body’s insulin sensitivity changes 
in a circadian rhythm. Parameters may also need to be based on the 
patient’s changing needs and response to treatment. The following 
are the most important therapy parameters: (i) the basal rate is the 
programmed basal insulin dose; (ii) the carbohydrate/insulin factor is 
the amount of carbohydrates covered by one unit of insulin; (iii) the 
prebolus time is the time between administering insulin and eating a 
meal; (iv) the insulin sensitivity factor is the amount by which one unit 
of insulin decreases the level of glucose—it is infuenced, among others, 
by physical activity, stress, and illness. Patients record their glucose, 
carbohydrate, and insulin data either manually, or automatically if they 
use a CGM sensor and insulin pump. At regular intervals, typically 
every three months, they meet with their diabetologist to review the col-
lected data and assess the quality of their therapy. Based on the results, 
the treatment parameters are adjusted to optimize glucose levels. 

When physicians and patients analyze CGM data, they typically use 
the standardized Ambulatory Glucose Profle (AGP). The AGP is a 
visualization developed by an international panel of diabetes clinicians 
and researchers [9], which is also featured in the consensus report by 
the American Diabetes Association [22]. It supports the exploration 
of seasonal patterns by aggregating glucose readings of multiple days 
or weeks across a 24-hour period using the 10th, 25th, 50th, 75th, and 
90th percentiles. 

3 RELATED WORK 

In this section, we frst review relevant literature on the analysis of time 
series and event sequence data. We then discuss works specifcally 
addressing diabetes data. Given our approach’s utilization of pattern 
detection and time series clustering, we also explore related works in 
these areas. 

3.1 Time Series and Event Sequence Visualization 

The patient data analyzed by our approach combines time series data 
(i.e., continuous measurements of blood glucose levels) with event data 
(e.g., exercise or meals) [19]. Time series and event sequence visual-
izations naturally play an important role in the analysis of electronic 
health records [36, 45]. Visual representations of time series can make 
it easier for users to fnd trends, patterns, and anomalies in the data by 
taking advantage of people’s natural ability to process and interpret 
information [32]. Based on our interviews with diabetologists (see 
Sec. 4.1), we focus on techniques that feature a dedicated time axis. 
We thus disregard approaches for time series visualization that rely on 
implicit temporality along trajectories [3, 11, 16, 21, 40]. 

Following the categorization by Aigner et al. [2], we reviewed two-
dimensional static visualizations for abstract uni- or multivariate data 
in the TimeViz Browser [44]. We consider point plots, connected scat-
terplots and line plots, area graphs, heatmaps, and horizon graphs [35] 
most suitable for visualizing diabetes data. The grouping of blood 
glucose values into ranges in the AGP [9, 22] further relates diabetes 
data visualization to works that use qualitative ranges. 

Bade et al. [4] visualize time series data with a qualitative scale and 
use a semantic zoom approach to transition from compact heatmaps to 
area diagrams and line diagrams based on the available space. In Visu-
Explore [37] data of patients with chronic diseases, such as diabetes, 
are shown in multiple views that share a common time axis and adapt to 
the available space using Bade et al.’s semantic zooming approach [4]. 

Qualizon Graphs [13] extend the idea of horizon graphs to use 
qualitative ranges, instead of equally sized areas, that are centered 
around a baseline. In our approach, we adapt Qualizon Graphs such 
that one of the qualitative ranges (i.e., the target range) serves as the 
baseline. Changes within the target range are not of primary interest 
and can thus be omitted. 

3.2 Diabetes Data Visualization 

Diabetes-related data from wearable devices is commonly viewed di-
rectly inside the web, phone, or desktop applications of the manufac-
turers [1, 10, 28, 29]. Furthermore, several integrated platforms allow 
consolidation of data from different sources and variables. Examples 
of such platforms are the commercial application Glooko [17] and the 
open source applications Nightscout [41] and Tidepool [43, 47]. The 
review of visualization approaches for diabetes management by Zhang 
et al. [50] revealed that only a few tools support CGM data. Addi-
tionally, some of the few tools that display carbohydrate and bolus 
insulin data in their daily detail views do not visually represent the 
quantity of these attributes; Tidepool [43] and IDMVis [49] only show 
the quantity of bolus insulin, while indicating the time of carbohydrate 
consumption with glyphs. Other tools, such as Nightscout [41], suffer 
from overplotting, making it diffcult to read the quantities. 

For identifying seasonal daily patterns and gaining insight into a 
patient’s typical daily glucose profle, the AGP is a well-established 
visualization in the diabetes domain (see Sec. 2). However, since the 
AGP does not take into account carbohydrate and insulin data, it does 
not allow physicians to determine the factors contributing to a patient’s 
glucose profle. As a result, physicians must rely on daily detail views 
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to gain a comprehensive understanding of the relationship between 
glucose patterns and treatment habits. 

The review by Zhang et al. [50] also describes temporal folding 
strategies for exposing recurrent patterns in the data. This folding 
typically allows users to switch between daily, weekly, bi-weekly, 
or monthly views of the data. To identify non-seasonal patterns, a 
common approach is to align the time series data by important events to 
display patterns of precursor, co-occurring, and aftereffect events [50]. 
IDMVis [49] additionally allows users to align multiple time series 
between two events by justifying or stretching them. 

In contrast to existing tools, our approach supports automatic clus-
tering of meal and hypoglycemia patterns, and the AGP is juxtaposed 
with carbohydrate and insulin data. 

3.3 Pattern Detection 

Patterns in temporal data can be classifed as trend, seasonal, or cyclic 
patterns [24]. Trend patterns mark a long-term increase or decrease in 
the data [24], e.g., in the context of diabetes data, a long-term improve-
ment or deterioration of therapy. Seasonal patterns occur at an always 
fxed and known frequency, such as higher blood glucose levels on 
weekends or lower blood glucose levels during summer, whereas cyclic 
patterns are repeated sequences without a fxed frequency [24], for 
example, hyperglycemia after a meal or hypoglycemia during exercise. 

The wearable device manufacturers Dexcom (“Patterns Report” [10]), 
Medtronic (“Pattern Snapshot” [29]) and Abbott (“Glucose Pattern In-
sights” [1]) include sections in their applications, where non-periodic 
patterns are shown. Patterns such as “nighttime highs” or “pre-breakfast 
highs” are listed, along with suggestions for possible causes and con-
siderations. Additionally, Dexcom shows a visualization of the found 
patterns by highlighting the respective sequences in the daily view. 

The algorithms used by these diabetes device manufacturers are not 
publicly available. However, various algorithms have been developed 
and tested for diabetes data analysis in research papers. Woldaregay 
et al. [46] performed a comprehensive review of machine learning 
methods for discovering patterns in diabetes data, with a focus on works 
that detect glucose anomalies, predict glucose levels, and/or classify 
hypoglycemia, hyperglycemia, and glycemic variability. Hall et al. [20] 
classify the magnitude and degree of glucose variability by segmenting 
CGM data into sliding windows and then using dynamic time warping 
and spectral clustering to classify the windows into clusters of low, 
moderate or severe glucose variability. Lobo et al. [27] classify single 
days of CGM data by matching them to pre-defned representative daily 
profles. PSEUDo [48] allows to visually search multivariate time series 
data for patterns similar to a user-defned example. To identify patterns 
visually, the Sequence Braiding technique [5] gives an overview of 
blood glucose values of several days along important events. 

In our approach, rather than clustering whole days, we focus on 
specifc time ranges around meals or episodes of hypoglycemia. We 
also do not rely only on glucose variability, but make use of the detailed 
glucose data. 

4 PROBLEM CHARACTERIZATION AND ABSTRACTION 

In this section, we lay a foundation for our design study by character-
izing the problem on a domain level, abstracting it into visualization 
tasks and analyzing the occurring data types. 

4.1 Domain Analysis 

Our domain analysis is based on contextual inquiry interviews [23] 
and think-aloud protocols [8]. We conducted seven 90-minute sessions 
with two diabetologists (D1 and D2). For our domain analysis, we 
showed the physicians a sample patient dataset inside the Nightscout 
diabetes visualization tool [41] and asked them to explore the data, 
while communicating their thoughts and insights. We supplemented 
the interview data with domain literature on the management of type 1 
diabetes in adults [22, 25]. 

The target users addressed within this design study are diabetologists 
and their type 1 diabetes patients who wear a CGM sensor and an 
insulin pump. The objective of a diabetologist is to assist patients 
in managing their disease. They do this by educating patients about 

patterns in their diabetes data and adjusting treatment parameters to 
maintain blood glucose levels within a safe range. The appointments 
are usually repeated in three-month intervals and typically last between 
20 and 40 minutes. During the sessions, the diabetologist loads the 
data from different devices into a software and observes the metrics 
and visualizations. 

The primary challenge during the analysis, according to both inter-
viewed diabetologists, is to quickly gain an overview and make sense of 
the vast amount of data within a short time frame. As D1 stated, “The 
sheer amount of data is overwhelming, and it’s impossible to review it 
all in the limited time frame. This can make patients lose interest as they 
often don’t understand the complicated diagrams [...].” D2 expressed 
similar thoughts: “Normally, I only pick 1 to 2 situations to go through 
with the patient; we can’t handle more during that time frame anyway.” 

Current Workfow of Experts During the interviews we observed 
that both diabetologists currently proceed similarly during the analysis 
of patient data, acting in accordance with the offcially standardized 
workfow of data interpretation suggested by expert physicians and 
researchers [25]. Table 1 describes this typical analysis workfow 
with state-of-the-art diabetes visualization tools, focusing on the What 
(analysis objective), Where (specifc visual component), and How (exact 
procedure). Notably, the physicians predominantly focus on three 
components of the tools: metrics, the AGP, and the daily detail views 
(see Sec. 3). They mentioned that these were also the most standard 
components contained in all tools. 

In summary, diabetologists search for recurring daily patterns of 
hypoglycemia, hyperglycemia, and high glucose variability within the 
AGP, and investigate the daily detail views to fnd potential weekly 
patterns. After having identifed critical blood glucose patterns, they 
further analyze the daily views to uncover potential causes. They 
particularly focus on the recorded carbohydrate intake and insulin 
doses, as well as the timing between them. This information is then 
used to optimize the patient’s treatment plan (e.g., by adapting one of 
the treatment parameters described in Sec. 2). 

Requirements Based on the insights from our domain analysis, 
we outlined fve design requirements for our visual analytics approach. 

R1: Make periods of low and high glucose easy to identify. 
As can be derived from Tab. 1, the primary focus in the analysis ses-
sion are periods of blood glucose outside the target range, namely 
hypoglycemia, hyperglycemia, and high blood glucose fuctuation (al-
ternating hypo- and hyperglycemia within short intervals). Swift identi-
fcation of these segments in the dataset is crucial for the analyst. 

R2: Support fnding recurring daily and weekly patterns. 
After segments of hypo- and hyperglycemia have been identifed, the 
diabetologist usually browses the AGP and daily detail views to make 
out seasonal patterns such as daily or weekly recurrences in the data (see 
Tab. 1). These patterns are easy to identify and effcient to eliminate, as 
they are usually caused by unrefected habits of the patients. D1: “For 
example, I had a patient who always had high blood sugar levels after 
lunch and gave a big amount of correction insulin every day to get back 
into the target range. So I suggested him to adjust the insulin factor for 
lunch and give higher doses right away.” 

R3: Visualize all variables in one place. 
Another requirement is to collect and visualize multivariate and het-
erogenous datasets in one place. When asked about the limitations of 
current diabetes data analysis tools, the diabetologists stated that they 
require a comprehensive view of both glycemic data and additional 
data such as meal and insulin information, to better understand the 
connections between blood glucose fuctuations and potential causes. 
D1: “In the AGP there is only glucose data, and I have to click back 
and forth 10 times to understand why the patient, for example, always 
has high values in the morning. I always go into the daily views to see 
what he ate around that time.” Moreover, the diabetologists expressed 
the wish to load more attributes into the tool. D2 stated: “Additional 
health data such as exercise or sleep would really help to understand 
the blood sugar’s behavior and to advise patients how to handle specifc 
situations better.”. D1 wished to see more detailed nutrition data. 
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Table 1: Procedure when analyzing diabetes data, summarized from expert interviews and complementing domain literature. 

What Where How 

Assess Overall 
Therapy Quality 

Metrics 

AGP 

Is the eA1c < 7%? Does the time in range (TIR) lie above 70 %? (D2) 

Observe last 2 weeks’ AGPs, paying attention to nighttime values and low glucose. Identify 
stable/unstable glucose time frames and compare with TIR to detect inconsistencies. (D1 & D2) 

Analyze Patterns of 
Hypoglycemia 

Metrics Is the time below 70mg/dL > 4%? Is the time below 54mg/dL > 1%? 
If yes, immediate action is required. (D2; [22]) 

AGP Observe the lower area of the AGP, where the 5 % or 25 % lower line touches the 70 mg/dL 
target line indicating a (severe) low glucose. Immediate action is required. (D1 & D2; [25]) 

Daily Views Double-check low glucose patterns. [25] 
Look for potential causes, e.g., meals, insulin dosing and timing, exercise etc. (D1 & D2) 
Check for weekly seasonal patterns of low glucose, e.g., clusters on weekends or special days. [25] 

Analyze Patterns of 
Hyperglycemia 

AGP 

Daily Views 

Where do the AGP areas rise above range? (D1 & D2) 

Observe the relation between high glucose time periods and meals. What was the timing of insulin 
administration (before/after meal)? Has insulin been forgotten? (D2) 
Check for weekly seasonal patterns of low glucose, e.g., clusters on weekends or special days. [25] 

Analyze Patterns of 
Glucose Variability 

Metrics 

AGP 

Is the standard deviation > 40mg/dL? (D2) 

Where are the AGP areas particularly wide? [25] 

Daily Views Observe timing of food intake and insulin, periods of exercise. [25] 

R4: Bundle and compare similar data. 
The ability to collect similar situations of the patient and make them 
comparable helps the physician to identify recurring behavior that leads 
to blood sugar imbalances. D2 stated: “A single area to analyze sport 
days would be great for patients; many wonder how they can better 
regulate their blood sugar during these activities. For example, if they 
tend to end up in a hypoglycemia two hours after sports, I would suggest 
them to eat a banana in between.” In another statement, D2 also said: 
“It would be really great if it was possible to collect and compare all 
instances of hypoglycemia in order to understand the different reasons 
contributing to them.” 

R5: Display a detailed view of specifc days on request. 
The diabetologists mentioned that patients sometimes remember a 
specifc day that they want to analyze further. D1: “Recently a patient 
told me about his half marathon in April. He had low blood sugar for 
the entire two hours and had to constantly eat while running. We looked 
up the day and found out that he had lunch only 1.5 hours before the 
run. With foresight on the exercise, he had reduced the insulin amount 
for the meal, but obviously not enough for such a strenuous exercise.” 

4.2 Data Abstraction 

The attributes we incorporated into our approach encompass blood 
glucose levels, carbohydrate consumption, and insulin (both bolus 
and basal insulin). Sleep, nutrition, and exercise data requested by 
the diabetologists (see R3) are not included due to the diffculty in 
obtaining such information. Figure 2 displays the categorization of the 
attributes into the design aspects of time by Aigner [2]. 

Blood Glucose Levels The blood glucose levels stem from 
continuous glucose monitor (CGM) systems, wearable devices that 
provide point-based real-time glucose readings every 5 minutes, yield-
ing approximately 288 readings per day. Each CGM data point con-
sists of a quantitative value and an associated point-based timestamp. 
The optimal range of glucose values is usually between 70 mg/dL 
and 180 mg/dL [26]. The blood glucose data can be aggregated and 
mapped to different granularities, such as days, weeks or months. 

Carbohydrate Consumption Patients manually enter the esti-
mated carbohydrate intake in grams (g), making it more susceptible to 
inaccuracies compared to other attributes. The data consists of discrete 
log entries, including a quantitative value indicating the amount of 
carbohydrates and an associated timestamp. 
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Fig. 2: Categorization of data attributes visualized in Marjorie into the 
design aspects of time by Aigner et al. [2]. 

Bolus Insulin Insulin data is automatically logged by insulin 
pumps, and bolus insulin is required to prevent blood glucose from ris-
ing after meals. Similar to carbohydrate data, bolus insulin is recorded 
in event logs, including quantitative values measured in international 
insulin units (U) with corresponding timestamps. From bolus insulin 
data, the continuous insulin activity curve can be calculated using a 
formula to estimate insulin metabolism in the body [42]. 

Basal Insulin Basal insulin is required to counteract the liver’s 
constant glucose release and maintain stable blood sugar levels. The 
basal insulin dose fuctuates in a circadian pattern, with a roughly equal 
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progression each day. Insulin pumps are programmed with a continuous 
basal rate expressed in U/h, varying at hourly intervals. Users can 
confgure temporary basal rates to adjust for activities like exercise, 
which enhances insulin sensitivity. The modifed basal rate is expressed 
in event logs containing a start time, duration, and a percentage value 
of the original basal rate in the pump data. 

4.3 Task Abstraction 

After the domain analysis, we translated the domain-specifc problems 
of the experts into abstract visualization tasks based on Munzner’s 
taxonomy [31]. This resulted in fve tasks that correspond to the re-
quirements R1–R5. We refned and confrmed the tasks through a series 
of iterations by consulting the domain experts. 

T1 Identify extreme values of blood glucose data (i.e., periods of 
hypo- and hyperglycemia). 

T2 Identify seasonal patterns. 
a Aggregate the blood glucose raw data by temporal granularity. 
b Identify extreme values in aggregated blood glucose data to 

identify specifc time granules of interest. 

T3 Compare multiple attributes of the dataset (i.e., glucose, carbo-
hydrates, and insulin) to locate potential correlations. 

T4 Summarize and compare multiple similar time segments. 
a Cluster similar time segments of the raw data. 
b Summarize similar time segments within a cluster. 

T5 Lookup time segments of interest by specifying the relevant date. 

5 MARJORIE APPROACH 

Marjorie is a visual analytics approach for type 1 diabetes data that 
aims to support experts in their search for seasonal and non-periodic 
patterns. It uses a combination of visual and algorithmic approaches 
discussed in Sec. 5.1 and Sec. 5.2, respectively. 

5.1 Visual Encoding & Interaction Design 

Our approach has been iteratively refned with input from the two 
diabetologists at various stages of development. During the sessions, 
we presented our observations and insights in the form of written notes, 
sketches, mockups, and working software prototypes, seeking feedback 
from the specialists. Our resulting web app prototype was developed 
using the Plotly Dash library [34]. User data can be loaded into the 
app as CSV fles. The prototype is available at https://marjorie. 
jku-vds-lab.at/. 

Color Encoding We use color to differentiate attributes and in-
dicate glucose level ranges consistently. As there is no consensus on 
color coding for blood glucose value ranges [50], we based our scheme 
on that of Tidepool [43] with modifed glucose hues and additional 
intermediate shades. Despite the continuous nature of glucose values, 
we use a categorical color scheme to clearly distinguish different blood 
glucose levels: . Red represents hypoglycemia, green repre-
sents the normal range, and purple represents hyperglycemia. Different 
color intensities represent the severity of each state. Furthermore, yel-
low indicates carbohydrates, while insulin is depicted in blue, with 
bolus insulin using a lighter shade and basal insulin a darker shade of 
blue . The statistics panel to the right of the summary view serves as a 
legend for this color scheme. The glucose color scheme was tested for 
compatibility with color blindness, and the ranges for hypoglycemia, 
normal range, and hyperglycemia are visually distinguished [15]. All 
other colors are used only in isolation, and titles and tooltips provide 
additional aids to differentiate and identify the visualized data types. 

Layout Figure 1 shows an overview of Marjorie’s layout, which is 
divided into three separate views. The frst view, Summary, provides 
a comprehensive summary of the therapy quality over the preceding 
weeks and helps to detect any daily seasonal glucose patterns (see 
Fig. 3). It contains the patient’s AGP (Sec. 5.1.1), overall Statis-
tics (Sec. 5.1.3), and an Overview (Sec. 5.1.2) of multiple days at a 
glance. The second view, Diary, provides the Daily View (Sec. 5.1.4), 

Fig. 3: The summary visualization shows the data for a user-defned 
time range with an AGP plot for glucose values (hypo hyper) 
and barcode plots for carbohydrate ( ) and bolus insulin ( ) intake. 
Additionally, insulin activity is shown as a curve. 

a detailed visualization of specifc days that can be selected and queried 
using a date picker, along with statistics related to that particular day. 
The third view provides Insights (Sec. 5.1.5) regarding non-periodically 
occurring glucose profles in the data. It consists of two tabs for Meals 
and Hypos. In each tab, the user can explore and compare the glucose 
profles of the corresponding situation. 

5.1.1 AGP 

The AGP view (Fig. 3) extends the original AGP visualization [9, 22]. 
It supports T2 (identify seasonal patterns) by letting the user explore 
hourly patterns. Like the original AGP, it aggregates the ranges between 
the 10th and 90th, and the 25th and 75th percentiles of two weeks of 
CGM data, supporting T2a (aggregate by temporal granularity). The 
aggregated data is displayed as superimposed area charts across a 24-
hour period. On top, the 50th percentile is visualized as a line graph. 
To support T2b (identify extreme values in aggregated data), the AGP 
highlights areas that fall outside the target glucose range in different 
colors, according to the color scheme described above. 

We enhance the original AGP by adding carbohydrate and bolus in-
sulin data, supporting T3 (compare multiple attributes), by adding three 
vertically juxtaposed charts sharing the same time axis. We use two 
barcode plots for carbohydrate and insulin administration events, where 
the position on the horizontal axis encodes the timing of the events, 
and the opacity of the bars corresponds to the amount. This enables the 
user to identify time periods during which the frequency and/or amount 
of carbohydrate or insulin consumption was high. We chose barcode 
plots because they use little screen space while conveying most of the 
important information. As a third chart, we added a qualitative line 
chart visualization of the insulin activity in the bolus section to simplify 
the search for correlations with the glucose data. 

Previous Versions. Our frst AGP draft presented to the diabetologists 
did not include the insulin activity curve. D1 mentioned that the barcode 
plots alone did not provide enough information, as the effects of insulin 
on the body can last up to eight hours and accumulate with each bolus 
dose. To gain a better understanding of how insulin and glucose interact, 
they requested a visualization of the insulin activity. 

In addition, our initial version of the AGP had buttons that allowed 
users to aggregate the data by different granularities aside from hours, 
such as by weekday, month, or quarter. The software displayed the re-
sults in the form of bar charts (see Fig. 6). The diabetologists’ feedback 
was that they were most interested in seeing the data on an hourly basis 
and that they did not need to see aggregations by different time granu-
larities, except for the weekday view. Therefore, we made the weekday 
option accessible separately through a Show weekday statistics button 
and removed the other aggregation options. 
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5.1.2 Overview 
By clicking on the Explore days in detail button located below the 
AGP, the size of the AGP is reduced, and a detailed visualization of 
the days used to calculate it is presented below (see Fig. 1). The data 
is partitioned into distinct days which are juxtaposed underneath each 
other, sharing the same time axis. The glucose data is represented using 
adapted horizon charts, where the baseline is not a single value, but 
instead the target range of 70 mg/dL to 180 mg/dL. The values outside 
the target range are displayed like in typical horizon charts, while the 
values within the range are shown as a green band. This makes it simple 
to pinpoint days and times that require closer examination, helping to 
achieve T1 (identify extreme values). Clicking the right arrow ( ) 
expands the graph to show a detailed line plot of the glucose data. 

The carbohydrate and bolus insulin data are presented in a heatmap 
below the glucose data, addressing T3 (compare multiple attributes). 
It often happens that event entries occur within short time frames, for 
instance when a patient administers multiple insulin corrections within 
half an hour to address high blood glucose levels. To address this, 
we cluster and summarize these values and display the median time 
point of consumption or administration in the heatmap. The opacity 
of the feld encodes the total amount of carbs or insulin administered. 
More detailed information on the distinct events is available in a tooltip 
window. We decided to represent the quantity using opacity instead of 
length (such as in bar charts) to save vertical screen space in favor of 
displaying a larger number of days. 
Previous Versions. Earlier drafts included glucose line plots instead of 
horizon graphs, superimposed with differently colored semi-transparent 
bar charts that encoded the amount of carbohydrates and bolus insulin. 
However, with this choice of superimposing the data to save screen 
space, diabetologists found it diffcult to get an overview of the data, 
particularly when the patient recorded multiple events within a short 
timeframe. In such cases, the bars would overlap, causing confusion 
about the amount of insulin and food consumed. For example, D2 
asked, “How much insulin did the patient inject here? The bars are 
all on top of each other. [...] Is this food or insulin?”, when presented 
with overlapping blue (insulin) and yellow (carbs) bars. 

5.1.3 Statistics 
To provide a quick overview of the therapy quality, we included a 
statistics sidebar (see Fig. 1). It is visible in the AGP, overview, and 
daily views. In the AGP and overview views, it shows statistics for a 
selected time range, while in the daily view, it displays statistics for the 
selected day. From our interviews with diabetologists, we discovered 
that the metrics they fnd most signifcant are the estimated hemoglobin 
A1c level (eA1c), average glucose, coeffcient of variation, time in 
range (TIR), and the daily sums of consumed carbohydrates, bolus and 
basal insulin. The statistics sidebar also serves as a legend for the colors 
used in Marjorie’s charts. 
Previous Versions. A discarded design for aggregated daily data was 
the timeline graph (see Fig. 7), which showed the time in range in the 
form of stacked bar charts, together with heatmaps for the aggregated 
sum of carbohydrates and bolus insulin on a weekly basis for the entire 
dataset. Range sliders allowed the user to select the time frame for 
calculating the AGP. However, the diabetologists expressed that they 
were unlikely to use it. D1 stated: “I am not interested in older data. 
It doesn’t make sense to analyze it because the patients naturally only 
remember the last few weeks.” D2 mentioned: “What I am missing in 
this visualization are the concrete numbers. I always check the time in 
range values, especially the time in hypoglycemia.” 

5.1.4 Daily View 
The daily view (Fig. 5) is designed to support both T5 (lookup time 
segments of interest) and T3 (compare multiple attributes). Users can 
select a specifc day with a date picker, and the view displays juxta-
posed glucose, carbohydrate, bolus, and basal data arranged on a single 
time axis. Glucose is presented as a scatter plot, while carbohydrates 
and bolus insulin are represented by bar charts, and basal insulin by an 
area plot. To avoid overplotting with overlapping bars, we cluster the 

carbohydrate and bolus insulin data in the same way as the data in the 
overview. When hovering over a bar, a tooltip window displays the dis-
tinct events that are summarized within it. We incorporated a semantic 
zoom feature that adjusts the level of summarization of carbohydrate 
and bolus insulin data based on the zoom level. Upon zooming into the 
graph, the summarized bars split up into their components, providing 
more details. In Sec. 5.2, we elaborate on the details of the algorithm. 

5.1.5 Insights 
The Insights view addresses T4 (summarize and compare multiple sim-
ilar time segments). Here, situations from a selected category (Meals 
or Hypoglycemia) are clustered by glucose similarity (T4a; cluster 
similar time segments) and presented to the user in the form of typically 
occurring glucose profles (T4b; summarize similar time segments). 
This allows users to discover non-periodic glucose patterns without 
the need to manually browse and compare multiple individual daily 
views. The decision to include the two situation categories was made 
after consulting the diabetologists about which aspects of the data they 
found most relevant to observe. The identifcation of the time segments 
in the data that match these categories, and the subsequent clustering 
of these time segments are explained in more detail in Sec. 5.2. 

We fxed the time frame of meal situations to span from one hour 
before to three hours after the meal. For hypoglycemia situations, we 
fxed a time frame from two hours before to two hours after the event. 
We determined these values in collaboration with the diabetologists. For 
meals, the postprandial glucose response is relevant to determine if the 
insulin dose was correct, while for hypoglycemia it is both important 
to understand what caused it and how the patient treated it. 

To select a desired situation category, the user can click on the 
respective tab at the top of the screen. Each tab has a similar structure, 
featuring a main view that displays a list of the found glucose clusters 
(“patterns”), where each cluster is represented by a graph along with 
characteristic statistics. In the sidebar on the right, the user can view 
the glucose curves of all situations that match the selected category and 
flter them by different criteria, such as time of day. Figure 4 shows 
example patterns from the Meals and Hypoglycemia tabs. 

The graph of each cluster consists of a superimposition of all glucose 
line graphs within it. The area between the lowest and highest line 
is flled in. The flling hue corresponds to the glucose ranges, which 
facilitates the identifcation of low or high glucose patterns. The start 
of the meal or hypoglycemia is highlighted with a vertical dashed 
line across all graphs. Below the graph, a heatmap aggregates the 
hourly glucose values by mean, unless hypoglycemia occurs. For 
hypoglycemia, we emphasize low glucose values with a higher weight 
on the mean. This feature was requested by D2 to get a quick overview 
of the pattern: “I want to see how the blood sugar was before the meal, 
during the meal and one, two, three hours after the meal. If the sugar 
goes up after the meal but returns to the initial value three hours later, 
the insulin dose was correct. Then I would advise the patient to alter 
the timing of the insulin dose.” The time and amount of carbohydrates 
and insulin are encoded below by position and opacity of circles. 

To the right of the graph, a selection of metrics further characterizes 
the pattern. These metrics indicate, among other things, at which time 
of the day the pattern typically occurs, the average glucose value in 
the beginning and end of the time window, and the average amounts 
of carbohydrates and insulin consumed. The metrics are specifc to 
the pattern’s category. The Meals category includes the number of 
minutes between the insulin injection and the meal (prebolus) and the 
average carbohydrate/insulin ratio factor. The Hypoglycemia category 
distinguishes between the mean amounts of carbohydrates or bolus 
insulin consumed before and after the hypoglycemia event, to gain 
insights into its cause and treatment. 
Previous Versions. Detecting and presenting non-periodic patterns in 
diabetes data is a novel and challenging task that required multiple iter-
ations to arrive at the fnal version. We adopted a top-down approach in 
which users frst select a category and then observe the glucose patterns 
in that category. Before settling on this approach, we explored various 
iterations using a bottom-up approach. We tested solutions which al-
lowed for an objective search for patterns without being constrained 
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Fig. 4: Top: High glucose variability after lunch. Bottom: Pattern of 
high glucose before and after the hypoglycemia. 

by pre-determined categories. However, the resulting patterns could be 
more challenging to interpret and may not be clinically relevant. 

In an early bottom-up iteration, we segmented the entire glucose 
dataset into equal-length windows and applied PCA to project each 
window onto two dimensions. This resulted in a scatter plot where the 
axes corresponded to the levels and slopes of the glucose data in the 
windows. We paired this scatterplot with another one that presented the 
dataset using the horizontal axis to encode time and the vertical axis to 
encode glucose values. Linking between these plots allowed the user to 
select regions in the PCA plot and see the corresponding time intervals 
highlighted in the glucose profle beneath (see Fig. 8). Our idea was to 
integrate the PCA plot into a flter view, allowing users to search for 
specifc glucose profles and view the query results next to the flter 
(see sketch in Fig. 10). However, when we shared our sketches with D1, 
they were confused by the the lack of an explicit time axis in the PCA 
chart. Additionally, they felt that this design would be too complicated 
to explain to patients during the short meetings. 

In a different bottom-up iteration, we applied PCA to cluster time 
series windows with similar glucose profles, which were then presented 
in aggregated area charts using the same percentiles as in the AGP. The 
average sums of carbohydrates and insulin were also displayed with 
bars (see Fig. 9). However, the diabetologists stated that context data 
was missing. D1: “Many different factors can lead to a similar glucose 
curve. For example, you can have a rising glucose because you just ate 
a meal, or because you are in a stressful situation. What exactly are 
these patterns telling me?”. This feedback led us to develop the more 
detailed insights representation now used in Marjorie. 

5.2 Algorithm Design 

To generate the visualizations in the Marjorie frontend, various data 
processing steps are executed in the backend. The glucose data is aggre-
gated by minute for the AGP, the bolus insulin event data is transformed 
into a continuous insulin activity series, and the carbohydrate and bolus 
insulin data is clustered to avoid overplotting. Additionally, for the 
Insights view, periods of meals and hypoglycemia are detected, which 
are later clustered into patterns. In the following, we provide details on 
the clustering of event entries and on pattern detection. 

5.2.1 Clustering Event Entries 

The overview and daily view summarize event data by grouping data 
elements that are located near each other. This is applied to both car-
bohydrate and bolus insulin data. To achieve the multiple levels of 

summarization necessary for semantic zooming, we use agglomerative 
hierarchical clustering. We apply the clustering to each day separately, 
using a one-dimensional dataset that includes event timestamps con-
verted into numerical decimal values representing the time of the day. 
An example day of bolus insulin data is used to illustrate the data 
preparation in Fig. 11. 

We used the average linkage criterion for clustering, as it has been 
shown to perform better on datasets with varying cluster sizes and 
non-periodic data [14]. This is supported by our own observations, as 
the cluster sizes of the datasets we analyzed were uneven. High blood 
glucose levels often resulted in frequent, small bolus insulin corrections 
in short intervals, while normal glucose levels were typically managed 
with a single dose for meals. The mealtime clustering results from 
our sample dataset are shown in Fig. 13. The clusters are related 
hierarchically, as indicated by the dendrogram shown in Fig. 12. By 
following a path down the dendrogram, clusters are recursively split into 
smaller units, until the granularity level matches that of a data sample. 
The resulting clusters of our example are displayed in Fig. 11. Each of 
the child branches below a determined distance threshold represents an 
individual cluster. We set this distance threshold, which corresponds 
to the maximum allowed inter-cluster distance, to a default value of 
1.5 hours (i.e., the minimum time between two meals) and decrease it 
proportionally with increasing zoom level. 

5.2.2 Pattern Detection 
The frst step in generating patterns for the insight view is to identify 
time intervals that correspond to each situation category. The glucose 
data of these intervals is then extracted for subsequent clustering. 

For fnding periods of hypoglycemia, we scan the glucose data for at 
least three consecutive readings below the threshold of 70 mg/dL. To 
account for noise in CGM sensors, we allow a tolerance of up to two 
values that may lie above the threshold. We then defne the timestamp 
of the frst reading below the threshold as the start of the hypoglycemic 
event. From there, we defne a hypoglycemic interval that spans from 
two hours before the start of the event to two hours after. 

To detect the meal intervals in the dataset, we use the hierarchical 
carbohydrate clustering described in Sec. 5.2.1 and aggregate entries in 
close temporal proximity. Aggregation is necessary for the detection of 
meal situations since users may occasionally split up a carbohydrate 
recording into multiple smaller ones, especially when the total carbo-
hydrate intake is high. Entries with a total carbohydrate intake of less 
than 40 g are fltered, as diabetologists classify them as snacks rather 
than complete meals. Meal start times are determined from the frst 
carbohydrate entry within a cluster. The meal interval is set to range 
from one hour before the start of the meal until three hours after. 

We then cluster the glucose intervals using dynamic time warp-
ing (DTW) as the similarity measure. We chose DTW based on its 
ability to group time series by their shapes, even if they are not synchro-
nized in time. Additionally, DTW enables the clustering of time series 
with unequal lengths, which is necessary in the case of CGM data gaps. 
We use hierarchical, agglomerative clustering with average linkage. 
Clusters are extracted using a distance threshold of 200. We opted 
for this method because we did not want to pre-specify the number of 
resulting patterns, which may vary signifcantly between patients. 

6 EVALUATION 

We evaluated Marjorie in a case study with a diabetes patient and real 
data. We also conducted feedback sessions with the diabetologists and 
a second patient. 

6.1 Case Study 

To assess Marjorie’s performance on real-world patient data, we enlisted 
a patient to gain a deeper understanding of how people use our tool. 
The patient evaluated the latest prototype in two one-hour sessions 
during which we collected feld logs. The user analyzed their own 
dataset which included glucose, carbohydrates, and bolus and basal 
insulin data. We summarize the case study in the supplementary video. 

At the beginning of the frst session, we briefy described Marjorie’s 
interface and functionalities. We then asked the user to explore their 
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Fig. 5: Daily view of November 26. The basal insulin delivery had 
been interrupted between 1 am and 8 am, leading to hyperglycemia. 

data in a think-aloud style. The user frst opened the Summary view, 
which summarized their data over the previous two weeks, and observed 
the Statistics panel (see Fig. 1, right). The user noticed that their “time 
in range is more or less okay, but could be much better.” They found “a 
lot of hypers, even really high ones, but at least no hypos.” The user then 
observed that their eA1c value was slightly high and worse than usual, 
correlating with their time in target range. Still in the Summary view, 
they realized that their glycemic variability was elevated: “35 % means 
that my sugar is relatively unstable”. 

They proceeded with analyzing the AGP visualization (Fig. 3): “I 
see that my problem seems to be mainly during the nighttime. Even 
the median line is above range there.” They also included the bolus 
activity curve in their analysis: “It’s interesting that there’s barely any 
insulin activity during the night despite the high sugar. Maybe my 
[carbohydrate/insulin] factor is wrong at dinner time.” They continued 
with analyzing the glucose graph section-by-section. They observed 
that the glucose decreases and becomes more stable during the morning 
hours, and related this fnding to the bolus insulin corrections in the 
early mornings that they spotted in the barcode graph. From 11 am 
on, the glucose remained rather high until the evening: “The sugar is 
constantly high and oscillating.” 

The user now clicked on the “Explore day in detail” button (“Let’s 
see what this gives me”) and opened the Overview (Fig. 1): “Wow this 
is great to analyze my hypers!” They found that nights exhibited longer 
stable hyperglycemic periods while hyperglycemia during the day was 
shorter but more frequent. To analyze this in detail, they compared 
glucose, carbohydrate, and bolus data using both the compact horizon 
graphs and the detailed line graphs. They made the following obser-
vations: (i) On some evenings (November 28 and 30), they consumed 
complete meals despite having elevated glucose levels, leading to peri-
ods of hyperglycemia during the following nights: “It was a bad idea 
to eat here. Even though I injected insulin, the sugar just continued 
to rise during sleep.” (ii) They also noticed consecutive instances of 
hyperglycemia in the afternoons (e.g., on November 27) due to consum-
ing food immediately when glucose levels began to decline: “It’s like 
a ping pong effect. I’m in a hyper and make a high insulin correction 
because I want to get my sugar in range as soon as possible. Then I’m 
scared to land in a hypo and eat again, but somehow I overeat and land 
in a hyper again.” (iii) During the night of November 26, there was a 
long and intense episode of hyperglycemia with no apparent cause. 

To understand this glucose outlier, the patient opened the Daily View 
and navigated to November 26 (Fig. 5) using the date picker. There, 
they discovered that there was an interruption of basal insulin delivery 
in the basal area graph: “Right, my pump tube was recently clogged 
during the night and I woke up with very high sugar. I immediately 
changed the tube and gave an insulin correction.” 

Next, the patient clicked on the Insights tab and inspected the meal 
patterns. They found two of the patterns particularly interesting: (i) Hy-
perglycemia after dinner: “My sugar is quite okay here before the meal, 
but three hours later it is always high. And I perform a lot of insulin 
corrections to get it back in range again.” (ii) High glucose variability 
after lunch (Fig. 4): “Here my sugar rises high directly after eating, 
but gets back eventually to a value even lower than before the meal.” 
The user then noticed that the average prebolus time of this pattern was 
negative: “So I only bolused 18 minutes after eating. That’s why the 
sugar rises so fast. And then I panicked and corrected with a lot of 
insulin and arrived low in the end.” 

After analyzing the meal patterns, the user clicked on the Hypo-
glycemia tab to observe the hypoglycemia patterns. Since their data 
contained relatively few instances of low glucose levels, only two pat-
terns were displayed: glucose levels mostly within target range before 
and after the hypoglycemia, and high glucose before and after the hy-
poglycemia (Fig. 4). The user quickly understood that “these are really 
two different situations. In the frst I handle the hypo well, in the second 
I apparently overeat and land in a hyper.” 

After the user had completed their exploration, we asked them for 
feedback about their experience with Marjorie. 

6.2 Diabetologist & Patient Feedback 

We conducted fnal feedback sessions with the diabetologists (D1, D2) 
to evaluate the design of Marjorie. We gathered feedback by sharing 
our screen and going through Marjorie’s views, loaded with case study 
data. In addition to the case study patient (P1), we also asked another 
type 1 diabetes patient (P2) for feedback. 

All persons found the inclusion of carbohydrate and bolus insulin 
data in the AGP highly benefcial. D1 noted that the weekday flter 
is important to distinguish weekends from workdays. The two pa-
tients (P1, P2) particularly liked the barcode plots and the bolus insulin 
activity curve, which provided a clear understanding of how insulin 
impacts glucose levels. 

Likewise, horizon graphs in the overview were well received. D1 and 
P2 appreciated that problematic values can be seen at a glance. D2 noted 
that the horizon graphs lead to a much more structured overview com-
pared to other tools. While D1 was initially confused by values of hypo-
or hyperglycemia both going upwards in the horizon graph, they quickly 
understood the encoding due to the applied color scheme. D1 also men-
tioned that they would like to use the horizon graphs and statistics for 
explanations in meetings with patients. 

The diabetologists (D1, D2) liked the large display of statistics and 
their placement next to the visualizations. D1 said they use the statistics 
in all meetings with patients, so they need to be suffciently large 
and highlight the most important values. P2 also mentioned the high 
relevance of statistics to get an overview of the data. D2 commented 
that other applications display the statistics separately, so they always 
have to scroll back and forth between the AGP and statistics. 

In the daily view, the diabetologists and P2 particularly welcomed the 
temporal aggregation of carbohydrate and insulin data, as their effect 
also aggregates. D1 believed that this can be used to train patients 
but criticized that the bolus insulin data is displayed too far from the 
glucose data—they would have preferred a superimposition of the data. 

The Insights view got the most feedback, and we received several 
suggestions for additional situations and data types that could be con-
sidered. D1 liked that they could use the patterns to review recurring 
scenarios with the patients, adjust therapy parameters, and discover 
systematic problems. D1, D2, and P2 found that the patterns were well 
differentiated and meaningful, with D1 and P2 stating that they would 
typically search and identify similar patterns manually in their analysis. 
However, P1 felt slightly overwhelmed by the lenghty list of extracted 
patterns. D1 and P2 also compared the pattern detection to other tools 
they had used. None of the tools allowed clustering or grouping of 
meals but instead displayed all data on top of each other, leading to 
overplotting. D2 suggested nights as another pattern category. The 
participants additionally stated that information on sports activity (D1, 
D2, P2), other macronutrients (D2), or glycemic index of carbs (P2) 
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would be helpful in their analysis. However, all were aware of the 
hurdles in recording these types of data. 

Overall, the feedback of all participants was generally positive. They 
found it easy to understand the components of Marjorie and appreciated 
the visual and algorithmic innovations introduced in comparison to the 
state-of-the-art. Based on this feedback, we conclude that Marjorie is 
suitable for use by both diabetologists and patients, making it applicable 
and valuable in patient–physician meetings. 

7 DISCUSSION 

In this section we discuss Marjorie’s strengths and weaknesses and 
refect on general insights gained from the design process. 

7.1 Tasks & Requirements 

Based on our domain analysis in Sec. 4.1, we identifed fve design 
requirements for Marjorie. In the following, we describe the extent 
to which Marjorie fulflls these requirements, qualitatively comparing 
Marjorie to other state-of-the-art methods. We also discuss limitations 
and resultant directions for future work. 

R1: Make periods of low and high glucose easy to identify. State-
of-the-art visualization diabetes tools address this requirement by 
daily glucose profle views [50]. To provide an overview of multiple 
days, they plot glucose values on a small vertical scale and distinguish 
extreme values by color based on target range, which can make it 
diffcult to determine the extent of hypo- or hyperglycemia. In contrast, 
we propose a daily glucose profle view that uses horizon graphs (see 
Fig. 1.2). Inspired by Qualizon Graphs [13], our approach visualizes 
only the curves outside the target range, while displaying the section 
within the range as a green block. This design effectively highlights 
periods of hypo- and hyperglycemia and retains information on their 
extent, while still ensuring a compact layout. 

R2: Support fnding recurring daily and weekly patterns. As dis-
cussed in Sec. 2, the AGP is an effective tool for identifying daily 
glucose patterns, and has been routinely used in related work. We 
extend the AGP by incorporating carbohydrate and insulin data. This 
allows analysts to directly associate the glucose patterns with possible 
causes, such as behavioral patterns that are linked to carbohydrate and 
insulin intake. This seemingly simple extension of the AGP was very 
well received by diabetologists and patients alike. 

R3: Visualize all variables in one place Our approach fulflls this re-
quirement through all its components by visualizing glucose together 
with carbohydrate and bolus insulin data (e.g., alongside the AGP). 
Especially Marjorie’s overview and daily view visualizations enable an 
effective comparison of attribute quantities through a combination of 
hierarchical clustering and semantic zooming. In contrast, other state-
of-the-art tools that incorporate variables apart from glucose either do 
not visualize the quantity of all variables or suffer from overplotting. 

Diabetologists and patients both mentioned that it would be helpful 
to incorporate even more data into the analysis. For instance, sleep 
and activity information can be extracted from ftness trackers and 
included as additional situation category tabs in the Insights view. The 
visualizations currently used for the event-data attributes could be 
readily adopted for activity- or sleep-related data. This enhancement 
would enable a more comprehensive analysis of potential causes of 
blood glucose patterns. Sleep stages in particular were a critical aspect 
of the patient’s investigation in the case study. However, the limited 
availability of this data for most patients is a challenge. 

R4: Bundle and compare similar data Other state-of-the-art tools 
attempt to address this requirement by (i) algorithmically identify-
ing micro-level hyper- or hypoglycemia events within specifc time 
frames and displaying them in a dedicated view [10], or (ii) enabling 
users to select a specifc event, such as lunch, with which their glucose 
data is aligned vertically [49]. We experimented with various methods 
to fulfll this requirement before settling on a hybrid approach. We 
enable the user to defne an alignment event category, such as Meals 
or Hypoglycemia. Then, we cluster time intervals that match the se-
lection, based on glucose similarity. This provides an overview of 

typical glucose profles, allowing users to establish connections with 
treatment decisions and derive insights about meal intake and insulin 
administration habits. It should be possible to extend this method of 
pattern identifcation to additional data attributes mentioned above. 

One aspect that requires increased attention in future work is that 
the lengthy list of detected patterns can overwhelm users. A more 
easily manageable experience for the user could be achieved by making 
use of the hierarchical order of the clusters. Top-level clusters could 
be presented to the user frst, with the option to drill down into more 
detailed clusters on demand. Another potential direction for future 
work is to allow users to also compare different patterns with each 
other. For example, users could compare situations of hypo- or hyper-
glycemia to cases with similar carbohydrate intake but without hypo-
or hyperglycemia. This could help them identify better strategies. 

R5: Display a detailed view of specifc days on request Similar to 
existing tools, we address this requirement with a dedicated Diary 
view, which provides separate daily detail views that users can access 
with a date picker. Marjorie’s views differ from other approaches in the 
summarization of event data and the use of semantic zooming. 

7.2 Lessons Learned 

In this section we refect on lessons learned from the design process of 
Marjorie. We expect some of these insights to be transferable to other 
problem domains with similar constraints. 

In one of our earlier designs for the Insights view we used a 
projection-based visualization of time series snippets to allow users 
to fnd patterns (see Previous Versions in Sec. 5.1.5). Thanks to the 
iterative design process we soon realized that users were confused by a 
chart without an explicit time axis. By trying to make use of projections, 
which we had applied successfully in previous work [11, 21], we could 
have run into what Sedlmairet al. call an “alluring pitfall for researchers 
accustomed to technique-driven work” [39]. Early feedback helped us 
avoid moving further in the direction of “Application Bingo” [30]. 

In the end, we implemented the Insights view by clustering event 
entries in the background and visualizing them with more established 
charts and statistics. The use of automated data processing in the back-
ground may raise concerns about trust (for a recent discussion see, e.g., 
the work by van den Elzen et al. [12]). However, we realized that users 
had to validate any patterns visually regardless of whether they were 
found in an exploratory or automatic way. Diabetologists appreciated 
the effciency that was gained by automating the step of fnding po-
tentially interesting patterns and did not express much concerns about 
distrusting the clustering algorithm. 

The appreciation of the increased effciency relates to the tight time 
constraints of the patient–physician meetings. Once we had realized 
that the limited time for the joint analysis and discussion of the results 
in these meetings was a major bottleneck, we tried to strip away unnec-
essary details. While this generally led to a cleaner and more effective 
design, we sometimes overshot by adhering too closely to the idea of 
“details on demand”. Feedback from the diabetologists made it clear 
that certain details do need to be shown right from the start. 

8 CONCLUSION 

This paper described a design study about visually analyzing type 1 
diabetes data. The resulting application, Marjorie, enables physicians 
and patients to search for seasonal and non-periodic patterns, using a 
combination of visual and algorithmic approaches. Through carefully 
designed visualizations and interactions, Marjorie addresses important 
analysis tasks distilled from interviews with two diabetologists. Our 
solution offers a unique and concise representation of glucose and 
treatment data, which enables a comprehensive overview and allows 
carbohydrate and bolus insulin data to be quickly associated with glu-
cose levels. In addition, Marjorie incorporates the algorithmic detection 
of characteristic glucose profles that occur during specifc pre-selected 
situations, which simplifes the identifcation of non-seasonal patterns. 
In a case study, Marjorie successfully revealed glucose- and therapy-
related insights for real-world patient data. Based on feedback by 
diabetologists and patients, we conclude that Marjorie effectively sup-
ports the exploration of patterns in diabetes data. 
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SUPPLEMENTAL MATERIALS 

All supplemental materials are available on OSF at osf.io/34t8c. In par-
ticular, they include (1) a full version of this paper with all appendices, 
(2) a video to demonstrate the workfow and interactions in Marjorie, 
and (3) the source code of our prototype together with the dataset used 
in the case study and all fgures of our presented approach. 
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A DESIGN ITERATIONS 

Fig. 6: Former version of AGP with buttons for aggregation by different 
time granularities. In this view, the “week” granularity is selected. The 
values of the data in the bar charts can be displayed in a tooltip when 
the user hovers over them. 

Fig. 7: A timeline view from a former version of our prototype, pre-
senting aggregated statistics for the entire dataset on a weekly basis. 

Fig. 8: First design iteration prototype for the insights: Segmenting 
the glucose series into windows, projecting them onto two dimensions 
using PCA, and allowing the user to select regions of interest based on 
desired glucose value and slope. 

Fig. 9: Second iteration for the insights. We applied PCA not for visu-
alizing the results, but as the basis for clustering time series windows 
to group similar glucose profles. We presented the resulting patterns 
in aggregated area charts using the same percentiles as in the AGP. On 
the side, we displayed the average sum of consumed carbohydrates and 
administered insulin in the respective time window with bars. 
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Fig. 10: Sketch for the frst design iteration. It shows an Insights view that includes the PCA projection graph (cf. Fig. 8) in a flter view. 
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B CLUSTERING 

item # time bolus

1 11:01 4.2

2 11:17 4.0

3 11:52 1.3

4 14:54 4.0

5 19:02 1.0

6 20:26 0.8

7 21:04 1.0

8 22:16 2.4

9 22:38 1.9

item # time

1 11.0

2 11.3

3 11.9

4 14.9

5 19.0

6 20.4

7 21.1

8 22.3

9 22.6

Fig. 11: Illustration of the data preparation process for hierarchical clustering, using an example of daily bolus insulin data. Top left: Original 
dataset. Top right: The time of day is converted to numerical values and the bolus data is omitted. Bottom: Visualization of the data points on a 
time scale with hierarchical clustering applied. Coherent yellow regions represent clusters. 

Fig. 12: Dendrogram of the data example from Fig. 11. 
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Fig. 13: The mealtime clustering results from the sample dataset reveal varied cluster sizes, with a total of eight clusters identifed. Each cluster is 
represented by its corresponding glucose curves in light gray in the graph. The average curve for each cluster is highlighted in black. The glucose 
target range is indicated by dashed lines. Some clusters contain outliers such as situations with exceptionally high blood glucose (Cluster 6), 
while others contain more typical situations and are thus larger (Cluster 4). 
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C FULL PAGE SCREENSHOTS 

Below, we provide additional full-page screenshots of our prototype for the three views: Summary (Fig. 14), Diary (Fig. 15), and Insights (Meal: 
Fig. 16; Hypoglycemia: Fig. 17). 

Fig. 14: Summary of the user’s data. The blood glucose level is above range during the nighttime and the bolus activity curve shows almost no 
insulin activity during nights. 

Fig. 15: Daily view of November 26. The basal insulin delivery had been interrupted between 1 am and 8 am, leading to hyperglycemia. 
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Fig. 16: Insights: Two meal patterns of the user. In pattern 3, the blood glucose levels rise after food intake, mainly after lunch, and then get back 
into the target range and below. Pattern 4 shows the patient having dinner when the blood glucose level is already high. 

Fig. 17: Insights: The two hypoglycemia patterns of the user. Pattern 1 with glucose levels mostly within target range before and after the 
hypoglycemia. Pattern 2 with high glucose before and after the hypoglycemia. 
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