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Taggle: Combining overview and details
in tabular data visualizations
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Abstract
Most tabular data visualization techniques focus on overviews, yet many practical analysis tasks are con-
cerned with investigating individual items of interest. At the same time, relating an item to the rest of a poten-
tially large table is important. In this work, we present Taggle, a tabular visualization technique for exploring
and presenting large and complex tables. Taggle takes an item-centric, spreadsheet-like approach, visualiz-
ing each row in the source data individually using visual encodings for the cells. At the same time, Taggle
introduces data-driven aggregation of data subsets. The aggregation strategy is complemented by interaction
methods tailored to answer specific analysis questions, such as sorting based on multiple columns and rich
data selection and filtering capabilities. We demonstrate Taggle by a case study conducted by a domain expert
on complex genomics data analysis for the purpose of drug discovery.
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Introduction

Visualization of tabular or multidimensional data is

important in many application domains and is a main-

stay of visualization research. Many multidimensional

data visualization techniques, however, focus on pro-

viding overviews. To answer questions about the high-

level similarity of items, projection techniques have

proven useful, while exploring correlations between

dimensions is well addressed by axes-based techniques

such as scatterplot matrices and parallel coordinate

plots. The third type of task is concerned with under-

standing the properties of an item in all dimensions,

which is well addressed by tabular techniques. Tabular

techniques use a spreadsheet-like layout, with each

item in a row and each dimension in a column. In con-

trast to spreadsheets, the cells use visual encodings to

make the data easy to view and to be able to explore

higher level trends. Prominent examples of tabular

visualization are the Table Lens,1 Bertifier,2 LineUp,3

and ComplexHeatmap.4

A shortcoming of current tabular visualization tech-

niques is their lack of sophisticated focus and context.
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A common solution implemented in both the Table

Lens and LineUp is to scale down the rows in the

visualization and then use geometric distortion (lenses)

to reveal details about selected items. Distortion, how-

ever, is associated with a variety of drawbacks, such as

maintaining object constancy.5 Also, lens-based

approaches in tables rely on linear orderings, which

cannot leverage higher level semantics of the data to

provide compact but meaningful aggregations.

Aggregation approaches based on grouping, in con-

trast, can stratify a table in a data-driven way and

hence semantically meaningful way.

Our primary contribution is Taggle, a tabular visuali-

zation method that displays large tabular datasets with

up to a million data items by selectively grouping and

aggregating subsets of a dataset. The goal of Taggle is

to provide a high-level overview of large tabular data-

sets while allowing users to drill down to individual

items. Groupings and aggregations of rows can be

dynamically defined by users using selection, or in a

data-driven way based on categorical or numerical

dimensions. Hierarchical combinations of aggregations

enable fine-grained control of what to show in a data-

set at which level of detail. Taggle also introduces

grouping and aggregation of columns for cases where

columns represent data of the same type, as, for exam-

ple, in time-series data. The grouping and aggregation

capabilities are complemented by sorting and filtering

techniques.

We showcase Taggle using a public health dataset:

the spread of AIDS across the nations of the world.

We also demonstrate Taggle using a variety of datasets,

including a dataset of soccer players, programming

language popularity, world happiness measures, eco-

nomic data, and many others at https://taggle.caley-

doapp.org/. We demonstrate Taggle’s utility using a

case study on analyzing a cancer genomics dataset for

the purpose of drug discovery.

Tabular data

Throughout this article, we use an AIDS dataset from

UNAIDS AIDSinfo (https://aidsinfo.unaids.org/) as a

guiding example. This dataset was enriched with meta-

data about the countries, such as population, which we

retrieved from the United Nations Population Division

(https://www.un.org/en/development/desa/population/)

and the yearly Human Development Report of the

United Nations Development Programme (http://

hdr.undp.org/). The combined dataset consists of 17

numerical columns (e.g. population, sex before the age of

15 in percent), 4 categorical columns (e.g. continent,

human development index), and 10 time-series matrices

(e.g. AIDS-related deaths or new HIV infections over a

period of 27 years) collected for 160 countries.

Tabular datasets are usually composed of items

stored in rows, which often correspond to independent

variables (countries, in our example), and values (i.e.

observations about these variables) stored in columns,

which commonly correspond to dependent variables

(e.g. population or continent, in our example). Lex

et al.6 discuss heterogeneity and sources of heteroge-

neity in tabular data: semantics—the columns in the

table have different meanings; characteristics—the col-

umns have different data types and value ranges; and

statistics—the columns have different behaviors or

distributions.

Homogeneous datasets lend themselves to compact

and simple visual representations, as all data items

share the same meaning and scales. Heatmaps,7 for

example, are well suited to homogeneous datasets, as

they encode each cell with a color value, which makes

it possible to represent individual items at minimal

scale.

Heterogeneous datasets have different semantics,

characteristics, and statistics. Consequently, they may

need separate scales and visual representations for each

column. For instance, the population is given in abso-

lute numbers and sex before the age of 15 is stated in

percent.

We distinguish between the following data types:

Attribute columns where all associated records are of

the same type and semantics, such as the name, gender,

and age columns in a table of people. Attributes can

be categorical, numerical, temporal (date and time),

or textual. Matrices are composed of attribute col-

umns of the same semantics and data type as is com-

monly found in, but not exclusive to, time series. An

example is a country’s GDP over multiple years, where

each year is a column in the matrix. A non-time-series

example, common in the field of genomics, is a gene

expression dataset, where the rows are genes and

each patient is a column in the matrix. Although it is

possible to interpret matrices as a list of columns, it is

beneficial to treat them as a matrix, because the homo-

geneity of the data is an opportunity for compact rep-

resentation. The columns in matrices can also be

associated with attributes that describe a common

property of the column, such as the decade associated

with a year, or a shared phenotype of patients.

Design goals

Based on discussions with experts from various appli-

cation domains who regularly analyze large tabular

datasets, literature reviews, and our own experience,

we developed a set of design goals for Taggle. Our first
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goal is to develop an item-centric visualization tech-

nique that also explicitly shows all dimensions relevant

to an analysis task. This goal by itself is addressed by

prior tabular data visualization technique, but currently

no tabular data visualization technique addresses our

second goal: providing a seamless combination of over-

view and details through selective, data-driven aggrega-

tion. A technique that would satisfy this goal would

remedy the major drawback of tabular data visualiza-

tion techniques: limited context. Current tabular visua-

lization techniques can only provide context only by

showing neighbors through a single, global sorting,

which makes it difficult to compare items of different

categories. This design goal is hence concerned with

showing the details about selected items and providing

context, for example, through aggregations of data-

driven groups.

To fully leverage the potential of an overview plus

detail tabular data visualization technique, we need to

give users the ability to flexibly define the parameters

of the display. To address that, our third goal is to pro-

vide rich interaction techniques that support answer-

ing specific questions, such as sorting, filtering, and

grouping. Finally, to appropriately visualize the diverse

data types and different levels of aggregations, we need

to provide a variety of visual encodings suitable for

specific situations. One goal is to provide sensible

defaults, but we also need to provide the ability to flex-

ibly choose visual encodings tailored to data types and

aggregation levels, to account for the diversity of anal-

ysis questions and dataset characteristics.

Related work

We discuss related work in light of two considerations:

(1) a review of tabular data visualization techniques

and (2) approaches to aggregation.

Tabular data visualization

Since tabular data analysis plays an important role in

many research fields, a substantial body of work exists

on visualizing such data. We distinguish between four

types of tabular data visualization techniques:

1. Dimensionality reduction techniques, which show

a lower dimensional projection of a high-

dimensional dataset.

2. Axes-based techniques, which position marks for

each cell based on its value, such as parallel coor-

dinates, star plots, and scatterplot matrices,

3. Tabular techniques, which retain item positions

across columns and encode the data within the

cells.

4. Multiple coordinated view (MCV) and hybrid

techniques, which show visualization of individual

dimensions or subsets of attributes in separate but

linked views.

Our four types of tabular data visualization tech-

niques are related to the three families proposed by

Dimara et al.8 In their work, they distinguish between

lossy and lossless geometric projection techniques.

Lossy techniques do not preserve the raw values of

individual dimensions, that is, this category corre-

sponds to the dimensionality reduction techniques.

Their family of lossless techniques includes axes-based

and tabular techniques, which we keep separate, as

they employ different data encoding principles.

Dimensionality reduction techniques. Projection or

dimensionality reduction techniques visualize the struc-

ture of items associated with high-dimensional data in a

lower dimensional space. There are various commonly

used approaches, such as principal component analysis,

multidimensional scaling techniques, or t-distributed

Stochastic Neighbor Embedding (t-SNE).9 For data

visualization, usually a two-dimensional (2D) or some-

times also a three-dimensional (3D) representation of

the projected items is displayed. These low-dimensional

projections show groups of similar items close to each

other. One problem of projections is that they can pro-

duce artifacts showing items that are quite different in

proximity. A variety of techniques have been proposed

to address this and related shortcomings.10–12 Another

challenge with dimensionality reduction is the sensitiv-

ity of the results to the choice of algorithm and the sen-

sitivity to parameters,13 which often makes an iterative

approach with multiple parameters and/or algorithms

necessary.

A special case of dimensionality reduction is to turn

relationships and items into a network, and then ren-

der that network using, for example, force-directed

layout algorithms. Examples of this approach are

Ploceus,14 Orion,15 and Origraph.16

We argue that projection techniques are well suited

to visualize structure in a high-dimensional dataset,

but they cannot adequately show why items in a clus-

ter belong together. Projection techniques are espe-

cially useful in cases where the dimensions themselves

are not meaningful to human analysts, such as a table

of term frequencies when analyzing text documents.

Taggle is concerned with exactly the opposite use

cases: where the properties of the dimensions are criti-

cal in making decisions.

Axes-based techniques. Axes-based techniques use

axes representing individual attributes and spatially
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encode the items’ values. Key examples are scatterplot

matrices,17,18 which place scatterplots consisting of

orthogonal axes to show pairwise relationships between

attributes in a matrix, and parallel coordinates,19–21

which place axes in parallel and connect individual

items to their position on the axes using polylines.

Variations of parallel coordinates are star plots,22 where

all axes originate from a common point, or other, more

general axes-based layouts.23 Generalizations of axes-

based techniques include FLINA,24 a technique that

lets users flexibly arrange axes and choose between

connection lines or dots, and GPLOM,25 which gener-

alizes the scatterplot matrix idea to other visualization

techniques shown in the cells.

Axes-based techniques can effectively show correla-

tions between neighboring axes. However, the quality

of insights depends on the order of the axes. Other lim-

itations are the visual clutter caused by crossing poly-

lines and the fact that axes-based technique is

problematic for encoding categorical and textual

attributes.

Tabular techniques. Tabular visualization techniques

use a grid layout where rows represent items and col-

umns dimensions (although the inverse is also possi-

ble); the value of each item in each dimension is

encoded in a cell. Within the class of tabular tech-

niques, we further distinguish tabular visualizations for

homogeneous tables, visualizations for heterogeneous

tables, and spreadsheet tools. An overview summariz-

ing the features and supported tasks of individual tab-

ular visualization techniques listed in this section can

be found in Table 1 of the supplementary material.

The prototypical example of a homogeneous tabu-

lar visualization technique is a heatmap,26 where cell

values are encoded using color (hue, saturation, value,

or opacity). Homogeneous table visualization tools are

useful for data that have the same type and scale

across all dimensions (matrices, according to our defi-

nition in section ‘‘Tabular data’’). Heatmaps are excep-

tionally scalable, as the cells can be allocated as little

as a single pixel of space. A key aspect is to find good

orderings of the rows and columns, which is often

done using clustering7 or seriation approaches.27

Visualization tools that provide advanced features for

heatmaps include the Hierarchical Cluster Explorer,28

GAP,29 PermutMatrix,30 Clustergrammer,31 and

SmartExplore.32 Taggle can efficiently visualize homo-

geneous tables, but in contrast to the techniques dis-

cussed here, Taggle also supports heterogeneous

tables and can combine homogeneous parts of a het-

erogeneous table (matrices) and heterogeneous col-

umns in a single visualization. The Table Lens1 is a

tabular visualization technique suitable for

heterogeneous tables. It is probably the most closely

related technique to Taggle and inspired its develop-

ment. It uses visual encodings tailored to different data

types to represent values in cells. Rich sorting opera-

tions allow users to compare trends between separate

attributes. Scalability is achieved by down scaling

rows, and a combination of appropriately chosen

visual encodings and lens techniques ensures the read-

ability of trends and individual items. The most

important differences to Taggle are that the Table

Lens does not support aggregation and is therefore

limited in terms of scalability. Taggle also introduces a

variety of subtle new ideas, such as embedding space-

efficient techniques for homogeneous subsets of a

table. A variety of tools, such as DataComb,33 the

Visual Spreadsheet,34 and the table views in some

multivariate tree and network visualization tools,35,36

implements ideas of the Table Lens. Another tech-

nique employing various visual encodings suitable for

heterogeneous tables is Bertifier.2 It was inspired by

Jacques Bertin’s matrix analysis methods and supports

interactive data reordering based on similarities

between rows and columns. However, the technique is

intended mainly for presenting small- or medium-

sized tables.

Widely used spreadsheet tools, such as Microsoft

Excel (https://products.office.com/en-us/excel/),

Google Sheets (https://www.google.com/sheets/about/),

and Apache OpenOffice Calc (https://www.openoffi-

ce.org/product/calc.html) typically support tabular

operations such as sorting, filtering, and grouping.

However, although spreadsheet tools usually support

rich charting operations, they provide only limited

support for the direct visual encoding of cells, using

techniques such as conditional formatting.

FOCUS37 and its successor InfoZoom38 are hybrid

spreadsheet/tabular visualization tools. In addition to

the Table-Lens-like layout, InfoZoom provides an

overview mode that shows the distribution of values

for individual attributes, sorting each attribute row

individually. Although this provides an overview of the

distribution of values, it is no longer a tabular layout.

MCV techniques and hybrids. MCV systems represent

(sets of) attributes of a tabular dataset in separate,

linked views. These systems allow users to choose

representations that are suitable for the subset of data

represented by a single view and usually rely on linked

highlighting to highlight the same items in different

views. Representative systems in this category include

Improvise39 and Keshif.40 Common configurations of

Keshif, for example, use a tabular view to identify spe-

cific items, but represent other attributes in other views

using histograms or bar charts, for instance.
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Although MCV systems can leverage visualization

techniques that are ideal for certain attributes and that

would potentially not fit into the confines of a tabular

layout, they also add complexity and increase the cog-

nitive load for the user.41 Tabular layouts, in contrast,

make the association of all attributes to their item easy,

but make it harder to see correlations between attri-

butes or trends across the whole dataset.

As the Keshif example shows, tabular visualization

techniques, such as Taggle, are an ideal complement

to MCV systems: although selected attributes can be

shown in dedicated views, for example, on a map or in

a node-link layout, other attributes can be shown as

part of the tabular visualization.

Note that the line between MCVs and other tech-

niques is fluid; a scatterplot matrix, for example, can

be considered as both an axes-based technique and an

MCV system.

Hybrid approaches that use multiple views and

combine overview and tabular approaches or overview

and projection approaches are also available. In hybrid

overview-tabular approaches, the rows are preserved

within subsets of the data, but the relationships

between subsets are visualized using an overview tech-

nique. Examples of this class include NodeTrix,42

VisBricks,6 StratomeX,43,44 Domino,45 and Furby.46

In hybrid overview-projection approaches, selected

attributes are plotted on top of a plot of projected

data, as in the technique developed by Stahnke et al.11

Domino45 is a hybrid tabular/overview MCV tech-

nique. It is based on the concept of placing subsets of

a dataset on canvas and choosing a suitable represen-

tation (view) for it. Multiple subsets can then be con-

nected to show their relationships in various ways.

Matchmaker,47 VisBricks,6 and StratomeX43,44 are

related hybrid techniques but they are more restricted

with respect to the selection and layout of subsets.

Aggregation methods

Orthogonal to the design space discussed above are

aggregation methods for tabular data: representing the

underlying distribution or statistical measures of a set

of items is an important approach to increasing the

scalability of visualization techniques. Aggregation can

be applied to a whole dataset or to multiple groups of

items and/or attributes separately. Elmqvist and

Fekete48 proposed several design guidelines for aggre-

gation, including Visual Summary—aggregates should

convey information about the underlying data;

Discriminability—aggregates can easily be distinguished

from individual data items; and Fidelity—measures are

taken to counteract artifacts of the aggregation process

that misrepresent true effects. The aggregation

techniques in Taggle were designed with these guide-

lines in mind.

Examples of overview techniques using aggregation

are hierarchical parallel coordinates,49 which visualize

cluster centroids rather than individual items, and

VisBricks,6 which can visualize clusters using various

techniques, including statistical summaries such as his-

tograms. An example MCV technique that predomi-

nantly uses aggregations is Keshif.40 In Keshif, a table

of items is supplemented with multiple views showing

distributions for interaction-driven exploration.

To our knowledge, there is currently no interactive

general tabular visualization technique that allows

aggregation. When working with large tabular data,

not all data can be shown in detail, as the number of

rows quickly exceeds the available display space. There

are two potential remedies: scrolling and aggregation.

Although scrolling is common when working with

tables, it does not preserve the context of off-screen

data items. Aggregation, in contrast, can be leveraged

to preserve both details about a set of items in focus

and context about the rest.

Various specialized tabular visualization tools use

aggregation in tabular layouts. iHAT50 aggregates

amino acid sequences and associated metadata using

the most frequent category or the average to represent

aggregated items, depending on the data type.

Holzhüter et al.51 use the average for numerical values

for aggregates. Both techniques employ transparency

to communicate fidelity (the higher the variation in a

cell, the higher the transparency), but neither

addresses fidelity well. The Breakdown Visualization

technique by Conklin and North52 aggregates rows or

columns of a table based on a pre-existing aggregation

hierarchy. Users can traverse the hierarchy and pivot

through intersecting hierarchies. The UpSet53 tech-

nique aggregates items based on set memberships. It

uses visualizations such as box plots for representing

aggregated group statistics. In contrast to these tech-

niques, Taggle provides the user with the flexibility to

aggregate subsets of the table, while keeping details of

other parts of the table visible in place.

Visualization and interaction design

Taggle is an item-centric visualization technique that

shows all dimensions relevant to an analysis task and

at the same time provides a seamless combination of

overview and details through selective, data-driven

aggregation. Here we introduce this approach.

Taggle enables users to group items based on hier-

archical combinations of attributes. The result of these

nested grouping levels is an ordered tree where all

leaves are items (Figure 1(a)). Data-driven filter and
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sorting operations (Figure 1(b) and (c)) can be used

to reveal items of interest.

By defining groups, we can add new levels to the

tree (Figure 1(d) and (e)). For example, we can group

the countries in the AIDS dataset by continent.

Groups can be defined based on categorical attributes,

numerical thresholds, or user selections. Groups are

represented as a row showing summary representa-

tions for the items in the group.

Each branch in the tree can be collapsed indepen-

dently, hiding the items while the group summary

remains, as shown in Figure 1(f). Each row of the

resulting table then corresponds to either one item or

one group. We can use this approach, for example, to

show summaries of all continents, but also to show the

individual countries on the African continent. By

adjusting the level at which to aggregate, users can

dynamically control the level of detail of the rows

when rendering the table.48

Finally, we introduce a degree of interest opera-

tion54 to reveal aggregated items that are especially rel-

evant to the analysis. Our current implementation is

naive, revealing only the first N items of an aggregated

group. By leveraging sorting, we ensure that these

items are the most relevant to the current analysis task.

The operation allows us, for example, to show a sum-

mary of the AIDS epidemic by continent and reveal

the 10 most affected countries for each continent at

the same time. The degree of interest can be adjusted

to reveal more or fewer items (Figure 1(g)). This func-

tion could be improved to take other aspects of the

data into account, such as a cut-off of an attribute or

the size of the group.

Overall design

The Taggle interface consists of two parts, as shown in

Figure 2: (a) the main table view and (b) a data selec-

tion panel that is the interface for various operations.

The table view implements the overview plus detail

concept for visualizing tabular data. The column head-

ers of the table view provide the means for sorting,

changing visual encoding, filtering, and grouping. The

data selection panel provides access to all available

numerical, categorical, text, and matrix attributes. Its

primary use is to enable analysts to choose which attri-

butes to show in the table view. For each column that

is shown in the table view, the data selection panel

shows a visual summary of the data in the form of a

histogram, when appropriate. Below, we introduce the

visual elements and interactions in detail, together

with justifications of our design decisions.

Layout strategy

Complementary to our overview plus detail concept

described above, we introduce two different layout

modes serving the high-level tasks of (1) obtaining an

overview and (2) seeing details for a subset of the

items.

The goal of the detail mode is to allow users to see

all details for selected items including labels, numerical

values, and category names. Although this maximizes

the readability of items, it comes at the cost of reduc-

ing the number of visible items.

In overview mode, the goal is to show as many rows

as possible in order to give users a good sense of the

overall patterns and distributions. To achieve this,

Taggle decreases the height of items until the whole

table fits on the screen, or until each item has a height

of a single pixel, as lower values would introduce

uncertainty due to interpolation artifacts.51 Aggregated

groups are shown using a fixed height. Overview mode

is a complementary strategy to aggregation: it is useful

to get an idea about the distribution of the data in the

columns and does not require that meaningful groups

are defined. When viewing the table in overview mode,

users can still increase the level of detail for one or

multiple items by selecting them, which is useful in

cases where users spot items of interest that they want

to inspect in detail.

Sorting

Sorting is a simple way of identifying minima and

maxima in columns. Sorting also reveals relationships

between columns. In addition to sorting in ascending

or descending order by a numerical, textual, or catego-

rical column, Taggle enables users to sort items hier-

archically, where a top-level column determines the

initial sorting, a second column breaks ties from the

initial sorting, and so on. This sorting strategy is par-

ticularly useful when sorting by categorical columns.

Users can also sort matrix columns by specifying a sta-

tistical measure (minimum, maximum, lower and

upper quartile, median, mean) as the sorting criterion.

Although other table visualizations such as the

Visual Spreadsheet55 sort attributes hierarchically

based on the order of the columns, we decided to sep-

arate the sorting from the layout. Since we expect that

in most cases users are satisfied with simple sorting by

one attribute, clicking on the sort button in the col-

umn header always results in the data being sorted by

the corresponding attribute. Once the user activates

the sorting by one attribute, a dedicated sorting hierar-

chy panel appears in the data selection panel. The
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Figure 1. Illustration of topological operations on a heterogeneous table (a) consisting of numerical (#) and categorical
([) attributes and their results reflected in the aggregation hierarchy: (b) filtering, (c) sorting, (d) grouping by a single
categorical attribute, (e) grouping by the Cartesian product of two categorical attributes, (f) aggregating, and (g) degree
of interest.
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panel allows users to add additional sorting attributes

and change their order (see Figure 2(d)).

Filtering

Filters can be defined by interacting with the histo-

grams in the data selection panel either by brushing a

range in the case of numerical data (Figure 2(b), people

knowing they have HIV) or by selecting categories that

are to be removed from the table (Figure 2(b), conti-

nent). Textual data can be filtered by string matching

or by a regular expression. In addition, users can filter

out items with missing values. As an alternative to set-

ting filters in the data selection panel, users can open a

filter dialog via the header of the columns.

Grouping and aggregation

Being able to stratify tables into meaningful groups is

not only an important feature for structuring tabular

data, but also an essential prerequisite for aggregation

operations in Taggle. Grouping is related to sorting

since grouping also influences the order of items.

Taggle, however, separates these operations in order to

enable more fine-grained control of groups. As dis-

cussed before, we leverage categorical or binned

numerical attributes to group datasets. Similarly, we

can leverage regular expressions on string columns to

create groups, or use dates and date ranges on date

columns. Users can also split the table into two groups

based on the current selection. Combining multiple

hierarchically sorted grouping attributes creates fine-

grained groups that correspond to the Cartesian prod-

uct of the constituting categories. In practice, we

found that two to three grouping levels are sufficient,

because more lead to fragmented groups.

Setting the grouping hierarchy is analogous to hier-

archical sorting—the order of grouping attributes is

indicated in a dedicated grouping hierarchy panel.

Since grouping takes precedence over sorting, the hier-

archy is shown above the sorting hierarchy panel (see

Figure 2(c)). The separation of grouping and sorting

operations gives the user tighter control over the order

of the table items. Users can, for example, group the

items based on a binned numerical attribute but sort

the items inside the groups according to a different

attribute.

A group name column summarizes the current

grouping and how many items are contained. In

Figure 2, for instance, the combination of the attri-

butes continent and the human development index consti-

tute the grouping, which is indicated in the first

column. Groups can also be sorted by their name, by

the number of contained items, by statistical measures

of numerical attributes (e.g. mean or median), or by

the most frequent category. Selected options are

shown in an additional group sorting hierarchy in the

panel.

Figure 3 illustrates a case in which the countries

were first grouped based on the percentage of women

who had sex before the age of 15 with a threshold set to

15% (Figure 3(a)), but sorted according to fertility rate

(Figure 3(b)). Interestingly, only African and North

American countries fell within the group with high

percentages of sex before the age of 15. Sorting the table

by fertility rates shows a clear difference between the

countries of the two continents, with North American

countries having much lower fertility rates than the

African countries in this group. This correlates to the

level of human development index.

Groups are represented by rows showing an aggre-

gate of the items they contain. Group headers are

assigned a uniform height that is about twice that of a

row shown in detail mode. We use dedicated visual

encodings for aggregate items. For example, instead of

bar plots for individual items, we show a histogram or

a box plot that represents the whole group (see Figure

2(f)). As discussed earlier, the items in a group can be

shown below its header, partially hidden based on a

degree of interest function, or completely hidden. In

Figure 2, for instance, only the first 10 African coun-

tries with low and medium human development index

are displayed.

Visualizing matrices

While many tools offer support for time-series data

(e.g. by showing sparklines), these tools usually do not

support general matrices. For example, the option to

reorder the data points is usually missing, because it is

not necessary for the time-series data. In our tech-

nique, adding a matrix to a table visualization intro-

duces a second key for the columns of the matrix. We

allow grouping of matrix columns based on this key.

The individual groups of columns are then treated as

separate matrices—they can be manually reordered,

aggregated, and sorted, and the visual encoding of

each group can be adjusted individually. For example,

the years in the new HIV infections per 1000 people

matrix and the AIDS-related deaths per 1000 people

matrix in Figure 2(e) introduce years as the second

key, which is then used to group these matrices by

decades. Here, the 2010s use a different visual encod-

ing for the groups.

Encoding and multiform visualizations

The table view encodes each selected column or

matrix using one of multiple alternative visual encod-

ings suitable for the data type, including bars, dots,

Furmanova et al. 9
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proportional symbols, or brightness for numerical

data; color or positional/matrix encoding for categori-

cal data; and heatmaps for matrices.

Following the multiform principle,6 the visual

encoding for each column can be changed on demand.

For example, the default bar encoding a single numer-

ical attribute can be interactively changed to a propor-

tional symbol if desired. Dedicated visual encodings

are used for aggregates: box plots and histograms show

the distribution of numerical values; stacked bars and

histograms show relative frequencies of categories in

an aggregate. A list of textual items is represented as a

truncated list of examples. Figure 4 gives an overview

of the visual encodings available for numerical, catego-

rical, and textual attributes with and without aggrega-

tion. Figure 5 summarizes how a matrix can be

aggregated in column and row directions. In theory,

the aggregation choices for the matrix rows and col-

umns should be symmetric. Our limited choices of

visualizations for aggregated rows and columns stem

from our design decision to show the aggregated rows

with fixed height, whereas for aggregated columns the

width is flexible and by default reflects the width of

the matrix. Thus, most of the visualizations available

for aggregated columns (e.g. box plots or dot plots)

are not suitable for aggregated rows, as there would

not be sufficient space.

We limit ourselves to these choices because they

either offer good perceptual properties (e.g. encoding

by position) or are very compact, thus allowing users

to choose between perceptual accuracy and space utili-

zation. We deliberately do not offer visual encodings

that we consider to be problematic. For example, a

bar representing an average of a group does not com-

municate any variability and is therefore not a suitable

visualization for an aggregated attribute.56

We chose a dash to encode missing values

(Figure 3(d)). We also considered a dedicated color,

but dashes have the advantage that their visual saliency

is lower (i.e. they do not draw as much attention), but

are still clearly visible at all levels of detail.

Compact encodings. When the height of rows is

reduced in overview mode, we take various measures

to adapt the visualization to the diminished space. We

not only make the visual representations smaller but

also reduce details and/or adapt the visualization. In

the compact representation of box plots, for instance,

we fill the available vertical space at the position of the

Figure 4. Attribute column visualization techniques for items and aggregated groups by data type. Numerical items can
be encoded with bars, dot plots, proportional symbols, or brightness. For categorical items, we offer color encoding plus
labels, and two variants of matrix representations, one with and one without color used redundantly. All items can also
be displayed as strings. Numerical attributes can be aggregated into box plots and histograms. Distributions of
categorical values can be shown as a histogram, a stacked bar, a binary presence/absence matrix inspired by UpSet,53

or an aggregated matrix with brightness encoding the frequency of individual categories in the group. An aggregated
textual attribute shows examples of the group members.

Furmanova et al. 11



box and indicate the start and end of the whiskers by

drawing vertical tick marks. However, some visualiza-

tions, such as strings and proportional symbols, do

not have an adequate downscaled version. We do not

render such cells in overview mode. Examples of

visual compression for individual visualization options

can be found in Figure 6.

Animated transitions

We support users in understanding changes in the visua-

lization by applying animated transitions,57 as demon-

strated in the accompanying video. Our implementation

incorporates smooth transitions for the switch between

overview and detail as well as for changes resulting from

filter, sort, and aggregation operations.

Instead of simply morphing item position, we apply

staged transitions, where animations are split into mul-

tiple phases.57 In the first phase of a filter animation,

for instance, we fade out the filtered rows and then

move up the remaining rows of the table to fill the

white space. This animation is designed to help users

understand why rows outside the viewport become

visible at the bottom of the table. Similarly, when items

in a group are collapsed, we first fade out the items

and then gradually reduce the height of the empty

group area to the fixed height of the aggregated group.

Combining columns

Giving users the ability to flexibly combine columns

supports various tasks. Users can interactively create

combined columns by dragging either existing ones on

an empty container or one column onto another. The

possible combinations are specific to the data type of

the column.

The most basic combined column is a nested col-

umn, as shown in Figure 7(a) and (e). It encloses mul-

tiple individual columns by adding a joint header

above all columns contained. Nested multiple col-

umns are useful for creating semantic groups. The

nested column is the most flexible column combiner

that works for all types and can mix columns of differ-

ent types.

Taggle also enables users to create stacked col-

umns3,58 by combining two or multiple numerical

Figure 5. Matrix visualization techniques. Matrix items can be encoded using brightness and as sparklines. Matrices can
be aggregated in both column and row directions. When a matrix is aggregated in the column direction, a group of
matrix columns within one row is merged into a single cell. The aggregated values can then be visualized using box
plots, dot plots, and heatmap. When a matrix is aggregated in the row direction, a group of rows is merged into one row.
Values of aggregated rows can be displayed using a heatmap and superimposed sparklines. A matrix aggregated in both
directions is encoded using a box plot, histogram, or dot plot of all matrix values.
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columns to create a weighted sum of the items and

where the individual contributions are represented as

stacked bars (see Figure 7(b)). Users can interactively

change the weights of individual columns by adapting

their widths. Stacked columns can be used to create a

‘‘score,’’ which, in turn, can be used to create rankings.

Aggregate representations for stacked columns are

shown as box plots, where the values feeding the box

plots are the weighted sums of the composing values.

To enable more effective comparison of items across

multiple columns, an interleaved column (Figure 7(c))

stacks the encoded values from multiple numerical col-

umns vertically. Depending on whether the row is an

item or group, the stacked representations can be

made from bars or dots, or, in case an aggregate is

interleaved, from a box plot.

With imposition columns, users can color the visual

marks (bar, proportional symbol, etc.) of a numerical

column by the color coding of a categorical attribute,

as shown in Figure 7(f).

Taggle also enables more complex combinations,

based on a set of predefined functions, such as mini-

mum, maximum (Figure 7(d)), and mean, for com-

bining multiple numerical attributes into a single

numerical column. In addition, users can add scripted

columns that allow them to define their own functions

via a scripting interface.3

Sorting and grouping of column subsets

Although Taggle focuses primarily on tabular visuali-

zation, keeping items in constant rows across all col-

umns, it also supports splitting a table into multiple

segments and sorting and grouping each instance

independently. To encode the relationships between

table segments, we utilize slope graphs for connecting

individual items of the tables compared59 or bands for

showing relationships between aggregated groups,43,45

defacto enabling users to create hybrid tabular/over-

view representations (see Figure 8), and in the

Figure 6. Example of encodings at different scales. In the first column, the items are displayed at full height with white
space separating the rows. If a textual label is part of the visualization, it is displayed at a readable size. Compact
representations (columns two and three) remove white space and string labels. Some visualizations, such as the box
plot, UpSet, or the matrix representation, are simplified to account for the limited space.
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extreme, even visualization techniques such as parallel

sets.60

Implementation

In the demo application (https://taggle.caleydoapp.org/),

users can switch between multiple preloaded datasets,

upload new, and download existing datasets in various

formats. Users can locally save and restore a Taggle

table together with the analysis session that includes

the history of all user interactions.

The Taggle feature set is fully integrated into the

LineUp.js library (https://lineup.js.org/), which is writ-

ten in TypeScript and available as open source (https://

github.com/lineupjs/lineupjs/). A demo version can be

accessed at https://taggle.caleydoapp.org/. Making

Taggle available as an open-source library increases the

potential for adoption of the technique. Taggle is also

designed to be combined with other techniques. To

that end, we provide various interfaces. For example,

the library can be embedded in Jupyter Notebooks

(https://jupyter.org/), (https://github.com/lineupjs/line-

up_widget/) and used as an HTML widget (https://

www.htmlwidgets.org/), (https://github.com/lineupjs/

lineup_htmlwidget), which allows integration into

Shiny applications (https://shiny.rstudio.com/), R

Notebooks (https://rmarkdown.rstudio.com/r_note-

books.html), Anuglar.js (https://angularjs.org/), Vue.js

(https://vuejs.org/), and React.js (https://reactjs.org/).

We provide examples for how to embed Taggle in each

of these frameworks in the repository. Note that Taggle

can also be embedded as a component inside a larger

web-based application. The case study described in

the following section is based on the Ordino visual can-

cer analysis tool.61 The server-side of Ordino retrieves

over 500 GB of cancer data from a PostgreSQL data-

base. Complex aggregation queries that need to iterate

over a large set of table entries are handled by the data-

base, while the client side with Taggle then receives

only the data subset needed for rendering.

Case study: drug target discovery

Taggle was developed in tight collaboration with

domain experts working on a drug discovery team at a

pharmaceutical company. We demonstrate Taggle by

means of a case study conducted on complex geno-

mics data for the purpose of drug target discovery.

The case study summarizes an analysis session carried

out by one of our collaborators. For the case study, we

integrated Taggle into the Ordino Target Discovery

Platform61 that provides access to the required cancer

Figure 7. Possible column combinations: (a, e) nested column that semantically groups columns of various types; (b)
stacked column that creates a stacked bar plot based on multiple weighted numerical columns; (c) interleaved column
that stacks the visualizations of multiple numerical columns; (d) scripted column that, in this case, visualizes only the
maximum values of selected columns; and (f) column imposition where the marks of a numerical column are colored by
the imposed categorical column.
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genomics data (https://ordino.caleydoapp.org/). Note

that the collaborator has experience with using inter-

active visualization tools and was involved in all phases

of the project and provided continuous feedback dur-

ing the development. For the case study, the domain

expert operated Taggle himself without the help of

visualization experts.

In order to identify potential drug targets in a set of

tumor types, the analyst performs experiments with

cancer cell lines—cultured cells that are derived from

tumors and that can proliferate indefinitely in the

laboratory. These cell lines are characterized by vari-

ous properties, such as tumor type (lung cancer, pros-

tate cancer, etc.) and the set of genes that are mutated.

One very important gene in the context of cancer is

TP53. It encodes the p53 protein, whose presence is

known to suppress the uncontrolled division of cells.

However, when TP53 is mutated—which is the case

for over 50% of cancer patients—it can lose its sup-

pressing function, which results in tumor growth. Due

to its important role, scientists want to know whether

TP53 is mutated in a set of cell lines. However, the

mutation status of TP53 is not always known. It has

recently been shown that the mean expression level

(expression is a measure of the activity of genes) of 13

genes that are biologically related to TP53 is correlated

with its mutation status. The expression level of these

genes can hence be used to predict the mutation status

of TP53.62

In this case study, the analyst first wants to find out

how well this predictor works for the set of cell lines

contained in the database. Based on this knowledge

and other criteria, the analyst then wants to select cell

lines for a wet-lab experiment.

The analyst starts by loading a list of 1009 cell lines

from the public CCLE dataset63 into Taggle. By

default, the table contains a textual column represent-

ing the names of cell lines and a categorical column indi-

cating tumor type. Since only a subset of tumor types is

of interest, the analyst filters for astrocytoma/glioblas-

toma (type of cancer of the brain), bone sarcoma, mela-

noma, and non-small-cell lung cancer (NSCLC), after

which 255 cell lines remain.

As the analyst wants to investigate the TP53 gene,

he loads a categorical column with the mutation status

(mutated vs non mutated) and a textual column that

provides further details about the mutation (if pres-

ent). According to the mutation histogram in the data

selection panel, the status is unknown for 59 cell lines.

To investigate the effectiveness of the 13 genes in pre-

dicting the TP53 status, the analyst loads the average

expression of these genes together with a matrix col-

umn containing the individual expression values.

Furthermore, he hides cell lines with unknown muta-

tion status. After sorting the table by average

expression in descending order and switching to the

overview (see Figure 9), the analyst observes the over-

all good correlation between expression and mutation

status: there is a clear enrichment of TP53 mutants

among the cell lines with a low score.

In order to test whether the correlation is present

for all selected tumor types, the analyst groups the

table by tumor type. He observes that the prediction

seems to work particularly well for the astrocytoma/glio-

blastoma cell lines (almost perfect separation between

mutated and non mutated) and further investigates

this observation by also stratifying by mutation status

and aggregating all groups (see Figure 10). The

expression box plots show good separation for astrocy-

toma/glioblastoma and melanoma, whereas the expres-

sion ranges are overlapping for NSCLC.

Having confirmed that the prediction of the TP53

mutation status works reasonably well in several tumor

types, the analyst wants to select a set of cell lines for a

wet-lab experiment. He is interested in melanoma cell

lines that have no TP53 mutation. Furthermore, the

activity of CDKN2A, another important tumor sup-

pressor gene, should be impaired due to a reduced

number of CDKN2A gene copies in the genome. The

analyst removes the mutation status grouping, includes

cell lines for which it is unclear whether TP53 is

mutated, and unfolds the melanoma cell lines group.

Based on the ranking, he decides to consider all cell

lines with unknown TP53 mutation status and a TP53

predictor score greater than 110 as non mutated.

He adds a column with the CDKN2A relative copy

number, sorts by it in ascending order, and filters out

missing data. Finally, he selects the top hits of the

resulting list (see Figure 11). All these cell lines fulfill

the analyst’s requirements.

Expert feedback

Our collaborators initially planted the seed that led to

the development of Taggle by pointing out restrictions

they face in current drug discovery tools. They partic-

ularly mentioned the need of seamlessly combining

overview and details in tabular data analysis for drug

discovery.

During the conception and development of Taggle,

we had biweekly feedback sessions and in-depth dis-

cussions with our collaborators on every aspect of both

the concept and the visual interface. The most critical

feedback on early prototypes was about the limited

rendering performance that hindered their use in real-

world scenarios. After making the prototypes more

scalable, we received valuable and very detailed feed-

back on a conceptual level but also regarding the

usability of the prototype implementation. For exam-

ple, the user interface workflow and visual encoding of

16 Information Visualization 00(0)
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the hierarchical grouping and sorting capabilities led

to confusion. We resolved this problem by introducing

an explicit sorting and grouping hierarchy in the data

selection panel (see sections ‘‘Sorting’’ and ‘‘Grouping

and aggregation’’). Based on follow-up feedback, we

also added the capability of controlling the order of

groups, to sort them by number of items or by group

name, for instance. The fact that Taggle recently

Figure 9. After sorting the cell lines by the TP53 predictor score (brown), the analyst notices that those with a low
average score are much more likely to be mutated (green). From this observation, the analyst concludes that predicting the
mutation status based on the average expression of the 13 genes that constitute the predictor score works reasonably well.

Figure 10. The analyst groups the cell lines first by the attribute tumor type and then by TP53 mutation status. For the
tumor type astrocytoma/glioblastoma, the box plots representing the TP53 predictor score show a clear separation
between the groups mutated and non mutated. For the other tumor types, the whiskers of the box plots overlap,
indicating that the predictor score does not work as effectively.

Furmanova et al. 17
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replaced the LineUp technique as a core component

in the Ordino drug discovery tool,61 which is in pro-

ductive use at Boehringer Ingelheim, demonstrates

that the domain experts are convinced of its effective-

ness and added value.

In additional high-level feedback, the domain

experts mentioned that they would like to confirm the

statistical significance of visual patterns they see in the

overview as well as between groups of items. However,

this approach could easily lead to incorrect inferences,

unless some precautions are taken.64,65 In a follow-up

project, we are working on a solution that supports

such confirmatory analysis in a way that users can

understand without being trained in statistics.66

Discussion and limitations

Revisiting our discussion of visualization techniques

for tabular data (overview, projection, tabular, and

MCV techniques), we argue that Taggle is primarily a

tabular visualization technique, as it retains a tabular

layout and encodes data within a cell, but also has

some aspects of an overview technique due to its cap-

abilities to aggregate and its ability to sort and group

subsets of columns independently. Interactive defini-

tion of groups and their aggregation in summary

visualizations, such as box plots and histograms, pro-

vides a meaningful overview even for large datasets

and enables an intuitive comparison of grouped data

subsets (Figure 10). At the same time, Taggle enables

the exploration of items at a detailed level to identify

their precise properties (Figure 11). We also designed

Taggle so that it can be used within an MCV

framework.

This combination sets Taggle apart from existing

tabular techniques, which provide only a coarse over-

view of items (e.g. using the lens technique, which is

insufficient for representation or comparison of large

datasets) or lack interactivity, which is essential to the

exploration process.

Scalability

Taggle scales to more than 1 million rows on a mod-

ern browser, as demonstrated when loading the 1M

Random Dataset in the demo application. We achieve

this performance by leveraging rendering optimiza-

tions, which ensure that only visible rows are pro-

cessed. Although the rendering time stays almost

constant, larger datasets require more time for data

operations, such as sorting, grouping, or computing

histograms—which always need to be done for the full

dataset. The performance depends on the number of

CPU cores available on the client machine, as the

workload is distributed between multiple parallel web

workers, if possible.

To demonstrate the computational scalability, we

executed performance measurements for common

operations on five datasets consisting of 100, 1000,

10,000, 100,000, and 1,000,000 data items. Each

dataset consisted of one textual, two numerical, and

two categorical attributes generated with uniform dis-

tribution. For each tested operation, we measured the

time between triggering the operation (e.g. pressing

the sort button) and the end result appearing on

screen. Animation is not useful when rearranging large

datasets; hence, it is disabled by default for such data-

sets. To make the results comparable across all data-

sets, we disabled animations for all conditions when

benchmarking. For measurements, we used the per-

formance profiler from Google Chrome DevTools (v.

71.0.3578.98). We repeated each measurement five

times. Table 1 presents the average times in millise-

conds. The tests were done on a machine with Intel

Table 1. Completion time in milliseconds for various operations using five datasets with 100 to 1 million items.

100 1000 10,000 100,000 1,000,000

Load 529 545 611 1012 4107
Sort numerical DM 321 338 358 643 2642

OM 288 681 741 970 3626
Sort grouped DM 324 324 381 518 1911

OM 306 661 743 923 2830
Sort textual DM 300 367 397 728 3639

OM 302 647 730 1069 5075
Filter numerical DM 407 415 460 598 1442

OM 419 1883 1745 1876 2858
Filter categorical DM 357 435 475 562 1372

OM 403 1982 1079 1196 2261

DM indicates operations performed in detailed mode; OM indicates operations performed in overview mode.
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Core i7-5930K processor (3.5 GHz, six cores), 32 GB

RAM, NVIDIA GeForce GTX 970 graphics card.

Note that the browser-based tracking tool may slightly

decrease the actual performance.

Since the full dataset needs to be loaded into mem-

ory first, the size of the data table determines the load-

ing time. Naturally, the number of rendered items also

influences the run-time performance. Although we

optimize the rendering to process only visible rows,

there can be notable performance differences between

detail and overview mode, since the number of ren-

dered items is much larger in overview mode. For

example, in our full-HD setup with viewport size

1387 3 882 pixel, detail mode allowed for 39 item

rows, but in overview mode, we had up to 775 rows

on screen. Note that due to the design decision that

every item is at least one pixel high, the table grows

out of the visible screen space for larger tables. Table 1

shows that for the smallest dataset, where the number

of rendered elements is low in either case, the perfor-

mance difference between overview and detail mode is

minimal. For other datasets, the time necessary for

preparing and rendering the elements is much more

apparent.

Aggregation of categorical and textual
attributes

Although there are numerous possibilities for aggrega-

tion for numerical data—ranging from aggregation in

data space (mean, median) to spatial aggregation (box

plots, histograms)—the options are limited for catego-

rical and textual data. In our prototype, we offer three

possibilities for aggregation of categorical data: a

matrix, a histogram, and a distribution bar. Due to

spatial restraints and the limited scalability of the color

channel, there are limits with respect to the number of

categories that can be sensibly encoded this way.

Taggle uses a predefined color scheme with 22 distinct

colors. However, if a categorical attribute has more

than 22 categories, we treat the column as textual.

Colors are automatically assigned, but users also have

the possibility to adjust colors manually to resolve

cases where colors are repeated between columns.

Aggregation of textual attributes, however, is even

more limited. In our prototype implementation, we list

a sample of items from the aggregated group to sum-

marize the group’s content using the order of the

items. An alternative approach would be to select sam-

ples based on other criteria such as the frequency of

occurrence. This approach, however, is practical only

for data attributes with repetitive values.

Automatic aggregation

In the design process, we investigated methods for

automatically aggregating rows and columns, with the

goal of increasing scalability. For example, when in

overview mode, we tried to automatically aggregate

groups to make space for user-selected rows that are

shown with increased height. We found, however, that

users had difficulties understanding the unexpected

changes and subsequently interpreting the individual

items and aggregated groups. As this violated the dis-

criminability design guideline proposed by Elmqvist

and Fekete,48 we removed the automatic aggregation

feature. Instead, as part of future work, we plan to

implement and evaluate a recommendation approach

that suggests possible layout changes without automat-

ically applying them.

Stacking of matrices and vectors

Our current prototype supports grouping of matrix

columns based on a categorical attribute (see Figure

2), but provides no means of sorting and filtering the

matrix columns. Furthermore, it is not possible to

stack additional attributes on top of a matrix, as

shown, for instance, in Figures 4 and 6 and presented

in Cherniack et al.67 However, we plan to address

these technical limitation in future versions.

Conclusion and future work

In this work, we presented Taggle, an item-centric,

spreadsheet-like visualization technique for exploring

and presenting large and complex tables. Taggle is

unique among tabular data visualization techniques

due to its ability to dynamically aggregate subsets of a

table, which allows users to flexibly drill down into

details of large tables while keeping the overview as

context.

The open-source implementation presented as part

of this work goes beyond a research prototype, provid-

ing a rich set of visual encodings and rendering opti-

mizations that make it scale to a million items. Taggle

can be used as a standalone tool but also integrated as

a widget into MCV systems or notebook-style environ-

ments such as R Markdown or Jupyter Notebooks.

As part of future work, we plan to integrate data-

driven guidance capabilities into Taggle, as implemen-

ted in StratomeX.68 Following the idea of guided

visual exploration, we plan to assist users in finding

correlated attributes or similar groups based on their

input.
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51. Holzhüter C, Lex A, Schmalstieg D, et al. Visualizing

uncertainty in biological expression data. In: Proceedings

of the SPIE conference on visualization and data analysis,

IS&T/SPIE, p. 82940O.

52. Conklin N, Prabhakar S and North C. Multiple foci

drill-down through tuple and attribute aggregation poly-

archies in tabular data. In: Proceedings of the IEEE sympo-

sium on information visualization (InfoVis ’02), pp. 131–

134. IEEE.

53. Lex A, Gehlenborg N, Strobelt H, et al. UpSet: visuali-

zation of intersecting sets. IEEE Trans Vis Comput Graph

2014; 20(12): 1983–1992.

54. Furnas GW. Generalized fisheye views. In: Proceedings of

the ACM SIGCHI conference on human factors in comput-

ing systems (CHI ’86), pp. 16–23. ACM.

55. Tyner C, Barber GP, Casper J, et al. The UCSC genome

browser database: 2017 update. Nucleic Acids Res 2017;

45(D1): D626–D634.

56. Streit M and Gehlenborg N. Points of view: bar charts

and box plots. Nat Methods 2014; 11(2): 117.

57. Heer J and Robertson GG. Animated transitions in sta-

tistical data graphics. IEEE Trans Vis Comput Graph

2007; 13(6): 1240–1247.

58. Carenini G and Lloyd J. ValueCharts: analyzing linear

models expressing preferences and evaluations. In:

22 Information Visualization 00(0)

http://www.bytemuse.com/post/data-comb-visualization/
http://www.bytemuse.com/post/data-comb-visualization/
https://ucsc-xena.gitbook.io/project/overview-of-features/visual-spreadsheet/
https://ucsc-xena.gitbook.io/project/overview-of-features/visual-spreadsheet/
https://ucsc-xena.gitbook.io/project/overview-of-features/visual-spreadsheet/


Proceedings of the conference on advanced visual interfaces

(AVI ’04), pp. 150–157. ACM.

59. Tufte E. The visual display of quantitative information. 2nd

ed. Cheshire, CT: Graphics Press, 2001, p. 156.

60. Kosara R, Bendix F and Hauser H. Parallel sets: interac-

tive exploration and visual analysis of categorical data.

IEEE Trans Vis Comput Graph 2006; 12(4): 558–568.

61. Streit M, Gratzl S, Stitz H, et al. Ordino: a visual cancer

analysis tool for ranking and exploring genes, cell lines

and tissue samples. Bioinformatics 2019; 35: 3140–3142.

62. Jeay S, Gaulis S, Ferretti S, et al. A distinct p53 target

gene set predicts for response to the selective p53-

HDM2 inhibitor NVP-CGM097. Elife 2015; 4: e06498.

63. Barretina J, Caponigro G, Stransky N, et al. The cancer

cell line encyclopedia enables predictive modelling of

anticancer drug sensitivity. Nature 2012; 483(7391):

603–607.

64. Dwork C, Feldman V, Hardt M, et al. The reusable

holdout: preserving validity in adaptive data analysis.

Science 2015; 349(6248): 636–638.

65. Zgraggen E, Zhao Z, Zeleznik R, et al. Investigating the

effect of the multiple comparisons problem in visual

analysis. In: Proceedings of the SIGCHI conference on

human factors in computing systems (CHI ’18), p. 479.

ACM.

66. Eckelt K, Adelberger P, Zichner T, et al. TourDino: a

support view for confirming patterns in tabular data. In:

Proceedings of the EuroVis workshop on visual analytics

(EuroVA’ 19), pp. 7–11.

67. Cherniack AD, Shen H, Walter V, et al. Integrated mole-

cular characterization of uterine carcinosarcoma. Cancer

Cell 2017; 31(3): 411–423.

68. Streit M, Lex A, Gratzl S, et al. Guided visual explora-

tion of genomic stratifications in cancer. Nat Methods

2014; 11(9): 884–885.

Furmanova et al. 23




