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Fig. 1: TACO visualizes differences between Summer Olympic Games medal tables over time at multiple levels of detail. The
interface is structured along three levels following an overview+detail concept. (a) Change switches in the header bar allow users
to hide and show specific types of changes in the visualizations. (b) At the overview level, we present a timeline that shows stacked
bar charts for indicating the temporal progression of the medal table between 1896 and 2012. (c) The second level visualizes
aggregated changes for the two selected time points, 1936 and 1948, as a 2D ratio chart with attached diff histograms. (d) At the
third and most detailed level, we show a difference heatmap together with raw heatmaps for the two selected medal tables.

Link to TACO state shown in this figure: http://vistories.org/taco-olympic—-games

Abstract—Multivariate, tabular data is one of the most common data structures used in many different domains. Over time, tables
can undergo changes in both structure and content, which results in multiple versions of the same table. A challenging task when
working with such derived tables is to understand what exactly has changed between versions in terms of additions/deletions, reorder,
merge/split, and content changes. For textual data, a variety of commonplace “diff” tools exist that support the task of investigating
changes between revisions of a text. Although there are some comparison tools which assist users in inspecting differences between
multiple table instances, the resulting visualizations are often difficult to interpret or do not scale to large tables with thousands of rows
and columns. To address these challenges, we developed TACO, an interactive comparison tool that visualizes the differences between
multiple tables at various levels of detail. With TACO we show (1) the aggregated differences between multiple table versions over
time, (2) the aggregated changes between two selected table versions, and (3) detailed changes between the selected tables. To
demonstrate the effectiveness of our approach, we show its application by means of two usage scenarios.

Index Terms—Table comparison, matrix, difference visualization.
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Understanding tabular data is essential in many domains, such as ac-
counting, biology, and computer science. An important task when
making sense of such data is to investigate the difference between mul-
tiple versions of a table, for example, to detect modifications in monthly
payroll tables or to observe differences in multiple biological exper-

obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx


http://vistories.org/taco-olympic-games

iments. We differentiate between four types of changes: structural
(add/remove), content, reorder, and split/merge changes.

The primary contribution of this paper is TACO (TAble COmpari-
son), a novel visual comparison tool. First, it calculates the difference
between pairs of tabular data. Based on that it provides interactive
visualizations to encode the differences over time at multiple levels of
detail for different change types.

We demonstrate the effectiveness of our tool by describing two
usage scenarios: Our first dataset, which we also use as a guiding
example throughout the paper, consists of the medal tables of the Sum-
mer Olympic Games from 1986 to 2012. The second usage scenario
demonstrates the use of TACO for visualizing the evolution of a large
biomedical dataset over the course of a multi-year project called The
Cancer Genome Atlas (TCGA)!. This domain problem was our motiva-
tion for developing TACO.

To better understand the problem domain and associated require-
ments, we start by characterizing tabular data. We then continue with a
discussion of the four change types and related user tasks that should
be supported by an effective table comparison solution.

2 TABULAR DATA CHARACTERIZATION AND CHANGE TYPES

A table is a dataset composed of rows and columns. The intersection of
arow and a column identifies a cell. In tables, each row and column is
identified by a key. Each cell is therefore identified by a pair of unique
row and column identifiers. Rows and columns have an order that
can be meaningful in some applications. For example, the order plays
a major role in statistics and ranking applications. In our work, we
consider the order of rows and columns as an important characteristic.

The definition of tabular data constrains how data is organized, but it
neither constrains the content of the table nor the data types contained.
In this paper, we differentiate between heterogeneous and homogeneous
tables. In a heterogeneous table each column (or row) can have a
different data type and different semantics. In and a homogeneous table
all columns and rows have the same data type and semantics and thus
all cells contain values of the same data type. A homogeneous table can
also be referred to as matrix. Table columns can be either categorical
or ordered. Categorical data does typically not imply an order, while
ordered data can be further subdivided into ordinal and quantitative
data [22]. In this work, we focus on quantitative homogeneous tables
whose columns have the same quantitative data type and to which
both ordering and arithmetic operations can be applied. However, our
concept developed can also be applied to heterogeneous tables with
different value ranges and units of the cells, as discussed later on in
Section 9.

In standard tables, four different types of changes can be observed
in the data:

1. Structural changes, where a row or column is either added or
removed. In our Olympic Games dataset, for instance, both the
participating countries and the disciplines change over time.

2. Content changes resulting from modifying the values of cells
that have the same row and column identifiers. Some data op-
erations affect the values of entire columns or rows, such as
normalizations, others (e.g., manual edits and corrections) just
single cells.

3. Reorder changes, where a row or a column is shifted from its
original position [21]. This does not include shifts resulting from
additions or removals. An example of an operation that introduces
reorder changes is a hierarchical clustering applied to rows or
columns. In other cases, the order changes naturally over time,
for instance, in the Olympics medal table, which is ranked by the
overall number of medals per country.

4. Merge and split changes caused by multiple single rows (or
columns) that are joined into one, or single rows (or columns) that
are divided into multiple rows (columns). In biology, for instance,
experiments are often performed multiple times, which results in
multiple data subsets that are later joined during preprocessing by
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averaging the values. However, this task is rare compared to the
three change types introduced above.

3 USER TAsSKS

From a problem-oriented perspective, the main questions related to
comparison tasks over time are: (1) Did changes happen, and—if so—
where (existence and temporal location)? (2) How much did change
(amount of change)? (3) What did change (details about different types
of change)? (4) Where did the changes occur (details about type and
location of changes)? Based on this and a series of discussions with
domain experts in biomedical data analysis and our own experiences
as data scientists who work extensively with tables, we identified a
number of user tasks that an effective table comparison technique needs
to address. We use these tasks throughout the paper to discuss existing
tools and to introduce our own solution.

T1 Identify the types of changes. Users should be able to locate the
four types of changes and identify them row-wise, column-wise,
and cell-wise.

T2 Compare multiple table versions over time. Users should gain
an overview of aggregated differences between multiple table
versions over time and discover how many changes of which type
occurred between two consecutive table versions.

T3 Compare one table at two particular time points. Users want
to investigate the detailed changes of all types between different
versions of the same table at two points in time.

T4 Present raw data tables and meta-data. Users should have the
possibility to see the changes in the context of the raw data tables,
including additional information such as structure, size, name,
and date of creation.

4 RELATED WORK

Gleicher et al. [12] divided the design space for comparative visual-
ization into the three basic categories: juxtaposition, superposition,
and explicit representation. These fundamental techniques can be used
individually or in combination.

Juxtaposition This design presents the objects to be compared
separately or next to each other in either time or space. If juxtaposition
is used properly, it can help users to discover repeated patterns and
differences between compared objects [29].

Superposition  Using this method, multiple objects are presented
in the same coordinate system or spatial substrate. The advantage of
superposition is that proximity explicitly encodes similarity. However,
the scalability of this approach is limited, as three or more objects in
the same visualization already need interaction techniques to clarify
differences.

Explicit Representation (Encoding) This design approach com-
putes the relationships in terms of differences between objects and
encodes them visually. The advantage of this approach is that the
viewer does not need to make a mental comparison or find the differ-
ence, as it has already been calculated. This approach requires a clear
definition of the relationships between the compared objects in order to
compute and explicitly show the resulting differences.

A few approaches exist that already combine successfully all three
basic categories defined by Gleicher et al. [12]. Tominski et al.[28] pre-
sented interaction concepts for comparing tabular data that are inspired
by natural behavior, although not all interaction techniques proposed
are suitable for large datasets. Their side-by-side comparison, however,
is also applicable to TACO. Further techniques exist that allow changes
to be visualized and facilitate comparison tasks, such as interaction,
analytical and statistical calculations, and animation [12].

To investigate the state-of-the-art, we start with discussing compara-
tive visualization techniques mainly from scientific literature that aid
comparison of various data types. In addition, we examine common
diff tools and libraries for investigating differences in tabular data.
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4.1 Comparative Visualization of Tabular Data

While much work exists on the comparison of graphs [3, 5, 7, 30], time
series data [26], or image data [24], techniques designed for comparing
tabular data are rare.

However, graph comparison techniques that employ adjacency matri-
ces as a base representation (e.g., [3, 5, 7, 30]) are similar to our work
in the sense that matrices can be interpreted as specific type of tables.
Matrix Wave [30], for example, focuses on finding a path between
multiple matrices rather than finding common patterns. Superposition
is used to combine the original data and the explicit encoding of the
difference in one visualization. The proposed method works well for
finding paths and relations between time sequence data. However, it
does not scale to large tables and tables that have many more columns
than rows, or vice versa.

Another common approach is to visualize the datasets (or data sub-
sets) as heatmaps and show them next to each other, i.e., using juxtapo-
sition. The pioneer work on VisDB [17] for comparing database query
results is an early example of a pixel-based approach that juxtaposes
multiple heatmaps. iHAT [15] is a heatmap-based approach in which
the user can aggregate rows and columns interactively. Techniques such
as Matchmaker [19], VisBricks [18], and StratomeX [20] arrange the
tabular subsets in an axes-based layout and draw explicit connections
between the table representations to visualize relationships between
items. While such an approach works well for comparing structural and
reorder changes, investigating content and merge/split changes (T1) is
difficult because the user must make the comparison mentally, which
causes high cognitive load. Adding interactions, such as details-on-
demand or linking-and-brushing, can help to alleviate the problem but
the comparison still remains tedious and is therefore not feasible.

An additional limitation is that most visualizations lack the ability
to perform row-wise, column-wise, and cell-wise comparison of tables
simultaneously. For juxtaposition-based approaches this is mostly due
to the fact that explicit relationship encoding only allows for being
visually connected in one direction.

Apart from the mentioned approaches, also superposition meth-
ods have been applied [8, 16]. They visually represent matrices as
heatmaps and project pairwise comparison vectors between matrices
onto a low-dimensional space, for example, using MDS. However, these
approaches do not cover the temporal aspects of data changes (T2).

4.2 Diff Tools

The primary purpose of difference or data comparison tools is to cal-
culate and display the similarities or differences between datasets of
various types. Most of the available tools are limited to particular
file formats, such as ExcelCompare? to Microsoft Excel Spreadsheets,
Daff? to CSV files, and AQT* to relational database tables. DiffKit> is
one of the few exceptions that supports all of the file formats mentioned.
All these tools have in common that they take two datasets as input,
compute the differences between them based on a number of metrics,
and finally present the result textually or visually. The final outputs
of these approaches are usually textual, list-based representations of
the differences or simple highlighting approaches that color-code the
changes at the row, column, and cell levels. However, neither lists nor
highlighting approaches scale to large tables with hundreds or even
thousands of rows or columns or to a large number of changes. Further-
more, most of the existing tools focus on content and structural changes
only and do not handle reorder and merge/split operations, thus failing
to fulfill Task T1. Moreover, they only support pairwise comparison
between two tables (T3), but are not able to provide an overview of
multiple table versions over time (T2).

4.3 Summary

In the previous paragraphs, we have presented a number of different
visual comparison methods. Examples for all three basic comparison

2https://github.com/na-ka-na/ExcelCompare/
3http://paulfitz.github.io/daff/
4http://querytool.com/
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categories of juxtaposition, superposition, and explicit representation
have been found. However, to the best of our knowledge, there is no
approach available that is able to address all necessary change types
presented in Section 2 and all the tasks formulated in Section 3. To fill
this gap, we developed TACO to facilitate effective visual comparison
of potentially large tabular datasets over time.

5 CHANGE CALCULATION

A review of existing tools and libraries showed that none of them
satisfies our need for calculating the difference between tables with
respect to the four change types. To address this important prerequisite
that constitutes the basis of our comparative visualization technique, we
developed a method for calculating differences based on the identifiers
of table rows and columns.

The result of a pairwise table comparison (Table A vs. Table B)
is a union table containing all rows and columns that are present in
either one of the input tables. The union table is then the basis for
the visual representations in TACO. Figure 2 illustrates how changes
of all four types are reflected in the union table. We detect structural
(add/remove), merge and split, and reorder changes by matching row
and column IDs from both input tables and then flag them accordingly
in the union table. To cover content changes as well, we subtract all
cells that belong to rows and columns that are present in both input
tables (i.e., the intersection), which yields cell-based difference values.
Finally, we handle reorder changes by storing the distance in position
for each column and row with respect to the two input tables, ignoring
added and removed rows and columns.
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Fig. 2: Effects of changes in two input tables on the union table. A and
B are combined into a union difference table that is used as a basis for
all change visualizations in TACO.
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6 VISUALIZATION CONCEPT

As presented in Section 3, our design is guided by a set of representative
user tasks. The design is additionally based on a series of discussions
with domain experts and grounded in common visualization theory and
concepts. In order to address user needs, we developed a multi-level
overview+detail concept. TACO allows users to gradually add more
focused and detailed views from top to bottom along three levels of de-
tail (see Figure 3). It starts from an aggregated, time-oriented overview
along a timeline (Figure 3.1). After selecting two table versions of inter-
est, an intermediate level is revealed that provides meta-information on
the selected data tables and the distribution of individual change types
(Figure 3.2). Finally, an in-depth comparison view based on heatmaps
is provided that allows changes to be investigated down to the level
of individual cell values (Figure 3.3). Below, we discuss the individ-
ual representation levels in more detail, explain design rationales, and
introduce the overall interaction concept.
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Fig. 3: TACO allows users to compare changes in tables at multiple
levels of detail. (1) Aggregated changes between two consecutive time
points are represented as stacked bar charts that are arranged along a
timeline. The overall bar height reflects the size of the calculated diff
table. (2) Selecting two particular time points allows users to compare
the changes and distribution in more detail using a 2D ratio chart and
additional histograms for rows and columns. (3) The most detailed
level includes heatmap representations of the two selected raw data
table versions (left and right) and a diff heatmap that provides details
on the location and amount of change at the cell level (center).

6.1

As formulated in Task T2, a fundamental requirement is to examine the
development of a tabular dataset over time. Summarization helps in
finding patterns but comes at the price of losing details. Aggregation
is needed to allow table comparison over time without overwhelming
the user with too many details. In order to accomplish this, we first
perform pairwise table comparisons and then summarize the different
change types. A difference ratio between two tables is calculated by the
ratio of the changed cells to all cells in the diff table, which results in a
value between 0 and 1, where 0 equals no changes and 1 means that all
cells are changed. Changes of different types can also be summarized
by counting the cells that are affected by a specific change type and
normalizing that number by the total number of cells in the diff table.

On the detail level, each pairwise comparison results in a difference
table (diff table) in which change types are highlighted in color at the
cell level (see Figure 4(a)). We apply different levels of aggregation
operations to the diff table to represent the differences in a summarized
way. First, aggregation is applied based on either dimension of the table
individually, which means that the numbers of affected cells either per
row or per column in the diff table are counted and shown as histograms,
as illustrated in Figures 4(c) and 4(d), respectively. Hence, we retain
information about the table dimensions and (approximate) locations
of the changes. To accomplish this single-dimension aggregation, we
consider the changes in only one dimension (e.g., row) while ignoring
the changes in the other (e.g., column). Second, further aggregation
can be achieved by aggregating the histogram data evenly into bins
(see Figure 4(e,f)). The number of bins is determined by the histogram
height (for rows) or width (for columns) and can be aggregated to a
single pixel if necessary. This makes the representation more compact
at the cost of less precision in terms of change location. Third, further
summarization is performed simultaneously on both table dimensions
to provide a more compact overview of relations of the different change
types. In doing so, we lose location information completely, but retain
change dimension information, using a 2D ratio chart as illustrated in
Figure 4(g). Fourth, the most compact overall summary is achieved
via a stacked bar chart that summarizes the ratios of change types
globally at the cell level without information about rows or columns
(see Figure 4(b)).

Multi-Level Change Aggregation

6.2 Visualization Components

To support Tasks T2 and T3, the TACO concept uses multiple levels,
allowing the user to analyze the data at three levels of detail, as shown
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Fig. 4: The difference between two tables is visualized as (a) a differ-
ence table. Changes are summarized on a per cell basis and visualized
as a (b) bar plot. The diff table can be aggregated for (c) row and (d)
column directions separately. (e,f) Further aggregation for one direc-
tion is achieved by binning, and shown as a histogram. Summarizing
changes for rows and columns results in a (g) 2D ratio chart.

in Figure 3. This concept is based on Shneiderman’s Visual Information
Seeking Mantra [25]: “Overview first, zoom and filter, then details-on-
demand”. Zooming means either zooming-in and zooming-out or a shift
of the user cognitive focus from one point in the view to another [11].
The second meaning is more relevant to what we suggest in this work.

Additionally, the user can selectively show or hide different change
types using the control bar in the header (see Figure 1; Task T1). The
control bar is visible at all detail levels of the interface and consists of a
series of toggle buttons for the different change types. The buttons for
toggling the display of the different change types are mainly interaction
elements but also act as a legend of the colors used. We use a consistent
color scheme throughout the whole interface, including the visual
encoding of changes in the diff heatmap (6). The following colors are
used to distinguish between change types: no change = @) (white),
content = & (blue), added = (green), removed = (pink), reorder =

(purple). To avoid problems with red and green hues for colorblind
people, we use colorblind-safe qualitative colors from Colorbrewer®.

In the following sections we introduce the visual encoding and
design decisions for each of the three detail levels.

6.3 Level 1: Change Overview Timeline

In the overview level illustrated in Figure 3.1, the user can compare
one table version to the consecutive one. We use a timeline to visualize
the changes over time (addressing T2), in which the user can see the
temporal progression of the changes in terms of the aggregated amount
of changes and when these changes occurred in time. A particular table
version is shown as a labeled tick, and labels on the timeline are spaced
according to the time of change.

In early design iterations, we considered using a projection-based
representation as overview that does not take the time aspect into ac-
count but allows multiple tables to be compared simultaneously. How-
ever, in discussions with domain experts we received the feedback that
showing incremental changes over time (Task T2) is more important.
Further, we decided to use stacked bar charts for summarizing the
changes for each table version with respect to the previous time point
in a compact manner. Using vertical stacked bar charts rather than
alternatives such as star plots or horizontal bar charts allows the user

Shttp://colorbrewer2.org/
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Fig. 5: Aggregated pairwise comparison visualization (level 2) with info
boxes showing meta-information describing the source and destination
tables. Difference histogram for (a) rows and (b) columns; (c) 2D ratio
chart presenting aggregated ratios of change types in both row and
column direction.

to compare the total number of changes for the different change types
between multiple table versions over time (Task T2).

Reorder changes are disabled by default in the stacked bar chart
visualization. This avoids a skewed representation, because reordered
columns/rows can also have associated content changes. Hence, the
sum of counted cells will exceed the number of total cells of the table.
One possible way to avoid misinterpretation is to visualize reorder and
content changes and introduce an additional color for the overlapping
parts in the stacked bar chart. However, this may confuse the user
and makes interpretation more difficult [14]. To address this problem,
we allow the user to see reorder changes on demand as a segment
superimposed on the content changes in the stacked bar chart.

Although each stacked bar represents the changes between two table
versions based on the previous time point, we decided to place them on
top of the timeline ticks to visually emphasize the points in time when
a new table version was created and avoid the misleading impression
that some change actually happened in the period between the ticks.

Once the user decides to investigate a particular version in more
detail, it can be selected as a source table, and the subsequent selection
sets the destination table by clicking the time point on the timeline.

6.4 Level 2: Aggregated Pairwise Comparison

After selecting two time points on the timeline, the differences between
the associated tables are shown in more detail in an aggregated view
(see Figure 3.2).

As illustrated in Figure 5, we position two info boxes to the left and
right of the aggregated diff visualization in the center of the interface
to fulfill Task T4. These boxes contain meta-information about the
selected tables such as date, time, name, and size of the table version.
Further, we show the following three aggregated diff visualizations,
addressing Task T3:

* A row diff histogram presenting an aggregation of the difference
in all rows into b, bins. Figure 5(a) shows an example with 30
bins.

* A column diff histogram presenting an aggregation of the differ-
ence in all columns into b, bins. Figure 5(b) shows an example
with 30 bins.

* A 2D ratio chart presenting aggregated ratios of the change types
in both row and column dimension. Figure 5(c) shows an example
with three types of changes in both rows and columns.

Each bin in a diff histogram is represented as a stacked bar where
each part represents a type of change. When the user hovers over one
bin in a diff histogram, percentages of the change types are shown in
a tooltip. Upon user selection, the third level of detail is loaded in the
form of a detailed pairwise comparison.

6.5 Level 3: Detailed Pairwise Comparison

On the one hand, the two selected raw data table versions are visualized
side-by-side as heatmaps (see Figure 1 bottom left and right). A gray-
scale color palette is used to represent cell values, as required for Task
T4. This supports a juxtaposition comparison [12]. On the other hand,

Source (S)
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D
(a) Structure (b) Content (c) Merge/Split (d) Reorder
Legend
Added Change Removed Change Content Change -1 1
|:| No Change Reorder Change

Fig. 6: The four possible change types and their visual encoding in the
diff heatmap.

differences are shown directly as a color-coded diff heatmap in the
center between the selected table versions. This enables an explicit
representation (encoding) [12] which frees the user from performing
mental comparisons between the two table versions. Regardless of
which table version is chosen first on the timeline, the one shown on
the left is always the source table (older one), and the destination table
(more recent one) is the one on the right. Note that the source and target
encodings of the raw data may be of limited use, in particular, if no
meaningful order that might make patterns in the data visible has been
applied to the input dataset.

Textual labels are added for both rows and columns in the raw table
heatmaps. These facilitate relation to the original table’s structure and
content. Using a heatmap to represent a table has the advantage of
better scalability to larger datasets. However, larger datasets turn a
heatmap into a pixel-based visualization technique, where one or even
multiple rows or columns are represented by a single pixel line. Textual
labels are therefore available only for smaller table sizes and will be
omitted for larger ones.

The diff heatmap visualizes the common (union) parts in both tables
compared and changes happening between table versions using differ-
ent visual attributes that represent the possible change types. Hovering
over a cell in the diff heatmap shows the corresponding row ID, column
ID, and the normalized change values. Further, interactive view coor-
dination is applied to connect source, diff, and destination heatmaps.
This means that, when a table cell is selected in each of the heatmaps,
the corresponding cells are highlighted in all other views.

The following visual encoding concepts are used to represent differ-
ent change types: Structure and content changes are indicated using
colors in the diff heatmap, as illustrated in Figure 6(a) and (b). Merge
changes are encoded as Y-connectors (Figure 6(c)) and reorder changes
as slope graphs in a separate area between the heatmap and the diff
heatmap (Figure 6(d)).

In the following paragraphs we discuss the individual visual encod-
ing concepts for the diff heatmap.

Visualizing Structural Change

Structural changes are encoded as colored horizontal or vertical lines for
rows and columns, respectively. Color hues indicate the type of struc-
tural change (see Figure 6(a)). The colors green and red are commonly
used in the literature to indicate addition and removal operations [6].
Users associate green color with a positive value, growth, etc., which
makes the color suitable for representing add operations. In contrast,
red—in our case pink, since colorblind-safe colors are used (see 6.2)
is perceived as a negative value, which can be associated with losing
information from deletions.

Visualizing Content Change

We use normalized quantitative differences along table columns to
represent value changes within a table cell and apply a diverging color
scale to illustrate the extent of the value difference. Starting from white,
which represents no change, positive value changes are shown using
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different brightness levels of brown on the one, and different brightness
levels of blue on the other side to represent negative value changes.
Although color is not the best possible choice to represent quantitative
differences, we decided on this design trade-off because other variables
such as size or length cannot be encoded in a visualization of a diff table
while satistying scalability and consistency requirements. Figure 6(b)
shows an example diff heatmap with brown cells encoding positive
value changes and light blue cells encoding negative value changes.
The user can emphasize cells with low value changes by adjusting the
color scale using an interactive range slider.

Visualizing Reorder Change

Slope graphs that connect the old position of a row in the source
table to the new position in the destination table are used to encode
reorder changes. The slope graphs exhibit similarities to the encoding
of merge/split changes, but introducing more colors would increase
visual clutter and make interpretation of color harder [14]. We visualize
reorder changes separately in two boxes positioned on either the left
or right side of the raw data heatmap (depending on whether it is the
source or destination table) and below (see Figure 6(d)) to overcome
the problem of similarity. This box-based layout makes it easier to
spot reordering patterns and outliers. As with merge/split changes,
the edge on the left represents the source table and that on the right
the destination table. We integrate the option to highlight a particular
reorder change by hovering over the connection line to make that
change stand out. This encoding is applied to both rows and columns.
A toggle button above the diff heatmap allows the user to hide the
diff heatmap in the center on demand, making it easier to follow the
connection lines between the source and destination heatmaps.

Visualizing Merge or Split Change

We assume that a row merge operation is a combination of a removal
of two or more rows from the first table and an addition of one new row
at the same relative position in the second table.

To encode the merge/split change, we use a Y-connector (see Fig-
ure 6(c)). The visual encoding concept is assembled into a box, posi-
tioned to the right and below the diff heatmap. The left edge of the box
represents the source table and the right edge the destination table. The
merged rows from the source table are connected with a Y-connector
that ends in the destination table. If rows are one below the other, the
area between the Y-connector is filled. This encoding is applied to
both rows and columns analogously and split changes are represented
inversely. In the case of multiple merges, we use interaction (mouse
over) to highlight the matching merge and split rows/columns.

Note that merge/split changes are rare and therefore not present in
our two usage scenarios.

7 IMPLEMENTATION

In order to cope with large tables while providing browser-based access
to users, we implemented TACO based on a client-server architecture,

built using the Phovea Framework’ [13] which is an open-source visual
analysis platform that is developed as part of the Caleydo project®.
The server component is implemented in Python and supports data
management, manipulation, and change calculation. The client is
implemented in TypeScript and uses D3.js” for rendering. Both com-
ponents exchange data via a RESTful interface. On the server side,
we use the Phovea server component to load and access the tabular
datasets (mainlg tables stored in CSV format or Hierarchical Data
Format (HDF)'V files), as illustrated in Figure 7. This gives us access to
the actual data inside the tables and the corresponding row and column
identifiers. Tabular data and identifiers are processed and compared on
the TACO server. The results of the comparison are cached to avoid
re-computation of the same datasets and sent as a JSON file to the client
side using the Flask!! RESTful interface.

On the client side, the TACO client extends the Phovea framework
by adding a specialized TACO visualization component that visualizes
the results of the table comparison from the server. To show the original
tables as heatmaps, we use an optimized canvas version for heatmap
visualizations from Phovea that minimizes memory and processing load
on the client side. Further, for scalability reasons, the most detailed
pairwise comparison view is not loaded and rendered automatically, but
only on demand by using the *Load Detail View’ button in the interface.
This avoids potentially longer waiting times if large tables need to be
transferred from the server.

Note that in our current TACO prototype reorder changes are visual-
ized to the left and right of the diff table. In further improvements we
will adapt the layout to also encode reorder changes of the columns.

The prototype of TACO with preloaded data from both usage scenar-
ios is available at https: //taco.caleydoapp.org. The source
code is hosted on Github!2.

8 USAGE SCENARIOS

To demonstrate how TACO can be applied for interactive analysis
of tabular data, we present two usage scenarios. For the first usage
scenario, we chose the Summer Olympic Games dataset because it
is commonly known, and many of the changes reflecting historical
knowledge become immediately visible in TACO. The second usage
scenario demonstrates how our technique is applied to cancer genomics
data, for which we developed TACO in the first place.

Since none of the existing tools is able to encode the different change
types in a scalable way, we decided against a formal comparative evalu-
ation, which would just confirm obvious limitations of other approaches.
However, we do believe that strong usage scenarios are sufficient to
demonstrate the efficacy of our technique.

"http://phovea.caleydo.org/
Shttp://caleydo.org/
‘http://d3js.org/
Onttps://hdfgroup.org/
Uhttp://flask.pocoo.org/
Zhttps://github.com/Caleydo/taco/
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Fig. 8: TACO showing the difference between the microRNA datasets from 2013-05-23 and 2013-09-23. The stacked bars along the timeline
and the 2D ratio charts show that one patient was eliminated from the dataset because of quality issues (b), as indicated by the pink horizontal
line in the 2D ratio chart (c) and in the diff heatmap (d). The mostly blue 2D ratio chart indicates that the values in all cells were changed
because the removal of the patient data triggered a re-normalization applied to the whole dataset. Link to TACO state shown in this figure:

http://vistories.org/taco-tcga-1
8.1 Summer Olympics

In this usage scenario we demonstrate how TACO can help users to
explore the four types of changes over the history of the Summer
Olympic Games, as shown in Figure 1. The dataset published by the
10C Olympic Studies Centre'® contains the medal tables (aggregated
counts of gold, silver, and bronze medals) from all summer games
between 1896 in Athens and 2012 in London. In 1896 the multi-sports
event started with only 8 countries that competed in 7 disciplines. Over
time, both the disciplines and the participating countries evolved to 45
countries and 89 disciplines, causing structural changes in the form
of additions and removals. In addition to the changes in nations, the
ranked medal table (ordered by the total number of medals per country)
itself varied, which resulted in content and reorder changes.

The user starts by investigating the aggregated changes along the
timeline (task T2). She recognizes that the stacked change bars increase
in size over time, indicating that the table itself becomes larger in both
directions due to a continually increasing number of countries and
disciplines. Furthermore, gaps and deviations from the usual 4-year
pattern caused by wars are also immediately visible.

To further investigate the changes caused by World War II, she
selects the years 1936 and 1948, which results in the appearance of the
2D ratio chart below the timeline (task T3). According to the 2D ratio
chart, only a few disciplines got added as columns, while the portion

of added and removed rows representing the countries is much larger.

To find out more, the user opens the detail view, which adds the source
and destination tables together with the diff heatmap in the center, as
shown in Figure 1 (task T4). By exploring the detailed changes, the
user is able to confirm structural changes resulting from the outcome
of the war. For instance, Germany (GER), which was ranked second
in the medal table from 1936, did not participate in 1948 (but returned
in 1952). Other nations, such as France (FRA), Belgium (BEL), and
Italy (ITA), re-joined after skipping the games in 1936. In terms of
disciplines, 200m Women and 500m Singles Women were added, while
none were removed. The largest positive value change, indicated by
the dark blue cell, is caused by the fact that Finland (FIN) was able to

130lympic World Library https://library.olympic.org/

win all three 10,000m Men medals in 1936, while they were not able to
repeat this success in 1948. This is also reflected in the reorder changes,
where Finland was ranked 6 in 1936 and last in 1948.

The changes discussed above are only example findings users could
possibly make. It demonstrates how a set of domain tasks is addressed
by the interactive visual exploration interface and what such a user
session could look like. Next, we turn to a more complex scenario from
the biomedical domain, which motivated the development of TACO.

8.2 Cancer Genomics

Large initiatives such as The Cancer Genome Atlas (TCGA) project
collect comprehensive data from hundreds of patients for different
tumor types. The goal of such initiatives is to generate and confirm
hypotheses about tumor subtypes and their functional effects based on
multiple molecular datasets, such as mRNA expression, microRNA
expression, protein expression, copy number status, and gene mutation
tables. The data is processed by large workflow systems that consist
of dozens of analytic script-based tools performing tasks such as nor-
malization, clustering, and significance tests. Running such a workflow
results in a diverse set of derived data such as clustering results, lists
of statistical scores, reports, and plots. Because of the size of the data
and the complexity of the workflow, such pipelines can only be run in
certain intervals, for example, once a month. However, changes in the
workflow, its parameters, and the tabular input tables, make it difficult
to determine what caused changes in the result, for instance, splitting
of a cluster between runs. In our previous work on AVOCADO [27],
we proposed a visual analysis approach that allows analysts to explore
complex processing workflows that change over time. With TACO, we
aim to give analysts a tool that also enables them to investigate changes
in the tabular input data over time.

The presented usage scenario is based on cancer genomics datasets
that are publicly available for download via the TCGA Data Por-
tal'*. We loaded different molecular datasets from cancer patients
with Glioblastoma Multiforme, a very aggressive and common form
of brain tumor, into the system. The primary goal of the analyst is to

“nttps://tcga-data.nci.nih.gov/
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Fig. 9: Selecting 2013-09-23 and 2014-01-15 as time points for the microRNA table comparison reveals that the re-normalization of the dataset
again caused the content of the whole table to change. However, in contrast to the comparison shown in Figure 8, the content changes are
subtle, and many more removals and additions become visible (a). Adjusting the color scale makes the content change more salient. While
the additions of columns is caused by newly added patient data, the change in columns shows that some microRNAs got replaced by others
because the new set of patients altered the ranking of the mostly significantly expressed microRNAs (b). Link to TACO state shown in this figure:
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find out if the tables change and if this is the case, how they changed.
The usage scenario was created based on multiple feedback sessions
with a bioinformatician who was strongly involved in the automatic
processing of TCGA datasets.

The analyst starts by selecting the microRNA dataset, which con-
tains 150 microRNAs (small non-coding RNA molecules that have
been found to play a role in biological processes) for initially 491 pa-
tients. However, since increasing amounts of data were collected in
the course of the TCGA project, the number of patients also increased
over time. The 150 microRNAs included are those most significantly
differentially expressed across all patients. The matrices are clustered
using a consensus non-negative matrix factorization (c(NMF) [10] for
the patients and a tree clustering [9] for the microRNAs.

Following the multi-level detail concept of TACO, the analyst starts
by investigating the aggregated changes encoded as stacked bar charts
along the timeline (see Figure 8, task T1). A white stacked bar (a)
shown for the first three runs indicates that the dataset stayed the same
in terms of content and structure (task T2). However, the analyst then
notices that between the runs from 2073-05-23 and 2013-09-23 all
values changed slightly, as indicated by a full blue and purple bar (b).
When inspecting the 2D ratio chart with the attached histograms, the
analyst realizes that, in addition to the content changes, a single sample
was excluded from the dataset, which is indicated by a pink horizontal
line (c). By looking into the data acquisition protocols, he is able to
confirm that the data from this patient was indeed retracted because
of quality issues with the tissue sample. By taking a closer look at
the preprocessing scripts that are applied to the table, he also finds out
that with every addition or removal, the whole dataset is re-normalized,
which explains the content changes. This also explains the stringy
patterns where the same number change is applied uniformly to all
samples in a microRNA column and the rows that are shifted due to a
slightly different clustering result (steep lines in reorder slope graphs).

The analyst continues with an inspection of the differences between
runs 2013-09-23 and 2014-01-15, as shown in Figure 9 (task T3). While

the overview again shows a large portion of content and reorder changes,
more additions and removals of rows and columns also become visible
(a). The analyst expected a large number of additions caused by newly
included patients, which he is able to visually confirm. However, the
structural changes in the microRNA columns (b) are surprising, which
makes the analyst dig deeper by opening the most detailed difference
heatmap visualization (task T4). After consulting with colleagues,
he concludes that the changed set of microRNAs is caused by the
new set of patients, which in turn altered the ranking of the most
significantly expressed microRNAs. These ranking changes are shown
as line patterns in the reorder slope graphs.

During the development of TACO, we continuously collected feed-
back by discussing different versions of the prototype with our collabo-
rator. In addition to providing valuable suggestions for improvement
that we integrated in multiple iterations, he repeatedly mentioned the
added value of TACO for quality control purposes. Without a visual
tool like TACO, analysts must manually apply traditional diff tools with
two time points as input and look at the results. Doing this for many
input tables that change in the course of large-scale projects is tedious.
Further, the evolution of datasets can be investigated only indirectly by
running the diff tool multiple times with two table versions at different
time steps as input and then manually comparing the results. Finally,
our collaborators mentioned that they intend to use TACO to show the
evolution of long-running cancer genomics projects, such as TCGA.

9 DISCUSSION AND LIMITATIONS

Although we aimed to cover a broad range of user tasks and to imple-
ment a fully functional prototype, some limitations are inherent to the
current concept and pose challenges for further improvement.

Heterogeneous Tables The presented concept of encoding the
differences in a diff table with representations of higher level aggregates
can be used to compare not only homogeneous but also heterogeneous
tables. The current version of TACO compares only homogeneous
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tables (matrices), that is, tables that contain the same data type, range,
and semantics in all columns and rows. However, in a heterogeneous
table, every column (or row) can have a different data type and should
therefore be visualized differently. We believe that TACO is able to
cover this conceptually, but this will require a special normalization
approach and visual encoding to effectively reflect the heterogeneity of
the input tables.

Single ltem Level Drill-Down At the most detailed level (Fig-
ure 3), the raw data and difference heatmap provide insights into
changes between two particular table versions, for instance, where the
change occurred (cell, rows, and columns) and which type of change
was detected (added, removed, reordered, or content changes of cells,
rows, and columns). A drill-down to the item level is partly integrated
into the interface of the prototype. For smaller datasets, we present
labels attached to the heatmaps that describe rows and columns (see
Figure 1). However, to also support single item drill-down operations
for larger tables, such as those demonstrated in the biomedical usage
scenario, a possible solution would be to introduce a focus+context
approach that increases the number of selected rows and columns while
preserving the context.

Heatmap Limitations The raw data table heatmaps we present at
the highest detail level in TACO have some limitations relating to aspect
ratio and information density. The larger the table, the less detailed
information the user can obtain form the visualized heatmap, except in
cases in which the order of rows and columns provides a meaningful
structure and users can see patterns in the data. A meaningful order of
rows and columns can be achieved either by clustering the table or by
sorting the rows/columns by another attribute, such as time or some
hierarchy (e.g., product classification, ICD-10 codes). If this is not the
case, the heatmap representation could be irrelevant to the user and
therefore hidden from the interface.

Furthermore, we identified some restrictions of the concept when
tables with a large number of rows and only few columns are visualized,
or vice versa. In these cases we can either fill the available space by
distorting the table or add scrollbars. This limitation could be resolved
by integrating a lens to zoom into a particular area of the visualization.

Besides unbalanced aspect ratios, the number of available pixels on
the screen is an inherent scalability limit of pixel-based representations.
Going beyond this limit either requires scrolling, with unfavorable
effects for gaining an overview, or makes aggregation of rows and/or
columns necessary. This could lead to situations where different change
types would need to be merged to a single pixel in the diff heatmap. An
alternative approach would be color weaving [2], where pixels within a
defined area are permuted randomly. However, this will require further
research and evaluation.

Merge and Split Changes We have developed a visual encoding
concept for merge changes as described in Section 6. Due to the lack of
merge or split changes in the Cancer Genomics and the Olympic Medals
datasets, we cannot demonstrate it in this version of the prototype.

Scalability and Performance TACO scales from a few dozen
cells in the Summer Olympic Games dataset (8 rows x 7 columns for
the total medals matrix of 1,896) to millions of cells in the TCGA
dataset (571 rows x 24,174 columns of the copy number matrix from
2014-04-16). We improve the performance of the change computation
by requiring unique identifiers for rows and columns and caching of
the computation results.

User Tasks In Section 3, we introduced a number of user tasks
for our problem domain. In prior work on task taxonomies, comparison
tasks were in most cases included as leaf nodes in the corresponding
task spaces [4, 22]. Hence, details about the nature of the comparisons
have not yet been discussed at a more systematic level. Andrienko &
Andrienko [4] differentiated between elementary and synpotic, direct
and indirect, and comparison and relation seeking tasks depending on
whether single or sets of elements, referrers or attributes, and values or
the type of relationship are compared to each other. However, aspects
such as structure vs. content are not expressed. Moreover, Gleicher et al.
[12] mentioned that a complete taxonomy of comparison tasks remains

outstanding. As a first step towards filling this gap, we propose the
following three dimensions that comprise a more general task space for
comparing complex data elements over time: (1) number of elements
to compare: two vs. many; (2) high-level type of change: structure
vs. content vs. reorder vs. merge/split vs. meta-data; (3) time: linear
vs. branching. The first dimension refers to how many elements are
compared, that is, whether pairwise comparisons are performed or more
than two tables are compared at once. The second dimension focuses
on the possible types of changes, inspired by research into versioning
of relational databases [23]. Finally, the third dimension deals with the
temporal model applied [1], that is, whether changes appear in a linear
succession of events over time or if branches can also be modeled to
allow for parallel branches of derived tables. As can be seen from the
task space described, TACO supports a majority—but not all—of the
design aspects. First, it focuses on pairwise table comparisons and does
not support multi-way comparison of more than two table instances
at once. Second, in terms of change types, meta-data changes are not
covered. Third, branching histories of table changes are not supported
in the timeline overview. All three of these would fit into the overall
concept of TACO, but require further consideration in terms of change
calculation, visual representation, and interaction. These need to be
addressed as part of future work.

Detect Semantics in Changes Certain data transformations af-
fect a table globally in a uniform manner, but do not change it com-
pletely. A concrete example of such a transformation is the normaliza-
tion of data values. In its current form, TACO detects changes based on
value comparisons at the cell level, which might lead to the false impres-
sion that the table has changed completely. To mitigate this, global data
transformations or specific change semantics, such as normalizations,
could be detected automatically and represented differently.

10 CONCLUSION

Investigating changes between multiple versions of a table, for exam-
ple, to detect modifications in monthly payroll tables or to observe
differences in multiple biological experiments, is a challenging task. In
this work, we presented a visual comparison tool based on calculating
pairwise differences between tabular datasets along a set of change
types. We have introduced an interactive visualization concept that
allows their differences over time to be investigated across multiple
levels of detail. TACO provides two of three possible types of visual
comparison approaches: juxtaposition and explicit representation [12].
To validate the effectiveness of our visualization tool, we applied it to
two usage scenarios.

A number of future challenges have already been discussed in the
previous section. In addition to addressing these limitations, planned
future work includes conducting a long-term case study to collect em-
pirical evidence on the application of TACO as well as benefits and
potential difficulties to be addressed. Furthermore, as mentioned in
the biomedical usage scenario, we plan to combine TACO with our
previous work on AVOCADO [27]. In combination, the two solutions
will provide domain experts with an effective tool that helps to un-
derstand which changes in the input tables, the processing workflow,
and its parametrization caused certain changes in the output of such
complex pipelines. This kind of provenance and causality analysis
is also essential for making the results of data-driven sciences more
reproducible and, in the long term, also more sustainable.
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