
KnowledgePearls: Provenance-Based Visualization Retrieval

Holger Stitz, Samuel Gratzl, Harald Piringer, Thomas Zichner, and Marc Streit

Fig. 1. Our Gapminder -inspired prototype implemented in Vega (a) with a captured provenance graph (b) consisting of three stories
from Hans Rosling’s presentations. Users can query the provenance graph for visualization states using the search side panel (c).

Abstract— Storing analytical provenance generates a knowledge base with a large potential for recalling previous results and guiding
users in future analyses. However, without extensive manual creation of meta information and annotations by the users, search and
retrieval of analysis states can become tedious. We present KnowledgePearls, a solution for efficient retrieval of analysis states that
are structured as provenance graphs containing automatically recorded user interactions and visualizations. As a core component, we
describe a visual interface for querying and exploring analysis states based on their similarity to a partial definition of a requested
analysis state. Depending on the use case, this definition may be provided explicitly by the user by formulating a search query or
inferred from given reference states. We explain our approach using the example of efficient retrieval of demographic analyses by
Hans Rosling and discuss our implementation for a fast look-up of previous states. Our approach is independent of the underlying
visualization framework. We discuss the applicability for visualizations which are based on the declarative grammar Vega and we use
a Vega-based implementation of Gapminder as guiding example. We additionally present a biomedical case study to illustrate how
KnowledgePearls facilitates the exploration process by recalling states from earlier analyses.

Index Terms—Visualization provenance, interaction provenance, retrieval.

1 INTRODUCTION

Visual exploration is a time-consuming and complex process. A single
analysis session can consist of hundreds of individual steps. Over the

• Holger Stitz, Samuel Gratzl, and Marc Streit are with Johannes Kepler
University Linz, Austria. E-mail: {firstname.lastname}@jku.at.

• Samuel Gratzl is with datavisyn GmbH, Austria.
E-mail: samuel.gratzl@datavisyn.io.

• Harald Piringer is with VRVis Research Center, Austria.
E-mail: hp@vrvis.at.

• Thomas Zichner is with Boehringer Ingelheim RCV GmbH & Co KG,
Austria. E-mail: thomas.zichner@boehringer-ingelheim.com.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

past two years, we developed—together with our collaboration partners
at a pharmaceutical company—a data-driven visual analysis system
for identifying and prioritizing drug targets. All interactions within
a session are tracked in a provenance graph. Capturing sessions in
provenance graphs not only ensures reproducibility of findings, but
also provides a growing knowledge base of the overall analysis state
of the explored datasets. Further, visual exploration is usually not
performed by a single domain expert alone but by a team in which each
expert analyzes the dataset individually. To avoid repetitive analyses
that do not lead to new findings and to increase the confidence in
potential findings when identified by multiple experts independently,
effective recall of captured provenance information becomes crucial. In
addition to retrieval purposes, the growing knowledge base can be used
to guide future analysis sessions by identifying unexplored areas of
the exploration landscape. In this paper, we present a novel search and
retrieval concept for visualization states stored in a provenance graph.



A visualization state is a snapshot of properties, including data
properties, visual properties, and interaction properties as attribute-
value pairs, at a certain juncture during analysis. The composition
of properties depends on application, visualization types used, and
interactions supported. Changing one or multiple properties creates a
new visualization state that is pushed into the provenance graph.

Ragan et al. [29] characterize provenance information by type and
purpose. According to their organizational framework, our approach
operates on interaction provenance, which contains the history of user
interactions with the system, and the tightly coupled visualization
provenance, which comprises the history of visualization states. Knowl-
edgePearls is designed to allow users to recall states visited in the
analysis history. In addition, we see the purpose of our work extending
to user guidance.

Our primary contribution is a solution for efficient retrieval of visual
analysis states that are structured as provenance graphs of automatically
recorded user interactions and visualizations. As a secondary contribu-
tion, we propose guidelines and requirements for existing visualization
systems to support provenance tracking and retrieval and explain the
integration of KnowledgePearls into a dashboard defined in the Vega
visualization grammar [32].

At a glance, KnowledgePearls allows users to specify a search query
either by definition (i.e., data attributes, selected items) or by example
(i.e., from an active visualization state). All query aspects can be
weighted based on user interest. To provide more meaningful search
results, matching subsequent visualization states are grouped into state
sequences (resembling a pearl necklace). We argue that this approach
has the potential to minimize redundant analyses and to accelerate the
process of analyzing the data.

We introduce KnowledgePearls and its integration using a Gap-
minder-inspired prototype implemented in Vega as guiding example.
The loaded provenance graph contains all interactions Hans Rosling
performed with the original Gapminder software in three different
presentations 123. Additionally, we demonstrate the scalability and
effectiveness of our solution in a case study carried out by collaborators
working in the field of cancer drug discovery.

2 DESIGN OBJECTIVES

Based on literature reviews, interviews with our domain experts, and
our own experience with provenance information in the context of
visual analysis, we elicited a set of design objectives that an effective
provenance-based retrieval approach should support.

O1 Support Heterogeneous Properties. A visualization state can
contain properties with different data types, for instance, numerical
or categorical. The retrieval approach must take this heterogeneity
of data types into account when looking for matching visualization
states.

O2 Support Fuzzy Search. Most provenance retrieval approaches
support binary search that considers exact matches only. This
limits the number of search results tremendously, but has the disad-
vantage of displaying only results of equal importance. However,
users might be interested in search results that match the formu-
lated query only partially. The output of such a fuzzy search is a
collection of search results with varying importance.

O3 Consider Inherent Temporal Coherence. Each interaction leads
to a new visualization state in the provenance graph. Due to tem-
poral coherence, adjacent states of the same interaction sequence
are typically very similar. In the case of a plain retrieval, all these
similar states would be listed as separate search results, cluttering
the result list. To alleviate this scalability problem, the retrieval
approach should support appropriate aggregation and clutter reduc-
tion techniques.

With these objectives in mind we developed KnowledgePearls, a
novel provenance-based retrieval process.

1Presentation by Hans Rosling, The Best Stats You’ve Ever Seen, 2007.
2Presentation by Hans Rosling, 200 Countries, 200 Years, 2010.
3Presentation by Hans Rosling, Religions and Babies, 2012.

3 RELATED WORK

Information retrieval (IR) can be divided into two main parts: (1)
building the search index from the input data, and (2) the retrieval
process, which is targeted at finding items based on a search query.
Depending on the data structure and the number of items, a broad
variety of search capabilities and visual interfaces are available.

3.1 Index and Provenance

During the indexing phase, the IR system identifies and extracts features
from the input data, and stores them for later retrieval. Features are,
for instance, representative keywords describing a text document or
tags and labels describing the content of an image or a video. Features
of visualizations can be extracted in many ways, e.g., based on data
metrics, image metrics, and parameters of the visualization pipeline
(see Section 4.1). In general, indexing becomes easier and achieves
better results for highly structured input data. Visualization grammars,
as proposed by Wilkinson [45] or systems such as Vega [32, 33]/Vega
Lite [31], or Polaris/Tableau [24, 42, 43], describe the visualization in a
standardized and structured way. Hence, they are well suited to index
and retrieval of visualizations. However, these grammars can represent
only a snapshot of a visualization and offer limited interactions during
the visual analysis, which form a valuable knowledge base for future
exploration and recall [37]. Storing changes and interactions over time
creates an interaction history [12, 19]. Capturing changes on additional
levels results various types of provenance information [29] (e.g., data,
visualization, and interaction provenance) that can also be used for
retrieval purposes.

Provenance tracking, storage, and retrieval has also been an active
research topic in the database community. Recent surveys by Her-
schel et al. [16] and Pérez et al. [28] summarize the state-of-the-art.
However, most of the works focus on efficient algorithms to store and
retrieve information, while the visualization of and interaction with the
search results play a tangential role.

Khan et al. [18] propose a framework that records users search ac-
tivities in an enterprise file repository. Users can explore the evolving
search provenance graph by setting a time range and exploring the col-
lection of matching files in a detail view. Their approach demonstrates
how provenance can be used to improve search queries. However, the
approach is not directly applicable to visualization retrieval, since files
contain large amounts of unstructured text that require building and
maintaining ontologies—which do not yet exist for visualization. Fur-
ther, we focus on utilizing the inherently incremental characteristics of
visualization states (O3).

Another exception in provenance retrieval is the well-studied field
of workflow provenance graphs [41]. Due to workflow modifications
or multiple executions with different parameters or input datasets, this
type of provenance graph can rapidly grow very complex. Index and
retrieval of workflow provenance have been discussed in work by
Frew et al. [11] and Biton et al. [5]. Workflow provenance graphs,
however, are very different from visual exploration provenance graphs.
Workflows are pipelines of tools and files forming a graph structure.
While in workflow provenance graphs multiple tools or input files are
modified between two pipeline executions, the properties of visualiza-
tion states are changing incrementally (O3).

3.2 Retrieval

Once the input data is available in the search index, users can start
formulating search queries and sending them to the IR system for com-
parison with the index. We identified three strategies for formulating a
search query:

1. Query by Definition. Queries can be created by selecting facets or
classifications, by formulating a statement in system language, or
via natural language.

2. Query by Example. Queries are implicitly defined by the user by
selecting or creating an example. The query is then derived from
the example.

https://youtu.be/usdJgEwMinM
https://youtu.be/jbkSRLYSojo
https://youtu.be/ezVk1ahRF78


3. Query by Perception. Users have a mental model of the query and
interactively explore the data for possible results. Hence, the user
knows which parts of the data and visualizations are of interest and
how to proceed with the analysis.

Query by Definition
Writing a search query at the system level can be difficult for users. The
query languages strongly depend on the underlying storage format (e.g.,
XQuery, Prolog, SQL, and SPARQL) and offer great versatility and
flexibility [10, 11]. Furthermore, the syntax of these query languages is
hard to memorize and tends to produce long statements. Easier access
can be achieved by using custom perspectives (similar to database
views) on the provenance data [5] or carefully designed query builder
and search interfaces that abstract the complexity of a query language.

A common interface for filtering a large collection of items are facets,
which are generated from an object’s metadata or text extraction and can
form a hierarchy or a list of classifications. Users can select one child
element of the hierarchy at a time and thus narrow down the scope (i.e.,
limit the number of search results) [7,38]. With this approach, however,
only one item can be selected at a time, and including other parts from
a different sub-tree is impossible. In contrast, using facet classification,
users can select multiple classes and thus construct a binary search
query [1, 36]. A limitation is that numerical values must be binned to
derive categories. Further, objects are considered only if they match
exactly. Another example of a Boolean search interface was presented
by Heer et. al. [15] for Polaris/Tableau [42]. The selected chart types
and data fields are stored as states in the provenance graph (“worksheet
history”) and can be employed by the user for filter operations. These
approaches, however, allow users to search for data fields only and the
results are restricted to exact matches. In KnowledgePearls we provide
related search terms that enable users to narrow down the scope, provide
a fuzzy search for properties, and let users weight the search terms
based on their interests [14, 23].

With recent advances in natural language processing, formulating
queries in natural language is becoming increasingly popular. Users
can speak or write queries using their native language to interact with
the visualization [39] or search in datasets, such as integrated in IBM
Watson Analytics4. The queries, however, often need to follow a prede-
fined structure or contain commands that can be translated into system
language.

Query by Example
In contrast to writing the definition of a query, users can create or re-use
existing parts of an entity as search query. The eponymous high-level
database management language Query-by-Example by Zloof [47] is one
of the earliest approaches that allows users to query, update, and control
the database with little knowledge of the query language. Numerous
example-based language have emerged since then [22].

A notable example of provenance retrieval in the visualization do-
main is VisTrails [3], which encourages users to re-use existing work-
flows [35]. In order to find these workflows, users can interactively
build parts of a workflow as search query and thus avoiding having to
learn a new query language. Matching workflow versions are displayed
along with the highlighted part. Similarly, users can interactively con-
struct visual graph queries in Visage [25]. Search results must match
the structure of query graph and additional attributes attached to the
nodes. Both approaches work well for a relatively small provenance
graph and a limited number of search results. However, with a larger
number of matching results, the presentation becomes cluttered.

Query by Perception
Both query by definition and query by example result in a query that
serves as the input for retrieval. In contrast, query by perception relies
on the user’s visual system to identify contextually relevant states in a
visualization of the provenance graph that encodes its properties. Ex-
amples are AVOCADO [41] and the taxonomy-based glyph design [20],
which both visualize workflows of biological experiments. InProv [6]

4https://www.ibm.com/watson-analytics

Fig. 2. The user can rapidly switch between two different modes: (a)
User interactions change the visualization, and result in new visualization
states, which are added to the provenance graph. (b) The user formulates
a search query that is compared with the stored visualization states.
Matching states are grouped into sequences and sorted according to the
weighting of the search terms.

utilizes time-based hierarchical grouping for filesystem provenance and
lets users explore file changes in an interactive radial-based tree layout.

Shrinivasan and van Wijk [37] propose a technique to capture visual-
ization states and store them in an interaction history (i.e., provenance
graph). Users can annotate and revisit states.

In the work on CLUE, Gratzl et al. [13] extend this approach by
allowing users to assemble states of interest into a story that can then
be used for presentation and recall.

As the explicit visualization of a large and quickly growing prove-
nance graph is a limiting factor in terms of scalability, we decided
to focus on a query by definition and query by example strategy in
KnowledgePearls.

4 PROVENANCE-BASED RETRIEVAL APPROACH

KnowledgePearls is designed as an extension to visual analysis tools
that record user interactions in a provenance graph, with the goal to
allow users to effectively query previous exploration states. With our
approach, users can rapidly switch between two different modes, as il-
lustrated in Figure 2: (1) visual analysis mode and (2) retrieval mode.
In visual analysis mode (Figure 2a), new visualization states are contin-
uously created with every user interaction and stored in a provenance
graph. In retrieval mode (see Figure 2b), users can formulate search
queries that are compared with all visualization states stored in the
provenance graph. Matching states are grouped, ranked, and presented
in a result list.

Users can switch seamlessly between these modes, that is, start a
retrieval during an analysis and then continue the visual exploration
from a selected search result.

4.1 Provenance Graph and Visualization States
When interacting with a visual analysis system, users trigger actions
such as attribute changes, updates of filter settings, or item selections.
Possible interactions in our Gapminder-inspired prototype are, for
instance, choosing the data attributes mapped to the axes of the scat-
terplot, determining the projection type of the map, selecting countries
shown as items in the plot, or determining the time point for which the
scatterplot shows data.

The structure of the provenance graph as used in KnowledgePearls
is based on the definition presented by Gratzl et. al [13]. Each user
interaction triggered in the visualization results in a transformation of
the visual representation. After updating the visualization, a snapshot
of the selected attributes, filters, and items is automatically captured

https://www.ibm.com/watson-analytics


as a visualization state. Both entities—the visualization state and the
actions—are stored in a provenance graph that consists of visualization
states as nodes and the corresponding actions as edges (see Figure 2a).

The information stored in the provenance graph can be used to
restore any previously seen visualization state by applying all actions
from the root of the provenance graph to the desired state. Branches
in the graph emerge when users jump back to a previous state in order
to continue the exploration from there. This back-tracking strategy is
typical for exploratory data analysis scenarios.

Visualization State Properties
A visualization state consists of a title, metadata (e.g., creator and
creation date), and multiple properties describing the visualization state
(O1).

Choosing visualization properties to be stored is a non-trivial task, as
they need to be tailored to the visualization (system) at hand. While the
set of tracked properties will typically vary between domains, tasks, and
visualization techniques, we provide a high-level semantic characteri-
zation of property types for guiding the process of defining meaningful
properties for a specific system. Properties of the visualization state
can coarsely be classified as data-related or visualization-related.
Data-related properties refer to aspects of the inspected data which
are independent of the visual encoding. Important examples include:

• Data attributes which are mapped to a visual variable, e.g., color
or an axis. For example, users may search for states where the
attribute GDP is displayed.

• Data items which are represented by the visualization so that
distinct items can be discriminated from each other. This may
include data categories for data sets with nominal data attributes.
For systems supporting data selection, an important specific type
of property is the set of data items in focus. For example, users
could search for states where the country United States is selected.

Visualization-related properties are derived from the current visual
encoding and thus depend on the visualization technique. Important
sub-types include:

• The visualization technique itself. For example, in systems which
offer different visual encoding options (e.g., Tableau), users could
search for states that contain a map or stacked bars.

• Visualization parameters which are set by the user. For exam-
ple, searching for logarithmic could retrieve states where data is
visualized by a logarithmic scale.

• Visualization metrics which quantify aspects of the visual encod-
ing of the particular data. Important examples include Scagnos-
tics [46] in case of scatterplots or Pargnostics [8] for parallel
coordinates. For more information about quality metrics, we
refer to Bertini et al. [4], who provide an overview and a system-
atization of their use in high-dimensional data visualization. In
general, the selection of supported quality metrics depends on
the visualization techniques, the data, and the task. From the
perspective of our approach, the search based on quality metrics
requires the visualization system to compute these metrics for
(some of) the views of the current analysis state. The provenance
graph needs to store quality metrics much like other numerical
properties. In the Gapminder example, a user could, e.g., search
for states with high values for the property skinniness.

Our Gapminder example includes data attributes and selected data
items as data-related properties as well as visualization parameters and
Scagnostics as visualization-related properties.

Relationships Between Properties
In our concept, each property of a visualization state is treated inde-
pendently. However, depending on the visualization type, relationships
between properties may exist, for instance, that both a data attribute
and an axis scale define an axis in a scatterplot. In this version of our

concept, we ignore potential relationships in favor of an easy-to-use
search interface that can cover most of the use cases.

In early stages of our concept, we experimented with the definition
of relationships between properties. An ontology is a formal way to
describe the relationships between possible terms (e.g., that an axis
contains attributes and a scale). Creating such an ontology that can
be used for visualization states is an open research challenge, which
is beyond the scope of this work. In response to early feedback from
our target users to first versions of our prototype implementation, we
deliberately decided to favor simplicity over being able to express more
complex relationships between query terms.

For a detailed discussion of relationships between properties and
hierarchical property structures, see Section 8.

4.2 Retrieval
In retrieval mode (Figure 2b), we utilize the captured provenance data
for finding similar visualization states for a given search query. Knowl-
edgePearls supports users in their current analysis in recalling earlier
states, which facilitates collaboration between users. A retrieval can be
performed either by the user who did the analysis in an earlier session or
by a different user who searches, for instance, for similar visualization
states in a provenance graph created by a colleague.

Retrieval starts with formulation of a search query that consists of
one or multiple search terms. A search term can be either a string (e.g.,
France) or a property identifier followed by a numerical value (e.g.,
monotonic = 0.3) (O1).

Once the user has entered the search query, each search term is
compared with the whole collection of visualization states stored in
the provenance graph. The comparison step determines the relevance
of a visualization state compared to the given search query. We use
different comparison mechanisms based on the properties’ data types:
categorical, numerical, and set-typed. The result is a fuzzy search
that presents the visualization states found according to a continuous
spectrum from high to low relevance (O2).

Categorical properties are, for instance, displayed data attributes
(e.g., GDP, population) and categorical visualization settings, such as
the map project type (e.g., mercator, orthographic). To calculate the
similarity between categorical properties, we index the property values
and apply the term frequency–inverse document frequency (tf–idf ) [30].
This measure is widely used in information retrieval and reflects the
importance of a word in a document (in our case in a visualization state)
with respect to the whole collection of documents (i.e., provenance
graph). A word is more important when the term frequency (in the
given visualization state) is high and the document frequency of the
term in the whole collection of documents is low. Thus, we decrease
the importance of commonly used values of categorical properties. For
instance, in all recorded stories, Hans Rosling used the population of
a country as the size of a visual mark in Gapminder. In contrast, he
used the attribute child mortality in a single session only. Consequently
searching for child mortality results in a higher similarity score in
matching states than the search term population.

For numerical properties, such as the selected year in Gapminder
and derived visualization metrics, we calculate the absolute difference
between the query value and the state value. The smaller the difference
between a numerical input value and the actual state value, the greater
the importance of this property. For example, given two scatterplots
with the selected years 2006 and 2003, a search for 2005 would result
in greater similarity to states from the 2006 set than to those from the
2003 set because the difference is only one year in the former case and
two years in the latter.

Set-typed properties typically refer to selections of data items, for
example, a set of brushed countries. Depending on the visualization
type, multiple set-typed properties can exist in cases in which users can
select multiple different entity types, such as countries or continents.
We use the Jaccard Index to determine the similarity between two sets,
that is, all set-typed input values and the set-typed properties of the
visualization state. The higher the overlap between the compared sets,
the more similar they are. In our Gapminder example, Hans Rosling
selected United States along with Vietnam to demonstrate the economic



Fig. 3. A list of states, including their properties, is compared to a search
query. We calculate the matching search terms for each state, and group
subsequent states into state sequences. The ranking is defined by the
number of matching terms and the weighted similarity score.

differences in 1964. In another presentation, he selected United States
together with eight other countries. A search for United States would
rank the first visualization state with the selection of only two selected
countries higher than the second one.

The comparison step results in a relevance score within the range
[0,1] for each search term, where 1 denotes an exact match and 0 a
non-matching search term. We normalize the tf–idf value for categori-
cal search terms in that range since the tf–idf value can go beyond 1.
Subsequently, the relevance of the state is calculated as the weighted
sum of all relevance scores. The applied weights can be changed inter-
actively by users according to their interest in each search term. This
ensures that states of high interest also result in a higher rank. States
that are equal to a value of 0 are considered to be non-matching and
are excluded from further processing steps. Setting a higher threshold
value to exclude less relevant states is also possible.

4.3 Grouping of Search Results

Since several visualization properties remain unchanged between mul-
tiple subsequent visualization states, displaying all matching ones indi-
vidually results in a long list of highly similar search results (O3). To
address this issue, we group visualization states into state sequences.

Our grouping algorithm determines matching terms, i.e., terms with
a relevance score > 0, for every visualization state, and groups sub-
sequent visualization states with an equal number of matching terms
into sequences. States that have no matching search terms are excluded.
This approach tends to create multiple short sequences, as shown in
Figure 3. For instance, searching for population only results in one
sequence containing states between S1 and S9 . Adding GDP as a
second search term splits the sequence into three sequences. Adding
China as a third search term results in six sequences, four of which
contain only a single state.

In addition to the grouping, we identify a top state for each sequence.
Although the number of matching search terms remains constant for
all states of a sequence, the similarity score for each state may vary
within a sequence because of the different comparison mechanisms that
depend, for instance, on the remaining property values in the state (see
Section 4.2). We consider the state with the highest similarity score,
or in the case of multiple candidates the first candidate (see S2 to S4
in Figure 3), in a sequence as the top state. The top state is used as a
representative of the sequence within the search result.

We utilize the top results to order the sequences by the weighted
similarity score. This yields a ranking in which relevant sequences—
those that match multiple search terms—are ranked more highly. For
instance, in Figure 3, state S5, which matches the whole search query,
is ranked the highest, followed by the sequence with states S8 and
S9, which have slightly better similarity scores than other sequences

matching two search terms.
In summary, the grouping algorithm provides a trade-off between

presenting individual relevant states (i.e., maximizing the number of
search results) and longer sequences (i.e. minimizing the number of
search results).

5 VISUALIZATION AND USER INTERACTION

Our prototype implementation consists of three views, as shown in
Figure 1: The application view (a), the provenance graph side panel
(b), and the search side panel (c). The application view contains
the visualization system (e.g., Gapminder), with which users interact
in visual analysis mode (see Figure 2). On the right side, users can
open the provenance graph and the search side panel on demand. The
provenance graph side panel (labeled “Current Session History” in
our prototype) provides a visualization of all recorded states [13] (see
Figure 1b). Interactions from the application view, which are added to
the provenance graph, instantly appear in this side panel (Figure 1c).
The user can jump back to previous states and continue the analysis
from there. The search side panel is linked with the provenance graph
side panel and contains a search field (Figure 4a), selected search terms
as query (d), a weighting editor (e), and a list of search results (f).

Below, we explain individual views and their functionality in more
detail. As a guiding example, we use a provenance graph that is based
on selected presentations given by Hans Rosling. We focus on the parts
of the presentations in which he mentioned the development of Japan
and the United States at the end of World War II in 1945.

5.1 Search Field and Weighting Editor
Users can formulate the search query by entering search terms in the
input field shown at the top of the side panel (see Figure 4a). Upon
entering the first term (e.g., Japan), a drop-down list of suggestions is
presented below the input field. The list contains only property values
that occur in the provenance graph and thus have been involved in the
exploration. Suggestions are grouped by property names (e.g., data
attributes, Scagnostics) and their possible values (e.g., GDP, China,
density = ?) (O1). We allow users to search for property names and
values, and highlight the matching part of the string. In addition, users
can search for metadata, such as author and timestamp of creation of a
visualization state. If property values require further input, for instance,
the reference value for the Scagnostics measures, we indicate the input
type (e.g., numerical) and validate the input before accepting the search
term (O2).

Taking the provenance graph created from Hans Rosling’s presen-
tations as basis and entering the string “Ja” for the search term Japan
will show a drop-down list with only three possible countries—Japan,
Azerbaijan, and Jamaica. From this filtered list, Japan is the only coun-
try that is active and can be selected. The other two countries do not
feature in the provenance graph, and are therefore disabled to prevent a
worthless, empty search result list. By default, we only list countries
that are contained in the provenance graph at least once. Countries that
are defined in the dataset but are not in the provenance graph can be
optionally added to the suggestions as context.

For the string “United” entered as part of the second search term
United States, all three suggestions—United States, United Kingdom,
and United Arab Emirates—are active and can be selected. The coun-
tries are sorted in descending order by their frequency (i.e., the number
of occurrences in all recorded visualization states). We indicate the
frequency by the length of a bar shown next to the property value (see
Figure 4c). In our guiding example, the retrieval returns 24 visualiza-
tion states for United States, 2 states for United Kingdom, and 2 states
for United Arab Emirates.

Derived Properties
We show the ten most frequent terms and property values in a Top 10
group at the top of the result list. Without the need for a specific search
term to be entered, the Top 10 group provides an immediate summary
of the most used properties in the provenance graph. In our guiding
example, the most frequent items are presented in decreasing order of
their frequency.



Fig. 4. Components of the retrieval interface. The search field (a) suggests visualization properties while typing. Properties of the active state are
indicated by a black circle (b) and provide a frequency bar (c). The selected properties are added to the search query (d) and can be weighted based
on the user’s interest (e). The search results (f) are ranked by the state’s similarity score and can be expanded to access the state sequence (g). The
top state is used as search result cover and indicated in the state sequence. The active state is indicated in the sequence length glyph and in the
state sequence. Users can also formulate a query with parts of an existing state (h).

Similar to the Top 10 results that are derived from the whole prove-
nance graph, we also use all properties from the current list of search
results as a subset, and assemble a list of related property values that
can be used to refine the search query and narrow down the scope.

Query by Example

Aside from entering explicit search terms, users can use their current
analysis state in the application view to identify similar states, which is
referred to as query by example. To simplify the identification of items
that are present in the currently shown visualization state, for example,
when analyzing the country development in 1945, they are marked with
a black circle in the suggestion list (see Figure 4b). However, these
properties might be scattered throughout the whole list. As a solution,
we provide a setting that filters the list for marked properties only.

The three search terms (Japan, United States, and 1945) that have
been added to the search query are displayed as color-coded words and
as a stacked bar below the search field (see Figure 4d). The user can
remove individual search terms from the query or clear the entire query.
Modifying the search query triggers comparison and updates the search
result list (see Figure 2).

Weighting Editor

The selected search terms, which can be seen as multiple attributes of
a ranking of visualization states, can be weighted according to user
interest by using a dedicated weight editing interface (see Figure 4e).
By default, the weights are equally distributed across all search terms.
In our example, the user wants to emphasize the two countries Japan
and United States and reduce the impact of the year 1945. To achieve
this, the user can distribute the weight by dragging the sliders of the
stacked bar, as in LineUp [14] and ThermalPlot [40]. Changing the
weights triggers a recalculation of the similarity scores and updates the
order of the search result. For the remainder of this example, we set the
following weights: 45% for Japan, 45% for United States, and 10% for
1945.

5.2 Search Results
We present matching visualization states in decreasing order according
to their similarity scores (see Figure 1). As explained in Section 4.3,
individual states are grouped into state sequences to guarantee temporal
coherence across states (O3). Searching for the terms Japan, United
States, and 1945 in our example, 41 states with a significance score
greater than zero, which will be grouped into 16 state sequences. To
further increase the readability of the results, only the top state of each
sequence is displayed as a representative. However, users can reveal
the whole sequence on demand (see Figure 4g).

Each search result box follows the same structure as shown in Fig-
ure 4f. The preview image provides a quick overview of all search

results and support users in interpreting the somewhat abstract visualiza-
tion state definition. This may be particularly helpful when comparing
different search results.

The stacked bar at the top of a search result encodes how much each
search term (i.e., the weighted relevance score) contributes to the state’s
similarity score. In our guiding example, the first search result matches
all three search terms. To find out why some percents are missing, users
can hover over the stacked bar to see more details about the distribution
of the similarity score in a tool tip.

We show the property values grouped by property name as comma-
separated list. In our example, the search terms Japan and United States
are not visible immediately since the list exceeds the given space of the
search result box. By hovering over the list, users can expand the box
to see all property values and check that Japan and United States are
exact matches, since they are highlighted. The selected year 1948 is not
highlighted, because it does not match the search term 1945 by three
years and thus explains the few missing percentages in the similarity
score of the first result.

In addition to gaining an overview of the contained property values,
users can explore the state sequence in detail. In the upper right corner
of a search result, a glyph indicates the length of the state sequence. In
the case of the search result that best matches our given search terms,
the sequence represents eight states. Depending on the sequence length,
the visual representation features one to three connected circles. For
sequences with more than three states, we show the first and last states
and indicate the remaining number of states in the center (see Figure 4f).
If a state sequence contains the active visualization state, the circle or
number is highlighted in black.

Clicking the glyph reveals the whole state sequence. All matching
states are aligned from top to bottom and contain the state title and the
weighted relevance score of the matching search terms as a stacked bar.
We add an additional #1 indicator to the top state of the sequence to
point out that this state has the highest similarity with respect to the
search query in the sequence and is already presented in greater detail
above the sequence list as the representative state of this state sequence.

In our guiding example, the first sequence item was captured when
Japan was selected as second country. The United States must have
been selected as first country, since the title of subsequent states indi-
cates that several other countries were selected. Moreover, the sequence
shows that the similarity score for Japan and United States decreases
for further selected countries in subsequent states (see Section 4.2).
Hence, the first state of the sequence is indicated as the top state.

When the user hovers over a sequence item, the corresponding
state is highlighted in the provenance graph view. Selecting an item
loads the state in the visualization view. Likewise, when the user
hovers over a search result box, the sequence of states is highlighted
in the provenance view. Selecting a search result box loads the top
state of the sequence. For the users’ convenience, KnowledgePearls



remembers the last active visualization state before loading a selected
search result in the visualization view. This allows users to easily
restore the visualization state in which they started their search.

5.3 Provenance Graph
Next to the search side panel the user can optionally open the prove-
nance graph as a second side panel (see Figure 1b) containing a visu-
alization of all recorded states as described in [13]. Both side panels
are linked, that is, the active visualization state and mouse hover are
highlighted in both panels.

In order to provide an alternative to querying a state by a given
example, we place a search button next to the state in the provenance
view (see Figure 4h). Clicking the search button adds a dynamic
property group that contains all values of the selected state to the
top of the suggestion list of the search input field. Users can select
properties of this state or filter the suggestions as previously explained
(see Section 5.1).

We further support the user’s search by enhancing the visibility
of matching states in the graph visualization. For matching states,
we increase the degree of interest, which causes expansion of the
corresponding representations and collapses non-matching ones (see
Figure 1b). We encode the similarity score in the opacity of a state
representation, which makes it easier for users to focus on relevant
states.

In our example, all matching states are enhanced when hovering
over the first sequence, which matched all three search terms. The
highlighted states confirm that the first country selected was United
States and that Japan was selected as the second country.

6 IMPLEMENTATION

To demonstrate how existing visualization applications can be extended
with KnowledgePearls retrieval capabilities, we implemented two proto-
types: the first one is a Gapminder-inspired visualization implemented
in Vega (see Figure 1) and the second one is our Ordino drug target
discovery tool [44] that our collaborator used for the case study (see
Section 7 and Figure 6).

Both prototype systems consist of three main building blocks (see
Figure 5): (a) the application view containing the actual visualization(s),
(b) the provenance tracking and provenance visualization component,
and (c) the retrieval component.

The provenance and retrieval components are implemented in Type-
Script using the Phovea platform 5. The code is open source and avail-
able on Github 6. The Vega Gapminder prototype is deployed at https:
//vega-gapminder.caleydoapp.org and the Ordino application is
available at https://ordino-retrieval.caleydoapp.org.

The provenance tracking and visualization component uses the
CLUE provenance graph implementation by Gratzl et. al. [13]. In
the course of this work, we extended the CLUE approach by capturing
and storing visualization states in the provenance graph, since the origi-
nal approach captures only the action leading to a state but not the state
itself.

We build the initial search index when loading the provenance graph
into the browser and update it incrementally with every new user in-
teraction. The retrieval for the currently loaded provenance graph is
performed on the client side.

6.1 Integration Guidelines
While our two prototypes demonstrate how KnowledgePearls can be
connected to existing visualization systems, we also want to provide
concrete guidelines how this can be achieved for other visualizations.

A system needs to fulfill two important requirements to be compat-
ible with KnowledgePearls (see Figure 5). First, it needs to be able
to store and restore a visualization state. Second, the system needs to
provide a description that instructs KnowledgePearls which retrieval-
relevant properties need to be extracted from the visualization state and
stored in the provenance graph. This includes, among other aspects,

5 http://phovea.caleydo.org
6 https://github.com/Caleydo/knowledge-pearls

Fig. 5. Integration overview. The visualization component (a) can persist
the representation as visualization state and provides a list of retrieval-
relevant properties. The retrieval component (b) extracts the visualization
properties from the state. The visualization properties and visualization
state are then stored as new node in the provenance graph (c). When
a user selects a node, the visualization state is pushed backed into the
visualization and the representation is restored.

the computation of visualization quality metrics. Transferring this step
to KnowledgePearls is in general not possible because it depends on
the type and purpose of the visualization, and requires access to the
data at a level that is opaque to KnowledgePearls. An interesting idea
for future work is to incorporate approaches for computing quality met-
rics solely on the image results generated by the visualization system.
However, this is a non-trivial topic and beyond the scope of this paper.

6.2 Vega Integration

The visualization in our Gapminder-inspired prototype is declared as
Vega JSON specification and rendered using the Vega library 7.

As Vega comes with the built-in functionality to store and restore
visualization states, it fulfills the first requirement. To meet the second
requirement, we minimally extend the Vega specification with the two
properties track and search that mark the declaration parts that are
relevant for the retrieval (see Supplementary Listing 1). As these
extensions operate on the interaction level, no extensions on the dataset,
or individual data item level are necessary.

Further, we need to add event listeners to the Gapminder visual-
ization to receive notifications when users change an attribute, select
items, or choose a different year. In Vega, events are declared in the
form of signals, which can release further actions, as for instance, up-
date dependent signals or the visual representation itself. We employ
this mechanism to check if the track property is contained in the
declaration of the triggered signal. If this is the case, we start the prop-
erty extraction in the retrieval component (see Figure 5b). To be able
to distinguish between different signal sources, the developer needs
to declare a title and icon for nodes, which will be displayed in the
provenance graph view (see Figure 1).

The search property configures the creation of the visualization
properties that will be offered to the user in the search side panel
(see Figure 5b). The declaration must contain the property data type
(categorical, numerical, or set), a custom title that is used as label for
the search terms and suggestions, and a group label for the suggestions
(see Section 5.1).

7 CASE STUDY

We demonstrate the value and utility of the KnowledgePearls approach
by integrating it into Ordino [44], a web-based discovery tool that
allows users to flexibly rank and explore genes, cell lines, and tissue
samples (see Figure 6).

In Ordino, the user starts by selecting or defining a list of items (e.g.,
genes) that will be opened in a multi-attribute ranking view based on
LineUp [14]. Once the user has selected one or multiple items in the
ranked list, a collection of possible follow-up detail views for exploring
the current selection is displayed. This detail view can be either another
ranking, a view with additional information about the selection, or a

7 https://vega.github.io/vega/

https://vega-gapminder.caleydoapp.org
https://vega-gapminder.caleydoapp.org
https://ordino-retrieval.caleydoapp.org
http://phovea.caleydo.org
https://github.com/Caleydo/knowledge-pearls
https://vega.github.io/vega/


Fig. 6. The user has entered three search terms to find similar state sequences and to recall a previously recorded analysis. The search query
results in seven state sequences, with the first sequence matching all search terms. Jumping to this state shows a ranking of breast cancer cell lines
with copy number information for the gene EGFR. The user continues the analysis for MDA-MB-468, the cell line with the highest copy number.

visualization based on the selected items (e.g., a scatterplot matrix). Or-
dino follows a focus+context approach where the focus view is shown
on the right and the previous focus view is shown as context on the left.
New views are pushed from the right to the list of open views. Users
are able to close the view and horizontally scroll back to previous views
at any time. We extended Ordino with KnowledgePearls capabilities
by tracking the shown views, parameter settings, and item selections as
visualization states and store them in the built-in provenance graph. The
set of properties that define a visualization state has been conjointly
determined with our collaborators, based on what they consider as
relevant for recalling previous analysis states and results.

The case study summarizes analysis sessions carried out by a col-
laborator working in the field of cancer research. Some time ago,
the scientist performed several analyses regarding various cancer cell
lines—cultured cells that are derived from tumors and that can pro-
liferate indefinitely in the laboratory—and cancer genes (see Figures
S1-S9 in supplementary material 8). Now, the user comes back to that
analysis session in order to find certain analysis steps and to continue
with them. First, the user wants to know which previous analysis states
are similar to the very last one from the session.

Ordino opens the last state at which the user left off as active state
and shows a list of lung cancer cell lines ranked by the copy number
of the gene EGFR. Using EGFR as search term results in two state
sequences (see Figure S10). When hovering with the mouse over the
search results, the corresponding state chains are highlighted in the
provenance graph view.

The user refines the search by using Copy Number from the related
suggestions in the drop-down menu as second search term, because
he remembers having inspected this attribute in detail in the previous
analysis. This time, the search returns five sequences, where the first
two sequences match both search terms (see Figure S11).

The user knows that the initial analysis was not about lung can-
cer, as currently visible in the focus view, but he cannot remember
the other tumor type. Entering “tum” for tumor type shows exactly
two suggestions: non-small-cell lung cancer and breast carcinoma.
Selecting breast carcinoma as the third search term results in seven
state sequences. Exactly one sequence matches all search terms (see

8 http://knowledge-pearls.caleydo.org

Figure S12). Jumping to the last state of this sequence shows a ranking
for breast cancer cell lines with an additional column for EGFR copy
number (see Figure 6).

The user has a new idea and wants to know whether the cell line
NCI-H2170 has already been used at some earlier point in the analysis.
Searching for this cell line returns exactly one state sequence (see
Figure S13). Jumping to the top result of the sequence reveals that the
cell line was selected in a scatterplot in the Expression vs. Copy Number
detail view. The user can seamlessly continue the analysis (see Figure 2)
by opening a detail view, which provides further information about
this cell line (see Figure S14). In conclusion, the KnowledgePearls
integration supported the user in recalling previous work and making
use of this knowledge in the context of a new analysis.

Informal User Feedback

We evaluated the KnowledgePearls integration into the Ordino platform
with our collaborators by means of two thinking aloud sessions, in
which we observed them while using the system.

Our collaborator pointed out multiple times that simplicity of the
interface is more important than being able to express more complicated
queries. We used this feedback as a guiding principle throughout all
phases of the design process.

Furthermore, the collaborator valued the seamless switch between
analysis and retrieval mode, and the flexibility in combining and weight-
ing search terms to find specific analysis steps within a large prove-
nance graph. He stated that the current solution with the search field
and search term suggestions is highly useful and makes it easier to find
contextually relevant previous states.

Our collaborator reported that he was slightly confused by the output
of the grouping algorithm (see Section 4.3), which splits long sequences
into smaller sequences for multiple search terms. We plan to address
this feedback in the next iteration of our prototype.

The Ordino drug discovery system extended with KnowledgePearls
retrieval capabilities will soon be in productive use by a few dozen
domain experts form multiple disciplines—including biology, cancer
genomics, and bioinformatics. The active use of the tool will result in a
quickly growing provenance graph. In the case study described above,
our collaborator was operating on the provenance graph that he created

http://knowledge-pearls.caleydo.org


as a single user in multiple analysis sessions over time. However,
he stressed that KnowledgePearls will be particularly valuable in the
future when the provenance graph contains visualization states from
exploration sessions done by his colleagues working on various projects.
To use the full potential of KnowledgePearls for collaborative scenarios,
we plan to extend KnowledgePearls with additional annotation and
filtering capabilities.

8 DISCUSSION AND LIMITATIONS

8.1 Generalizability
Many applications do not provide a visualization state and hence, do
not fulfill the integration requirements (see Section 6.1). In this case
an image of the visualization can be captured subsequent to every
interaction. The images can be processed using computer vision and
machine learning algorithms to extract the properties, such as axis
labels or data items [17, 26, 27, 34]. The extracted properties can form
a visualization state and/or list of retrieval-relevant properties that are
served as input for our retrieval approach (see Figure 5b).

In case the application cannot restore a visualization state, users are
unable to switch back from retrieval mode into visual analysis mode
(see Figure 2) and must manually recover the state based on the given
property information. Recovering visualizations automatically for a
given visualization state (e.g., using reinforcement learning) remains
an open research topic.

8.2 Relationship of Visualization Properties
Besides the relationships between properties of a visualization, multi-
ple coordinated view (MCV) setups add relationships across visualiza-
tions. In our Gapminder-inspired prototype a world map is linked to a
scatterplot, i.e., country selections are updated in both visualizations
accordingly. For the retrieval we consider property values from both
visualizations. As discussed above, by treating the search terms inde-
pendently users cannot specify in a query that a property needs to be
present in a particular view that is part of the MCV setup.

In early stages of our concept, we explored a tree-like structure for
organizing and structuring visualization properties such that the root
node represents the MCV setup itself and its children represent the
individual visualizations. However, increasing the expressiveness of
the visualization property setup increases the complexity of the query
formulation. Besides MCV setups in which different visualization
techniques show the same data, setups that use the same visualization
technique for different data are challenging. Typical examples are
scatterplot matrices and parallel coordinate plots. In both, the number
of instances (scatterplot or axis) is variable, as it depends on the number
of attributes in the explored dataset. Managing such a variable set of
visualizations and querying specific subsets remain open topics for
future research.

Further, the current concept does not consider logical operators other
than the AND combination, which we use by default to combine the
individual query terms. A NOT operator, for example, could be valuable
for expressing that a certain state should not contain a given search
term. Integrating advanced logical operators could lead to new kinds
of retrieval goals in which not the presence but the absence of certain
visualization properties is desired. For instance, users could penalize
the presence of a well-known and frequently used gene to filter out
commonly explored cases.

8.3 Graph Retrieval
We designed KnowledgePearls for retrieving similar states from a
recorded provenance graph based on a user-defined search query. How-
ever, due to the graph structure and its inherently contained metadata,
such as date of creation of individual states (O3), more advanced
queries and retrieval techniques could be applied to the graph itself.
Motif-based search to query specific action sequences could be a valu-
able addition. Applications include cases in which users remember
states that led to a certain insight rather than the state that contains the
insight itself.

In addition, motif-based search and graph retrieval could be used
to extract knowledge about the analysis process itself. Identifying and

retrieving repetitive patterns in the provenance graph can be useful for
various purposes, such as detecting common analysis patterns across
users. These identified patterns could then be used to provide guidance
systems that support the user throughout the analysis by suggesting
common action sequences based on the current one. However, how to
guide users without restricting them in the exploration process remains
an open research question.

8.4 Scalability

Real world analysis sessions can quickly result in a provenance graph
with many nodes and branches. A branch is introduced when a user
jumps back to a previous state and continues the analysis from that
point. In KnowledgePearls we improve the scalability by identifying
similar visualization states and grouping them into sequences (O3).
However, if the same or a highly similar state sequence is found in
multiple branches, each sequence is displayed as separate search result.
As part of future work, we plan to apply semantics-based, motif-based,
and hierarchical aggregation strategies [2, 9, 21, 41].

Besides the visual scalability of the provenance graph visualization
and retrieval interface, also the computational and storage scalability
play a major role for an effective provenance retrieval solution. Both
are influenced by two factors: (1) the number of states in the graph
and (2) the number of attributes stored in each visualization state (O1).
In the current prototype the whole graph containing all attributes for
each state are stored in a database on the server and transferred to the
client. This approach works for small provenance graphs with up to
a few hundred states, which are typically generated by a single user
in a consecutive exploration session. In such scenarios, computing
the similarities between the search query and individual states can
be executed on the client side, due to the negligible computational
overhead. However, when additionally integrating provenance graphs
from exploration sessions created by other users, different measures
need to be taken, such as computing the similarity score on the server
and transferring only the relevant states to the client. However, a trade-
off exists between computing the scores on the server and the flexibility
to let the user weight individual components, as the latter would require
a re-computation of each score upon change. To address this issue, we
plan to investigate hashing strategies.

9 CONCLUSION AND FUTURE WORK

We have presented KnowledgePearls, an approach to searching effec-
tively for visualization states in provenance graphs. An intuitive visual
interface enables users to query and explore previous analysis states
based on a definition that can be explicitly formulated or implicitly
inferred from a given reference state. As a key aspect of our work,
the visualization and the used metrics support a quantitative notion
of similarity. This allows for a gradual ordering of states by their rel-
evance and enables users to express interest by assigning weights to
different elements of the search definition. A case study carried out
by collaborators in the field of cancer drug discovery illustrated how
KnowledgePearls facilitates the exploration process by recalling states
from earlier analyses.

As part of future work, we intend to formally evaluate our retrieval
approach in a user study with domain experts from multiple domains.
Another direction for future work is to extend our approach with com-
prehensive meta-analyses capabilities, which might allow visualization
designers to better understand the non-linearity and backtracking nature
of visual analysis.

ACKNOWLEDGMENTS

We are grateful to Suzie Lee Hoops for proof-reading our work. This
work was supported in part by Boehringer Ingelheim Regional Center
Vienna, the Austrian Science Fund (FWF P27975-NBL), and the State
of Upper Austria (FFG 851460). The VRVis Forschungs-GmbH is
funded by COMET – Competence Centers for Excellent Technologies
(854174) by BMVIT, BMWFW, Styria, Styrian Business Promotion
Agency – SFG and Vienna Business Agency. The COMET Programme
is managed by FFG.



REFERENCES

[1] C. Ahlberg. Spotfire: An Information Exploration Environment. ACM
SIGMOD Record, 25(4):25–29, 1996. doi: 10.1145/245882.245893

[2] T. Aittokallio and B. Schwikowski. Graph-based Methods for Analysing
Networks in Cell Biology. Briefings in Bioinformatics, 7(3):243–255,
2006. doi: 10.1093/bib/bbl022

[3] L. Bavoil, S. P. Callahan, C. Scheidegger, H. T. Vo, P. Crossno, C. T. Silva,
and J. Freire. VisTrails: Enabling Interactive Multiple-View Visualizations.
In Proceedings of the IEEE Conference on Visualization (VIS ’05), pp.
135–142. IEEE, 2005. doi: 10.1109/VISUAL.2005.1532788

[4] E. Bertini, A. Tatu, and D. Keim. Quality Metrics in High-Dimensional
Data Visualization: An Overview and Systematization. IEEE Transactions
on Visualization and Computer Graphics, 17(12):2203–2212, 2011. doi:
10.1109/TVCG.2011.229

[5] O. Biton, S. Cohen-Boulakia, S. B. Davidson, and C. S. Hara. Querying
and Managing Provenance Through User Views in Scientific Workflows.
In Proceedings of the IEEE International Conference on Data Engineer-
ing (ICDE ’08), pp. 1072–1081. IEEE, 2008. doi: 10.1109/ICDE.2008.
4497516

[6] M. A. Borkin, C. S. Yeh, M. Boyd, P. Macko, K. Z. Gajos, M. Seltzer, and
H. Pfister. Evaluation of Filesystem Provenance Visualization Tools. IEEE
Transactions on Visualization and Computer Graphics, 19(12):2476–2485,
2013. doi: 10.1109/TVCG.2013.155

[7] E. Clarkson, K. Desai, and J. Foley. ResultMaps: Visualization for Search
Interfaces. IEEE Transactions on Visualization and Computer Graphics,
15(6):1057–1064, 2009. doi: 10.1109/TVCG.2009.176

[8] A. Dasgupta and R. Kosara. Pargnostics: Screen-Space Metrics for Parallel
Coordinates. IEEE Transactions on Visualization and Computer Graphics
(InfoVis ’10), 16(6):1017–1026, 2010. doi: 10.1109/TVCG.2010.184

[9] N. Elmqvist and J.-D. Fekete. Hierarchical Aggregation for Information
Visualization: Overview, Techniques, and Design Guidelines. IEEE
Transactions on Visualization and Computer Graphics, 16(3):439–454,
2010. doi: 10.1109/TVCG.2009.84

[10] J. Freire, C. T. Silva, D. Koop, and E. Santos. Provenance for Computa-
tional Tasks: A Survey. Computing in Science & Engineering, 10:11–21,
2008. doi: 10.1109/MCSE.2008.79

[11] J. Frew, D. Metzger, and P. Slaughter. Automatic Capture and Recon-
struction of Computational Provenance. Concurrency and Computation:
Practice and Experience, 20(5):485–496, 2008. doi: 10.1002/cpe.1247

[12] D. Gotz and M. X. Zhou. Characterizing Users’ Visual Analytic Activity
for Insight Provenance. Information Visualization, 8(1):42–55, 2009. doi:
10.1057/ivs.2008.31

[13] S. Gratzl, A. Lex, N. Gehlenborg, N. Cosgrove, and M. Streit. From Visual
Exploration to Storytelling and Back Again. Computer Graphics Forum,
35(3):491–500, 2016. doi: 10.1111/cgf.12925

[14] S. Gratzl, A. Lex, N. Gehlenborg, H. Pfister, and M. Streit. LineUp: Visual
Analysis of Multi-Attribute Rankings. IEEE Transactions on Visualization
and Computer Graphics (InfoVis ’13), 19(12):2277–2286, 2013. doi: 10.
1109/TVCG.2013.173

[15] J. Heer, J. Mackinlay, C. Stolte, and M. Agrawala. Graphical Histories
for Visualization: Supporting Analysis, Communication, and Evaluation.
IEEE Transactions on Visualization and Computer Graphics (InfoVis ’08),
14(6):1189–1196, 2008. doi: 10.1109/TVCG.2008.137

[16] M. Herschel, R. Diestelkmper, and H. Ben Lahmar. A survey on prove-
nance: What for? What form? What from? The VLDB Journal, 26(6):881–
906, Dec. 2017. doi: 10.1007/s00778-017-0486-1

[17] D. Jung, W. Kim, H. Song, J.-i. Hwang, B. Lee, B. Kim, and J. Seo.
ChartSense: Interactive Data Extraction from Chart Images. pp. 6706–
6717. ACM Press, 2017. doi: 10.1145/3025453.3025957

[18] S. Khan, U. Kanturska, T. Waters, J. Eaton, R. Baares-Alcntara, and
M. Chen. Ontology-assisted provenance visualization for supporting
enterprise search of engineering and business files. Advanced Engineering
Informatics, 30(2):244–257, 2016. doi: 10.1016/j.aei.2016.04.003

[19] M. Kreuseler, T. Nocke, and H. Schumann. A History Mechanism for Vi-
sual Data Mining. In Proceedings of the IEEE Symposium on Information
Visualization (InfoVis ’04), pp. 49–56. IEEE, 2004. doi: 10.1109/INFVIS.
2004.2

[20] E. Maguire, P. Rocca-Serra, S.-A. Sansone, J. Davies, and M. Chen.
Taxonomy-Based Glyph Design with a Case Study on Visualizing Work-
flows of Biological Experiments. IEEE Transactions on Visualization
and Computer Graphics (InfoVis ’12), 18(12):2603–2612, 2012. doi: 10.
1109/TVCG.2012.271

[21] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon.
Network Motifs: Simple Building Blocks of Complex Networks. Science,
298(5594):824–827, 2002. doi: 10.1126/science.298.5594.824

[22] G. Ozsoyoglu and H. Wang. Example-based graphical database query
languages. Computer, 26(5):25–38, May 1993. doi: 10.1109/2.211893

[23] S. Pajer, M. Streit, T. Torsney-Weir, F. Spechtenhauser, T. Mller, and
H. Piringer. WeightLifter: Visual Weight Space Exploration for Multi-
Criteria Decision Making. IEEE Transactions on Visualization and Com-
puter Graphics (InfoVis ’16), 23(1):611–620, 2017. doi: 10.1109/TVCG.
2016.2598589

[24] Pat Hanrahan, Chris Stolte, and Jock Mackinlay. Tableau: Visual Analysis
for Everyone, 2007.

[25] R. Pienta, F. Hohman, A. Tamersoy, A. Endert, S. Navathe, H. Tong,
and D. H. Chau. Visual Graph Query Construction and Refinement. pp.
1587–1590. ACM Press, 2017. doi: 10.1145/3035918.3056418

[26] J. Poco and J. Heer. Reverse-Engineering Visualizations: Recovering Vi-
sual Encodings from Chart Images. Computer Graphics Forum, 36(3):353–
363, June 2017. doi: 10.1111/cgf.13193

[27] J. Poco, A. Mayhua, and J. Heer. Extracting and Retargeting Color
Mappings from Bitmap Images of Visualizations. IEEE Transactions on
Visualization and Computer Graphics, 24(1):637–646, Jan. 2018. doi: 10.
1109/TVCG.2017.2744320

[28] B. Prez, J. Rubio, and C. Senz-Adn. A systematic review of provenance
systems. Knowledge and Information Systems, Feb. 2018. doi: 10.1007/
s10115-018-1164-3

[29] E. Ragan, A. Endert, J. Sanyal, and J. Chen. Characterizing Provenance
in Visualization and Data Analysis: An Organizational Framework of
Provenance Types and Purposes. IEEE Transactions on Visualization and
Computer Graphics (VAST ’15), 22(1):31–40, 2016. doi: 10.1109/TVCG.
2015.2467551

[30] G. Salton, A. Wong, and C.-S. Yang. A Vector Space Model for Automatic
Indexing. Communications of the ACM, 18(11):613–620, 1975. doi: 10.
1145/361219.361220

[31] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-Lite:
A Grammar of Interactive Graphics. IEEE Transactions on Visualization
and Computer Graphics, 23(1):341–350, 2017. doi: 10.1109/TVCG.2016.
2599030

[32] A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer. Reactive Vega: A
Streaming Dataflow Architecture for Declarative Interactive Visualization.
IEEE Transactions on Visualization and Computer Graphics, 22(1):659–
668, Jan. 2016. doi: 10.1109/TVCG.2015.2467091

[33] A. Satyanarayan, K. Wongsuphasawat, and J. Heer. Declarative Interaction
Design for Data Visualization. In Proceedings of the ACM Symposium on
User Interface Software and Technology (UIST ’14), pp. 669–678. ACM
Press, 2014. doi: 10.1145/2642918.2647360

[34] M. Savva, N. Kong, A. Chhajta, L. Fei-Fei, M. Agrawala, and J. Heer.
ReVision: automated classification, analysis and redesign of chart images.
p. 393. ACM Press, 2011. doi: 10.1145/2047196.2047247

[35] C. E. Scheidegger, H. T. Vo, D. Koop, J. Freire, and C. T. Silva. Querying
and re-using workflows with VisTrails. In Proceedings of the ACM SIG-
MOD Conference on Management of Data (SIGMOD ’08), pp. 1251–1254.
ACM, 2008. doi: 10.1145/1376616.1376747

[36] B. Shneiderman, C. Williamson, and C. Ahlberg. Dynamic Queries:
Database Searching by Direct Manipulation. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’92), pp. 669–
670. ACM, 1992. doi: 10.1145/142750.143082

[37] Y. B. Shrinivasan and J. J. van Wijk. Supporting the analytical reasoning
process in information visualization. In Proceedings of the SIGCHI con-
ference on human factors in computing systems, pp. 1237–1246. ACM,
2008. doi: 10.1145/1357054.1357247

[38] G. Smith, M. Czerwinski, B. R. Meyers, G. Robertson, and D. S. Tan.
FacetMap: A Scalable Search and Browse Visualization. IEEE Trans-
actions on Visualization and Computer Graphics, 12(5), 2006. doi: 10.
1109/TVCG.2006.142

[39] A. Srinivasan and J. Stasko. Orko: Facilitating Multimodal Interaction
for Visual Exploration and Analysis of Networks. IEEE Transactions on
Visualization and Computer Graphics (InfoVis ’17), PP(99):1–1, 2017. doi:
10.1109/TVCG.2017.2745219

[40] H. Stitz, S. Gratzl, W. Aigner, and M. Streit. ThermalPlot: Visualizing
Multi-Attribute Time-Series Data Using a Thermal Metaphor. IEEE
Transactions on Visualization and Computer Graphics, 22(12):2594–2607,
2016. doi: 10.1109/TVCG.2015.2513389

[41] H. Stitz, S. Luger, M. Streit, and N. Gehlenborg. AVOCADO: Visualiza-



tion of WorkflowDerived Data Provenance for Reproducible Biomedical
Research. Computer Graphics Forum, 35(3):481–490, 2016. doi: 10.
1111/cgf.12924

[42] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A System for Query, Analy-
sis, and Visualization of Multidimensional Relational Databases. IEEE
Transactions on Visualization and Computer Graphics, 8(1):52–65, 2002.
doi: 10.1109/2945.981851

[43] C. Stolte, D. Tang, and P. Hanrahan. Query, Analysis, and Visualization of
Hierarchically Structured Data Using Polaris. In Proceedings of the ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD
’02), pp. 112–122. ACM, 2002. doi: 10.1145/775047.775064

[44] M. Streit, S. Gratzl, H. Stitz, A. Wernitznig, T. Zichner, and C. Haslinger.
Ordino: visual analysis tool for ranking and exploring genes, cell lines,
and tissue samples. pp. –, 2018. doi: 10.1101/277848

[45] L. Wilkinson. The Grammar of Graphics. Springer, 2nd ed., 2005.
[46] L. Wilkinson, A. Anand, and R. Grossman. Graph-Theoretic Scagnostics.

In Proceedings of the IEEE Symposium on Information Visualization
(InfoVis ’05), pp. 157–164, 2005. doi: 10.1109/INFVIS.2005.1532142

[47] M. M. Zloof. Query-by-Example: A data base language. IBM Systems
Journal, 16(4):324–343, 1977. doi: 10.1147/sj.164.0324


	Introduction
	Design Objectives
	Related Work
	Index and Provenance
	Retrieval

	Provenance-Based Retrieval Approach
	Provenance Graph and Visualization States
	Retrieval
	Grouping of Search Results

	Visualization and User Interaction
	Search Field and Weighting Editor
	Search Results
	Provenance Graph

	Implementation
	Integration Guidelines
	Vega Integration

	Case Study
	Discussion and Limitations
	Generalizability
	Relationship of Visualization Properties
	Graph Retrieval
	Scalability

	Conclusion and Future Work

