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Supplementary Figures 
 

 
 

Supplementary Figure S1. Ordino workflow. The workflow comprises three steps. (1) Select or define a               

list of items consisting of genes, cell lines, or tissue samples. (2) Rank, filter, and select items. (3) Obtain                   

detailed information for selected items. 
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Supplementary Figure S2. Case study 1: Definition of gene list. In the start menu the user can choose                  

predefined sets or previously saved public and private sets as a starting point for the analysis.                

Additionally, one can upload a custom dataset or continue a previous analysis session. 

 

Link to Ordino state shown in this figure: http://vistories.org/ordino-supplementary-figure-2  
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Supplementary Figure S3. Case study 1: Ranking of genes. Gene list with additional score columns,               

which are calculated on the fly. The ranking shows the highest amplification in the cell line HCC1954,                 

located on chromosome 17, affecting about 15 genes, with ERBB2 (HER2) having the highest expression               

level (orange column) and the lowest sensitivity score (green column). Therefore, it is probably the most                

relevant gene of this amplicon. The two aggregated score columns (in red and brown) show that ERBB2 is                  

amplified in almost 25% of all assessed breast cancer cell lines. Further, it is highly expressed. 

 

Link to Ordino state shown in this figure: http://vistories.org/ordino-supplementary-figure-3 
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Supplementary Figure S4. Case study 1: Cell lines ranked by copy number data of ERBB2. The user                 

selects the gene ERBB2 and opens the Copy Number detail view as new focus view. The gene list remains                   

open on the left as context view. The Copy Number view shows that HCC1954 has the highest ERBB2                  

amplification among BRCA1 mutated cell lines and that HCC1569 has the highest ERBB2 amplification              

among BRCA2 mutated cell lines. 

 

Link to Ordino state shown in this figure: http://vistories.org/ordino-supplementary-figure-4 
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Supplementary Figure S5. Case study 1: PubMed information for ERBB2. Users can obtain further              

information for selected items in detail views that load the content from external websites, such as                

PubMed and Open Targets. 

 

Link to Ordino state shown in this figure: http://vistories.org/ordino-supplementary-figure-5 
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Supplementary Figure S6. Case study 2: TCGA tumor samples ranked by average expression. The list of                

TCGA tumor samples shows a clear correlation between the gene expression signature (orange bars) and               

the mutation status of TP53: Of the 50 samples with the highest expression only 3 are TP53 mutated,                  

whereas of the 50 samples with the lowest expression 35 are TP53 mutated (not visible in this figure). 

 

Link to Ordino state shown in this figure: http://vistories.org/ordino-supplementary-figure-6 
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Supplementary Figure S7. Case study 2: Cell lines ranked by weighted sum of two scores. The analyst                 

has added mutation and score columns to the list of cell lines. The combined score of DRIVE RSA values                   

for the gene MDM2 (red bars) and the gene expression signature (TP53 Predictor Score; purple bars)                

correlates with the TP53 mutation status (column AA Mutated). 

 

Link to Ordino state shown in this figure: http://vistories.org/ordino-supplementary-figure-7 
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Supplementary Figure S8. Case study 2: Filtering list of cell lines ranked by weighted sum of two                 

scores. Filtering the list of cell lines for tumor type colon carcinoma reveals that the cell lines MDST8 and                   

NCI-H508 lack TP53 mutation status, but gene expression and DRIVE data are available. MDST8 has a                

very high combined score and is therefore unlikely to be TP53 mutated. NCI-H508, however, has a very                 

low combined score and is therefore probably TP53 mutated. 

 

Link to Ordino state shown in this figure: http://vistories.org/ordino-supplementary-figure-8 
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Supplementary Figure S9. Case study 2: Gene expression detail view showing expression of two genes.               

Opening the Gene Expression detail view shows that the high gene signature expression in the cell line                 

MDST8 is caused mainly by expression of the genes BAX, CDKN1A, and RPS27L. 
 

Link to Ordino state shown in this figure: http://vistories.org/ordino-supplementary-figure-9 
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Supplementary Figure S10. Case study 2: COSMIC detail view. The analyst can browse the information               

available for selected cell lines in a detail view, in this case the corresponding COSMIC page for MDST8. 

 

Link to Ordino state shown in this figure: http://vistories.org/ordino-supplementary-figure-10 
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Supplementary Tables 
 

Supplementary Table S1. Data available for cell lines and tissue samples, with mRNA expression, copy               

number, and mutation status data as well as number of available genes on canonical chromosomes. The                

gene annotation is based on Ensembl Version 70. 

 

Dataset Assay Samples Genes Type 

tissues  12,334   

tissues mRNA-seq expression 10,623 19,959 continuous 

tissues SNP6-array based copy number data 12,035 56,595 categorical and continuous 

tissues DNA sequencing based mutation data 6,795 20,136 categorical 

cell lines  1,013   

cell lines mRNA-seq expression 932 56,495 continuous 

cell lines SNP6-array based copy number data 974 56,595 categorical and continuous 

cell lines DNA sequencing based mutation data 810 up to 20,197 categorical and continuous 

cell lines RNAi depletion screen data (Project     

DRIVE [4]) 

385 7,267 continuous 

cell lines CRISPR-Cas9 depletion screen data    

(Avana CERES [5]) 

330 17,586 continuous 

genes   56,632  
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Supplementary Notes  

Background 

To address the task of prioritizing a collection of items based on a rich set of experimental data and                   

metadata, domain experts use either programming languages, such as R and Python, or tools, such as                

Microsoft Excel, Spotfire, and Tableau.  

Programming languages provide the full flexibility needed for analysis. However, they require substantial             

programming knowledge, and data integration and preparation are time-consuming; even minor           

changes in the analysis can lead to major changes in the code. Furthermore, the output of scripts based                  

on languages such as R and Python is usually static, which severely limits the exploratory nature of the                  

analysis.  

Powerful general-purpose tools such as Tableau and Spotfire can be too difficult to use for a non-expert                 

and have limitations with respect to the aggregation and visualization of genomics data.  

Spreadsheet tools, such as Microsoft Excel and Google Spreadsheets, are not designed for handling              

larger genomics datasets. Further, neither of these allows detailed information about individual cell lines              

or genes to be retrieved in an interactive manner. 

 

Visual Analysis Workflow 

The Ordino analysis workflow consists of three steps, as outlined in Supplementary Fig. S1. 

Step 1: Define List of Items 

The user starts the analysis by defining a set of items. The item set can be determined by manually                   

entering a list of identifiers (e.g., a list of gene symbols), by selecting a previously saved or predefined list                   

of items, or by uploading a comma-separated file (Supplementary Fig. S2).  

Step 2: Rank, Filter, and Select Items 

A core component of the Ordino system is the interactive visualization technique LineUp             

(http://lineup.caleydo.org) [1], which allows users to flexibly create and explore rankings of items based              

on a set of heterogeneous attributes. The exploration is supplemented with filtering features, such as               

setting cutoff values for numerical attributes, specifying a string or regular expression for textual              

columns, and specifying one or more categories in categorical attributes. In addition, users can change               

the visual representation of columns on demand. Numerical attributes, for instance, can be visualized              

using bars, varying brightness, or as circles whose sizes are proportional to the data values.  

As a starting point, Ordino presents the list of items selected in Step 1 as a table containing metadata                   

attributes specific to the item type. For genes, the default columns are gene symbol, Ensembl ID,                

chromosome, and biotype (Supplementary Figure S3). For cell lines and tissue samples, the default              

columns are name, tumor type, organ, and gender (Supplementary Figure S6). Initially, gene lists are               

sorted alphabetically by gene symbol, and lists of cell lines and tissue samples by their name. Further                 

columns can be added by clicking on the plus icon shown on the right-hand side of the interface                  

(Supplementary Fig. S3). 
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Ordino supports the following column types:  

● Database columns contain metadata about genes (such as biotype, chromosome, Ensembl ID,            

name, sequence region start & end, strand, and gene symbol), cell lines (age at surgery, gender,                

growth type, histology type, metastatic site, morphology, name, organ, and tumor type), and             

tissue samples (age, body mass index (BMI), days to death, days to last follow up, ethnicity,                

gender, height, name, organ, race, tumor type, tumor type adjacent, vendor name, vital status,              

and weight).  

● Parameterized Score columns. Depending on the item type of the main table, users can add               

single score columns by specifying a single item (gene, cell line, or tissue sample) together with                

the data attribute of interest (e.g., expression, copy number, or mutation). The following single              

scores are available: 

○ For genes: single tissue-sample score, single cell-line score, and single depletion-screen           

score. 

○ For cell lines: single gene score and single depletion-screen score. 

○ For tissue samples: single gene score.  

In addition to single score columns, the values of which are loaded directly from the the Ordino                 

database, users can define aggregations of multiple items that are calculated on the fly by the                

Ordino server. To define an aggregation, users must specify (1) the set of items on whose basis                 

the aggregation will be calculated (either by selecting previously stored named sets, by entering              

lists of items, or by selecting categorical attributes, such as the tumor type of cell lines), (2) the                  

data type (expression, copy number, mutation, and depletion screen), and (3) the aggregation             

function (average, median, min, max, box plot, frequency, and count). The following aggregated             

scores are available: 

○ For genes: aggregated tissue-sample score, aggregated cell-line score, and aggregated          

depletion-screen score. 

○ For cell lines: aggregated gene score and aggregated depletion-screen score. 

○ For tissues samples: aggregated gene score.  

● Combining columns allow users to combine the content of multiple columns by dragging the              

header of single columns onto the combined column header. Users can create weighted sum              

columns, which are visualized as stacked bars highlighting the contribution of individual            

attributes to the total score, min/mean/max combination columns, which show only the            

minimum, mean or maximum of all combined columns, scripted columns, for which users can              

define how individual columns are to be combined using JavaScript, nested columns for             

semantically grouping multiple columns, and imposition columns, which color numerical          

columns by a categorical attribute. 

● Uploaded columns allow users to fuse external data to the currently shown table. The data can                

be loaded from a comma-separated file in which the first column contains the unique identifier               

of the primary identifier in the table, followed by one or multiple columns holding the data to be                  

integrated. The system automatically detects common annotations, such as gene symbols and            

Ensembl IDs. 

  

 

14  



Step 3: Obtain Detailed Information  

Users can select one or more items in a ranking table for exploration using a collection of detail views.                   

The detail views offered to the user depend on the type of items selected. The publicly deployed version                  

of Ordino includes the following detail views:  

● Database Info view for showing metadata stored in the database for all selected items. The               

information is represented as a table containing a row for each database attribute and a column                

for each selected item. 

● Expression view, Copy Number view, and Mutation view visualizing experimental data for the             

currently selected items with the ranking visualization technique described in Step 2 of the              

analysis workflow. 

● Combined view is a specialized ranking view that is able to show copy number, expression, and                

mutation data in combination.  

● Expression vs. Copy Number view showing a scatterplot for each selected gene with copy              

number mapped to the x-axis and expression to the y-axis (cf. Step 3 in Supplementary Fig. S1).                 

The analyst can determine via a drop-down list whether the scatterplot shows cell lines or tissue                

samples. Dots in the plots can be colored by preloaded categorical attributes, such as tumor               

type, gender and organ.  

● Co-Expression view for comparing the expression of multiple selected genes. If multiple genes             

are selected, one plot is shown for each combination. Analogously to the Expression vs. Copy               

Number view, the dots represent either cell lines or tissue samples and can be colored by                

categorical attributes. 

● OncoPrint view showing a horizontal series of colored blocks (glyphs) for each gene selected.              

Depending on the chosen data subset, each block represents a cell line or tissue sample. The                

background color of the blocks indicates the copy number status (pink=amplification, blue=deep            

deletion, gray=normal, white=unknown), while the small block contained visualizes the mutation           

status (green=mutated, gray=non mutated, white=unknown) of a cell line or tissue sample. 

● External resource views loading the content of external websites. For selected genes, the user              

can look at the information available on canSAR, Ensembl, Human Protein Atlas, Open Targets,              

PubMed, and UniProt. For cell lines, the analyst can load the information available on COSMIC               

(Catalogue Of Somatic Mutations In Cancer). 

 

Implementation and Availability 

Ordino is publicly available at https://ordino.caleydoapp.org and best viewed in Google Chrome            

browsers. The source code is freely available at https://github.com/Caleydo/ordino. 
Ordino is based on the extensible Phovea platform (http://phovea.caleydo.org). The web client is             

implemented in TypeScript and the server in Python. The source code is open source under the Mozilla                 

Public License (MPL) and hosted on Github. The public version of the system is deployed on AWS                 

(Amazon Web Services) infrastructure using docker images (https://www.docker.com). 
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Data Processing & Integration 

The publicly deployed Ordino instance contains the following data sets (Supplementary Table S1): 
● The Cancer Genome Atlas (TCGA) https://cancergenome.nih.gov:  

Gene expression, mutation, and copy number data 

● Cancer Cell Line Encyclopedia (CCLE) https://portals.broadinstitute.org/ccle [3]:  

Gene expression, mutation, and copy number data 

● Project DRIVE [4]: RNAi depletion-screen data (RSA and ATARiS) 

● Avana CERES [5]: CRISPR-Cas9 depletion-screen data 

 

TCGA Sample Selection 

All TCGA samples from cBioPortal stage files (downloaded on Sept 29th, 2016) and all samples from the                 

Firehose release 2016-01-28 were included, except for the sample cohorts COADREAD, FPPP, GBMLGG,             

KIPAN, STES, since these are combined or experimental cohorts. 

 

TCGA Metadata 

The R package TCGAbiolinks (Version 2.5.9) [6] was used to extract sample and patient information for                

TCGA samples by using a custom-made R script. 

 

TCGA Gene Expression Data 

TCGA data was downloaded from Firehose (https://gdac.broadinstitute.org) using the version          

2016_01_28 stddata between March 11th and March 16th, 2016. Expression data computed by             

RSEM and represented in tau values were extracted from the archives with the base name               

*CANCER.Merge*__illumina*_rnaseqv2__*RSEM_genes__data.Level_3*tar.gz , 
where CANCER resolves to all cancer types. Gene expression values were converted to TPM values with                

the equation TPM = tau * 1e6. Gene names were split into gene identifier and gene symbols. All gene                   

information was mapped to Ensembl 70 gene identifiers using the following procedure: (i) assign all               

genes for which there is a unique 1:1 correspondence between gene id and gene ids reported by                 

Ensembl, (ii) assign remaining genes if their gene ids and gene symbols map 1:1, and (iii) map remaining                  

genes if their gene ids and symbols map 1:1 after excluding the following gene types: pseudogene,                

lincRNA, sense. The mapping rate was 19,959/20,531 (97.2%) with respect to mapping genes from the               

original source. With respect to the samples, only samples of types 1 (Primary solid Tumor), 3 (Primary                 

Blood Derived Cancer - Peripheral Blood), or 11 (Solid Tissue Normal) were kept in the final output. For                  

about 20 samples, more than one aliquot or sequencing result (Illumina HiSeq or GA) was available. In                 

these cases, either the HiSeq sequencing result was taken or the first occurrence in the file in case of a                    

tie situation. 

 

TCGA Mutation Data 

cBioPortal stage files were downloaded on Sept 29th, 2016, and subsequently parsed using a              

custom-made R script. Additional parsing was necessary, as the transcript for which TCGA reports              
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mutations (column Transcript_ID ) did not necessarily match the canonical Ensembl transcript.           

Column “all_effects” of the stage files contains the Variant Effect Predictor (VEP) annotation for              

additional Ensembl transcripts, which we split on the default delimiter character (“;”) and inserted into               

the database. This additional step allowed us to align the mapping between gene symbol and canonical                

Ensembl transcript ID between CCLE and TCGA. 

 

TCGA Copy Number Data 

TCGA SNP6 copy number segmentation data was downloaded from Firehose          

(https://gdac.broadinstitute.org) using version 2016_01_28 stddata between March 11th and         

March 16th 2016. The segmentation information was obtained from the files *snp*seg.txt stored in              

the archives *.Merge_snp_*cnv_hg19*.Level_3*gz . 
Gene-wise copy numbers were determined by overlapping the segmentation information with Ensembl            

70 gene annotation. If a gene was covered by a single segment, the copy number of the segment was                   

assigned to the gene. If a gene was covered by multiple segments, a weighted average copy number was                  

computed based on the size of the overlap between the gene and each segment. 

Relative copy numbers <= 1.0 were considered as “deep deletion”, and relative copy numbers >= 3.5                

were considered as “amplification”. 

 

CCLE Metadata 

Cell line names and descriptions (organ of origin, metastatic site, histology type, morphology, growth              

type, gender, and age at surgery) were taken from the provider’s cell-line data sheet. If a cell line was                   

available from various vendors, the cell-line name was taken from the top rank in a hierarchy of vendors                  

in the following order: atcc, dsmz, ecacc, jcrb, iclc, riken, kclb. A controlled vocabulary of 30 tumor types                  

was derived from the cell-line annotation and assigned to the cell lines with the help of a pathologist. 

 

CCLE Gene Expression Data 

CCLE BAM files were downloaded from https://cghub.ucsc.edu/ using gtdownload in March 2014. BAM             

files were converted to FASTQ files using SAMtools 0.1.19, bedtools 2.20.1, and the FASTX-Toolkit 0.0.14               

as follows: secondary and vendor failed alignments were excluded from the input BAM files, and               

alignments were shuffled. BAM files were converted to paired-end FASTQ files length-trimmed to 100 bp               

per read. 

All 935 pairs of FASTQ files were then individually aligned to the human genome (hs37d5) using GSNAP                 

version 2012-12-20 together with splice-site information as well as SNP data from the 1000 Genomes               

Project Phase I (parameters: gsnap $readgroup -A sam --ordered -n 50 -N 1 -t              

$threads --gunzip -D $gsnapDB -d $gsnapName -s $spliceiit -V $snpDB          

-v $snpName --show-refdiff --sam-use-0M $r1 $r2 ). Gene and transcript         

quantification was performed using Cufflinks version 2.0.2 (parameters: cufflinks -u -p           

$threads -o $fpkmout --max-bundle-frags 999999999     

--no-effective-length-correction --compatible-hits-norm  

--max-frag-multihits 1 -G $gtf $output.bam ) and the human gene annotation from           

Ensembl 70. The resulting BAM file with mapped reads was sorted by read names using the SAMtools                 
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version 1.0 and used as input to HTSeq version 0.5.3p9 to summarize read counts over gene models                 

(parameters: samtools view -h -f 0x2 $output.namesorted.bam | htseq-count         

--quiet --idattr gene_id --type exon -a 20 --stranded no --mode          

intersection-strict - $GTF > $output.counts ). Various quality control measurements         

were performed using the following tools: Picard tools version 1.64, RSeQC version 2.3.5, R version 3.0,                

and FastQC version 0.10.0. 

 

CCLE Mutation Data 

Variant calling of cell lines followed community best practices. The reads were aligned using BWA version                

0.5.8 (parameters: -q 10 ) against the reference genome hg19 including decoy sequences (hs37d5),             

followed by base recalibration and indel realignment and subsequent variant calling using GATK version              

1.6. and filtering for artefacts such as polymerase slippage in homopolymer regions, strandness of              

detected variants, and overall quality. Variants were annotated based on Ensembl 70, and putative              

germline variation was flagged using external data sets such as dbSNP v135 and data from the 1000                 

genomes consortium. Putative alignment artefacts were filtered out using a mutation blacklist derived             

from the Sanger COSMIC Cell line Project VCF files (v70), for which putative artefacts/germline variation               

is flagged in the VCF files. We computed coverage statistics for each gene in each sample: In the absence                   

of a mutation, we called a gene wild-type if and only if at least 80% of bases of the gene body (excluding                      

the first exon) were sufficiently covered, and NA otherwise. 

 

CCLE Copy Number Data 

SNP6 CEL files were downloaded from https://cghub.ucsc.edu/ in October 2012. Relative copy number             

segments were computed using the R package aroma.affymetrix version 2.13.0 [7-9]: the SNP6             

data was processed with the method CRMA v2 followed by CBS segmentation. Afterwards, the copy               

number segments were overlapped with Ensembl 70 gene annotation analogously to the TCGA             

processing in order to obtain gene-wise relative copy number values. “Amplification” and “deep             

deletion” status were also assigned as in the TCGA processing. 

Absolute copy number segments were computed using PICNIC version c_release 2010-10-29 [10] with             

reference files adapted for reference genome hg19 and default parameters. The resulting segments were              

overlapped with Ensembl 70 gene annotation as in the TCGA processing in order to obtain gene-wise                

absolute copy number values. 

 

DRIVE Data  

DRIVE (deep RNAi interrogation of viability effects in cancer) is a large shRNA screen of ~8000 genes and                  

~400 cancer cell lines [4]. Raw data and processed RSA and ATARIS scores were transferred via email by                  

the authors. siRNAs targeting multiple genes were discarded. Gene symbols were translated into             

Ensembl stable identifiers for genes by using the official gene symbol provided by the Ensembl database                

Version 70. Cell-line names are identical to CCLE cell-line names and were translated to the Boehringer                

Ingelheim cell-line nomenclature. 
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Avana Data  

The Avana single guide RNA (sgRNA) library was used in a large CRISPR/Cas9 loss-of-function screen [5]                

of ~340 cell lines and ~17,500 genes. Processed CERES scores (representing the estimated gene knockout               

effects) were taken from the supplement. Gene symbols were translated into Ensembl gene identifiers              

using the official gene symbol provided by the Ensembl database Version 70. As for the DRIVE data set,                  

CCLE cell-line names were used to translate cell-line identifiers into Boehringer Ingelheim’s cell-line             

names. 

 

Case Study 1: Assessment and Selection of Breast Cancer Cell Lines 

This case study summarizes an analysis session carried out by a scientist working in a drug discovery                 

team at a pharmaceutical company. In order to identify potential drug targets in a set of tumor types,                  

the analyst performs experiments with cancer cell lines—cultured cells that are derived from tumors and               

that can proliferate indefinitely in the laboratory. These cell lines are characterized by various properties,               

such as tumor type (lung cancer, prostate cancer, etc.) and the set of genes that are mutated, deleted, or                   

amplified. 

In this case study, the analyst first wants to identify the most relevant amplified genes in the breast                  

cancer cell line HCC1954. Based on these results, the analyst then wants to study a larger set of breast                   

cancer cell lines. 

The scientist starts by loading the list of all protein coding genes and adding a column with the relative                   

copy number information for the cell line HCC1954. After sorting by this column, the analyst observes                

that about 15 genes on chromosome 17 are affected by a large genomic amplification. In order to                 

identify the most relevant gene of these, the analyst adds a column with the gene expression (a measure                  

of activity) in HCC1954 as well as a gene sensitivity score (a measure of importance for cell survival) for                   

HCC1954 (RSA scores obtained from DRIVE data set [4]). The assumption is that amplified cancer genes                

are highly expressed and that cell lines are sensitive to their removal. Of the highly amplified genes,                 

ERBB2 (also known as HER2) has the highest expression and the most significant sensitivity score, which                

becomes even more obvious when combining the two columns as stacked bars. It is therefore probably                

the most relevant gene within this amplified genomic region. 

This finding leads the scientist to the question whether ERBB2 is also highly expressed and frequently                

amplified in other breast cancer cell lines. To investigate this, the analyst adds a column with the average                  

gene expression, a column with the gene copy number distribution, and a column with the gene                

amplification frequency across all breast cancer cell lines. He observes that ERBB2 is amplified in almost                

25% of all assessed breast cancer cell lines and that it is often highly expressed. 

In order to obtain additional information about this gene, the analyst selects it and opens a series of                  

detail views. Based on the the Expression vs. Copy Number detail view, the analyst notices that there is a                   

clear correlation between copy number and expression of ERBB2 (the higher the copy number, the               

higher the expression). The Open Targets detail view provides further information about the gene, for               

instance, the corresponding protein structure and a list of drugs that target ERBB2. 
Next, the scientist is interested in obtaining a list of breast cancer cell lines that have both an ERBB2                   

amplification and either a BRCA1 or BRCA2 mutation (BRCA1 and BRCA2 are highly relevant genes in the                 

context of breast cancer). To this end, the analyst opens the Copy Number detail view, filters the cell                  
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lines for the tumor type “breast cancer” and sorts the remaining cell lines by their ERBB2 copy number.                  

After adding columns for BRCA1 and BRCA2 mutations, the scientist observes that HCC1954 has the               

highest ERBB2 amplification among BRCA1 mutated cell lines and that HCC1569 has the highest ERBB2               

amplification among BRCA2 mutated cell lines. Finally, in order to obtain further information about these               

two cell lines, the scientist selects them, opens the COSMIC detail view, and browses the available data. 

Analysis Steps and Observations 

Question: What are the most amplified genes in breast cancer cell line HCC1954? 

● Open list of all protein-coding genes 

● Add single cell-line score 

○ Cell line: HCC1954 

○ Data type: Relative Copy Number 

● Sort by copy number column 

● Observe: Highest amplification on chromosome 17, affecting about 15 genes 

 

Question: Which of these genes is the most relevant? 

● Add single cell-line score 

○ Cell line: HCC1954 

○ Data type: Expression (TPM) 

● Add single depletion-screen score 

○ Cell line: HCC1954 

○ Data type: DRIVE RSA (NB: the lower this value, the more sensitive a cell line is to the                  

depletion of a specific gene) 

○ Note that his data is only available for a subset of genes. 

● Invert depletion screen score (large bars represent small (very negative) values) 

● Observe: Of the highly amplified genes, ERBB2 (HER2) has the highest expression and the lowest               

sensitivity score. Therefore, it is probably the most relevant gene of this amplicon. 

● Combine both score columns to obtain stacked bars 

● Observe: Combining the columns highlights the importance of ERBB2  

 

Question: Is ERBB2 also highly expressed and frequently amplified in other breast cancer cell lines? 

● Add aggregated cell-line score 

○ Tumor type: breast carcinoma 

○ Data type: Expression (TPM) 

○ Aggregation: Average 

● Add aggregated cell-line score 

○ Tumor type: breast carcinoma 

○ Data type: Relative Copy Number 

○ Aggregation: Boxplot 

● Add aggregated cell-line score 

○ Tumor type: breast carcinoma 

○ Data type: Relative Copy Number 

○ Aggregation: Frequency (> 4) 
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● Observe: ERBB2 is amplified in almost 25% of all assessed breast cancer cell lines. Further, it is                 

highly expressed. 

 

Aim: Get more information about ERBB2 

● Select ERBB2 

● Open Expression vs. Copy Number detail view 

● Observe: direct correlation between copy number and expression of ERBB2 

● Open Open Targets detail view 

● Open Pubmed detail view 

 

Question: In what cell lines is ERBB2 amplified? Select cell lines with ERBB2 amplification that have                

mutation in BRCA1 or BRCA2. 

● Open Copy Number detail view 

● Sort by copy number 

● Filter for breast cancer via column menu of column tumor type (also filter out cell lines with                 

unknown tumor type) 

● Add single gene score 

○ Genes: BRCA1, BRCA2 

○ Data type: AA mutated 

● Observe: HCC1954 has the highest ERBB2 amplification among BRCA1 mutated cell lines.            

HCC1569 has the highest ERBB2 amplification among BRCA2 mutated cell lines. 

 

Aim: Show information provided by COSMIC about these two cell lines 

● Select HCC1569 and HCC1954 

● Open COSMIC detail view 

● Use the drop-down menu to switch between the two cell lines 
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Case Study 2: Prediction of TP53 Mutation Status 

This case study summarizes another analysis session carried out by a research scientist working in a drug                 

discovery team at a pharmaceutical company. In order to identify potential drug targets in a set of tumor                  

types, the analyst performs experiments with cancer cell lines—cultured cells that are derived from              

tumors and that can proliferate indefinitely in the laboratory. These cell lines are characterized by               

various properties, such as tumor type (lung cancer, prostate cancer, etc.) and the set of genes that are                  

mutated. One very important gene in the context of cancer is TP53. It encodes the p53 protein, whose                  

presence is known to suppress the uncontrolled division of cells. However, when TP53 is              

mutated—which is the case in over 50% of cancer patients—it can lose its suppressing function, which                

results in tumor growth. Due to its important role, scientists want to know whether TP53 is mutated in a                   

set of cell lines. However, the mutation status of TP53 is not always known. It has recently been shown                   

that the mean expression level (expression is a measure of the activity of genes) of 13 genes that are                   

biologically related to TP53 is correlated with its mutation status. The expression level of these genes can                 

therefore be used to predict the mutation status of TP53 [11]. Furthermore, it has been shown that in                  

many TP53 non-mutated cell lines, the p53 protein is downregulated through interaction with the              

protein MDM2. As a consequence, these cell lines are in many cases dependent on the expression of                 

MDM2. A downregulation of MDM2 can result in re-activation of p53 and therefore in the induction of                 

cell death. Hence, cell lines that react sensitively to the removal of MDM2 are often TP53 non-mutated,                 

and thus this sensitivity can also be used as a predictor. 

In this case study, the analyst first wants to find out how well these two predictors work for the samples                    

contained in the database. Secondly, the analyst wants to predict the TP53 mutation status for colon                

carcinoma cell lines for which this information is not available in the database, and seeks further                

information about the cell lines. 

After creating a set containing the 13 TP53 status prediction genes [11], the analyst loads the list of all                   

TCGA tumor samples, filters for the tumor type colon adenocarcinoma, adds a column showing the TP53                

mutation status, and removes all samples for which the mutation status is unknown. Furthermore, the               

analyst loads the average expression of the 13 genes. After sorting by the gene expression level, the                 

scientist observes that there is a clear correlation between the gene expression signature and the               

mutation status of TP53: Of the 50 samples with the highest expression only 3 are TP53 mutated,                 

whereas of the 50 samples with the lowest expression 35 are TP53 mutated. 

The scientist continues the analysis by assessing human cell lines. After loading the list of all available cell                  

lines, the analyst adds columns for the TP53 mutation status, the average expression of the 13 genes,                 

and the MDM2 sensitivity data (RSA score from DRIVE data set [4]; a small value indicates high                 

sensitivity). The scientist observes that there is a clear enrichment for TP53 non-mutated among the cell                

lines with highest average expression. Furthermore, the MDM2 RSA values are clearly correlated with              

the average expression score and the TP53 mutation status. Based on these observations, the analyst               

concludes that both predictors are working reasonably well. In order to further improve the TP53               

mutation status prediction, the scientist combines the average expression and the MDM2 RSA score,              

observing that the combined score correlates even better with the TP53 mutation status than the               

individual scores. 

Since the scientist is particularly interested in colon carcinoma, he limits the set of cell lines to this tumor                   
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type and observes that the joint predictor also works well for this subset. 

Finally, the analyst wants to predict the TP53 mutation status for colon carcinoma cell lines for which this                  

information is not available in the database. The scientist includes cell lines for which no TP53 mutation                 

informations is available. The data set used contains two colon carcinoma cell lines that lack TP53                

mutation status and for which gene expression and DRIVE data is available: MDST8 has a very high                 

combined score and is therefore probably TP53 non-mutated. NCI-H508 has a very low combined score               

and is therefore probably TP53 mutated. In order to assess which genes contribute most to the                

expression-based TP53 predictor score, the scientist opens the Expression detail view and observes that              

the high average expression value in MDST8 can be attributed mainly to the expression of BAX, CDKN1A,                 

and RPS27L. Finally, the scientist opens the COSMIC detail view to obtain further information about the                

cell lines. 

 

Analysis Steps and Observations 

Aim: Create gene set for the 13 genes of the expression signature 

● Paste the following list of genes into the gene input field on the welcome page and click “Save”: 

AEN, BAX, CCNG1, CDKN1A, DDB2, FDXR, MDM2, RPS27L, RRM2B, SESN1, TNFRSF10B, XPC,            

ZMAT3 

● Name set TP53 Predictor 

 

Aim: Test applicability of gene signature using TCGA tumor samples 

● Open list of all TCGA tumors 

● Filter tumor type colon adenocarcinoma 

● Add single gene score 

○ Gene: TP53 

○ Data type: AA mutated 

● Filter out samples with unknown TP53 mutation status 

● Add aggregated gene score 

○ Filter: My Named Sets = TP53 Predictor 

○ Data type: Expression (TPM) 

○ Aggregation: Average 

○ Compute score only for current sample subset 

● Sort by gene expression column 

● Observe: There is a clear correlation between gene expression signature and mutation status of              

TP53: Of the 50 samples with the highest expression only 3 are TP53 mutated, whereas of the 50                  

samples with the lowest expression 35 are TP53 mutated. 

 

Aim: Test applicability of gene signature and MDM2 sensitivity using all cell lines  

● Open list of all cell lines from the start menu 

● Add single gene score 

○ Gene: TP53 

○ Data types: AA Mutated and AA Mutation 

● Filter out cell lines with unknown TP53 mutation status 
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● Add aggregated gene score 

○ Filter: My Named Sets = TP53 Predictor 

○ Data type: Expression (TPM) 

○ Aggregation: Average 

○ Compute scores for all cell lines, not only selected subset (i.e., uncheck option) 

● Rename “avg TPM” to “TP53 Predictor Score” 

● Filter out missing values 

● Sort by TP53 predictor score 

● Observe: There is a clear enrichment of TP53 non-mutated among the cell lines with high score.  

● Add single depletion-screen score 

○ Gene: MDM2 

○ Data type: DRIVE RSA (NB: the lower this value, the more sensitive a cell line is to the                  

depletion of the gene of interest) 

● Invert score so that large bars represent small (very negative) values 

● Filter out missing values 

● Sort by MDM2 RSA score 

● Observe: Small MDM2 RSA values (large bars) are correlated to the expression score (TP53              

predictor score) and the TP53 mutation status 

● Combine the two score columns by dragging one column onto the other, which results in a                

weighted sum column 

● Sort by the combined column 

● Observe: Combined score correlates even better with TP53 mutation status than individual            

scores. 

 

Aim: Assess predictors in colon carcinoma cell lines 

● Filter for tumor type colon carcinoma 

● Observe: Combined score correlates well with TP53 mutation status for colon carcinoma cell             

lines. 

● Conclusion: The TP53 target score as well as the MDM2 RSA score can be used to predict a TP53                   

mutation status of cell lines for which it is not available. 

 

Aim: Predict TP53 mutation status for colon carcinoma cell lines for which this information is not                

available in the database and assess which genes contribute most to the TP53 predictor score.               

Furthermore, obtain additional information from COSMIC about these cell lines. 

● Include cell lines with unknown TP53 mutation status. 

● Observe: The data set used contains two colon carcinoma cell lines that lack TP53 mutation               

status and for which gene expression and DRIVE data is available: MDST8 has a very high                

combined score and is therefore probably TP53 non-mutated. NCI-H508, however, has a very             

low combined score and is therefore probably TP53 mutated. 

● Select the two cell lines and open Expression detail view 

● Observe: The high average expression value in MDST8 is caused mainly by the expression of BAX,                

CDKN1A, and RPS27L 

● Open COSMIC detail view and browse available information 
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