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Abstract

Background: With ever-increasing amounts of data produced in biology research, scientists are in need of
efficient data analysis methods. Cluster analysis, combined with visualization of the results, is one such method
that can be used to make sense of large data volumes. At the same time, cluster analysis is known to be
imperfect and depends on the choice of algorithms, parameters, and distance measures. Most clustering
algorithms don’t properly account for ambiguity in the source data, as records are often assigned to discrete
clusters, even if an assignment is unclear. While there are metrics and visualization techniques that allow
analysts to compare clusterings or to judge cluster quality, there is no comprehensive method that allows
analysts to evaluate, compare, and refine cluster assignments based on the source data, derived scores, and
contextual data.

Results: In this paper, we introduce a method that explicitly visualizes the quality of cluster assignments,
allows comparisons of clustering results and enables analysts to manually curate and refine cluster assignments.
Our methods are applicable to matrix data clustered with partitional, hierarchical, and fuzzy clustering
algorithms. Furthermore, we enable analysts to explore clustering results in context of other data, for example,
to observe whether a clustering of genomic data results in a meaningful differentiation in phenotypes.

Conclusions: Our methods are integrated into Caleydo StratomeX, a popular, web-based, disease subtype
analysis tool. We show in a usage scenario that our approach can reveal ambiguities in cluster assignments and
produce improved clusterings that better differentiate genotypes and phenotypes.

Keywords: Cluster analysis, visualization, biology visualization, omics data.

Introduction
Rapid improvement of data acquisition technologies
and the fast growth of data collections in the biological
sciences increase the need for advanced analysis meth-
ods and tools to extract meaningful information from
the data. Cluster analysis is a method that can help
make sense of large data and has played an important
role in data mining for many years. Its purpose is to
divide large datasets into meaningful subsets (clusters)
of elements. The clusters then can be used for aggre-
gation, ordering, or, in biology, to describe samples in
terms of subtypes and to derive biomarkers. Clustering
is ubiquitous in biological data analysis and applied to
gene expression, copy number, and epigenetic data, as
well as biological networks or text documents, to name
just a few application areas.
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A cluster is a group of similar items, where similarity
is based on comparing data items using a measure of
similarity. Cluster analysis is part of the standard tool-
box for biology researchers, and there is a myriad of
different algorithms designed for various purposes and
with differing strengths and weaknesses. For example,
clustering can be used to identify functionally related
genes based on gene expression, or to categorize sam-
ples into disease subtypes. Since Eisen et al. [1] intro-
duced cluster analysis for gene expression in 1998, it
has been widely used to classify both, genes and sam-
ples in a variety of biological datasets [2, 3, 4, 5, 6].

However, while clustering can be useful, it is not al-
ways simple to use. Scientists have to deal with several
challenges: the choice of an algorithm for a particu-
lar dataset, the parameters for these algorithms (e.g.,
the number of expected clusters), and the choice of a
suitable similarity metric. All of these choices depend
on the dataset and on the goals of the analysis. Also,
methods generally suitable for a dataset can be sensi-
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tive to noise and outliers in the data and produce poor
results for a high number of dimensions.

Several (semi)automated cluster validation, opti-
mization, and evaluation techniques have been intro-
duced to address the basic challenges of clustering and
to determine the amount of concordance among cer-
tain outcomes (e.g., [7, 8, 9]). These methods try to
examine the robustness of clustering results and guess
the actual number of clusters. This task is often ac-
companied by visualizations of these measures by his-
tograms or line graphs. Consensus clustering [10] ad-
dresses the task of detecting the number of clusters and
attaining confidence in cluster assignments. It applies
clustering algorithms to multiple perturbed subsam-
ples of datasets and computes a consensus and cor-
relation matrix from these results to measure concor-
dance among them, and explores the stability of dif-
ferent techniques. These matrices are plotted both as
histograms and two-dimensional graphs to assist sci-
entists in the examination process.

Although cluster validation is a useful method to ex-
amine clustering algorithms it does not guarantee to
reconstruct the actual or desired number of clusters
from each data type. In particular, cluster validation
is not able to compensate weaknesses of cluster algo-
rithms to create an appropriate solution if the cluster-
ing algorithm is not suitable for a given dataset.

While knowledge about clustering algorithms and
their strengths and weaknesses, as well as automated
validation methods are helpful in picking a good ini-
tial configuration, trying out various algorithms and
parametrizations is critical in the analysis process. For
that reason, scientists usually conduct multiple runs
of clustering algorithms with different parameters and
compare the varying results while examining the con-
cordance or discordance among them.

In this paper we introduce methods to evaluate
and compare clustering results. We focus on revealing
specificity or ambiguity of cluster assignments and em-
bed our contributions in StratomeX [11, 12], a frame-
work for stratification and disease subtype analysis
that is also well suited to cluster comparison. Further-
more, we enable analysts to manually refine clusters
and the underlying cluster assignments to improve am-
biguous clusters. They can transfer entities to better
fit clusters, merge similar clusters, and exclude groups
of elements assumed to be outliers. An important as-
pect of this interactive process is that these operations
can be informed by considering data that was not used
to run the clustering: when considering cluster refine-
ments, we can immediately show the impact on, for
example, survival data.

In our tool, users are able to conduct multiple
runs of clustering algorithms with full control over

parametrization and examine both conspicuous pat-
terns in heatmaps and quantify the quality and confi-
dence of cluster assignments simultaneously. Our mea-
sures of cluster fit are independent from the underlying
stratification/clustering technique and allows investi-
gators to set thresholds to classify parts of a cluster as
either reliable, uncertain, or a bad fit. We apply our
methods to matrices of genomic datasets, which covers
a large and important class of datasets and clustering
applications.

We evaluate our tool based on a case study with
gene expression data from The Cancer Genome Atlas
and demonstrate how visual inspection and manual
refinement can be used to identify new clusters.

Background
In this section we briefly introduce clustering algo-

rithms and their properties, as well as StratomeX, the
framework we used and extended for this this research.

Cluster Analysis
Clustering algorithms assign data to groups of simi-
lar elements. The two most common classes of algo-
rithms are partitional and hierarchical clustering al-
gorithms [13]; less frequently used are probabilistic or
fuzzy clustering algorithms.

Partitional algorithms decompose data into non-
overlapping partitions that optimize a distance func-
tion, for example by reducing the sum of squared error
metric with respect to Euclidean distance. Based on
that, they either attempt to iteratively create a user-
specified number of clusters, like in k-Means [14] or
they utilize advanced methods to guess the number of
clusters implicitly, such as Affinity Propagation [15].

In contrast to that, hierarchical clustering algo-
rithms generate a tree of similar records by either
merging smaller clusters into larger ones (agglomer-
ative approach) or splitting groups into smaller clus-
ters (divisive). In the resulting binary tree, commonly
represented with a dendrogram, each leaf node repre-
sents a record, each inner node represents a cluster as
the union of its children. Inner nodes commonly also
store a measure of similarity among their children. By
cutting the tree at a threshold, we are able to obtain
discrete clusters from the similarity tree.

These approaches use a deterministic cluster assign-
ment, i.e., elements are assigned exclusively to one
cluster and are not in other clusters. In contrast, fuzzy
clustering uses a probabilistic assignment approach
and allows entities to belong to multiple clusters. The
degree of membership is described by weights, with
values between 0 (no membership at all) and 1 (unique
membership to one cluster). These weights are com-
monly called probabilities capturing the likelihood of
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Figure 1 Screenshot of Caleydo StratomeX, which forms the basis of the technique introduced in this paper showing data from the
TCGA Kidney Renal Clear Cell Carcinoma dataset [3]. Each column represents a dataset, which can either be categorical, like in the
second column from the left, or based on the clustering of a high-dimensional dataset, like the two columns on the right. The blocks
in the columns represent groups of records, where matrices are visualized as heat maps, categories with colors, and clinical data as
Kaplan-Meier plots. The columns showing Kaplan-Meier plots are “dependent columns”, i.e., they use the same stratification as a
neighboring column. The Kaplan-Meier plots show survival times from patients. The first column shows survival data stratified by
tumor staging, where, as expected, higher tumor stages correlate with worse outcomes.

an element belonging to a certain partition. A promi-
nent example algorithm is Fuzzy c-Means [16].

Clustering algorithms make use of a measure of sim-
ilarity or dissimilarity between pairs of elements. They
aim to maximize pair-wise similarity or minimize pair-
wise dissimilarity by using either geometrical distances
or correlation measures. A popular way to define sim-
ilarity is a measure of geometric distance based on,
for example, squared Euclidean or Manhattan dis-
tance. These measures work well for “spherical” and
“isolated” groups in the data [17] but are less well
suited for other shapes and overlapping clusters. More
sophisticated methods measure the cross-correlation
or statistical relationship between two vectors. They
compute correlation coefficients that denote the type
of concordance and dependence among pairs of ele-
ments. The coefficients range from -1 (opposite or neg-
ative correlation) to 1 (perfect or positive correlation),
whereas zero values denote that there is no relationship
between two elements. The most commonly used coef-
ficient in that context is the Pearson product-moment
correlation coefficient that measures the linear rela-
tionship by means of the covariance of two variables.
Spearman’s rank correlation coefficient is another ap-

proach to estimate concordance similar to Pearson’s
but uses ranks or scores for data to compute covari-
ances.

The choice of distance measure has an important
impact on the clustering results, as it drives an algo-
rithm’s determination of similarity between elements.
At the same time, we can also use distance measures to
identify the fit of an element to a cluster, by, for exam-
ple, measuring the distance of an element to the cluster
centroid. In doing so, we do not necessarily need to use
the same measure that was used for the clustering in
the first place. In our technique, we visualize this in-
formation for all elements in a cluster, to communicate
the quality of fit to a cluster.

StratomeX
StratomeX is a visual analysis tool for the analy-
sis of correlations of stratifications [11, 12]. This is
especially important when investigating disease sub-
types that are believed to have a genomic underpin-
ning. Originally developed as a desktop software tool,
it has since been ported to a web-based client-server
system [18]. Figure 1 shows an example of the lat-
est version of StratomeX. By integrating our methods
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into StratomeX, we can also consider the relationships
of clusters to other datasets, including clinical data,
mutations, and copy number alteration of individual
genes.

StratomeX visualizes stratifications of samples (pa-
tients) as rows (records) based on various attributes,
such as clinical variables like gender or tumor staging,
bins of numerical vectors, such as binned values of copy
number alterations, or clusters of matrices/heat maps.
Within these heat maps, the columns correspond to
e.g., differentially expressed genes. StratomeX com-
bines the visual metaphor used in parallel sets [19],
with visualizations of the underlying data [20]. Each
dataset is shown as a column. A header block at the
top shows the distribution of the whole dataset, while
groups of patients are shown as blocks in the columns.
Relationships between blocks are visualized by rib-
bons whose thickness represents the number of pa-
tients shared across two bricks. This method can be
used to visualize relationships between groupings and
clusterings of different data, but can equally be used
to compare multiple clusterings of the same dataset.

StratomeX also integrates the visualization of “de-
pendent data” by using the stratification of a neighbor-
ing column for a different dataset. This is commonly
used to visualize survival data in Kaplan-Meier plots
for a particular stratification, for example, or to vi-
sualize expression of a patient cluster in a particular
biological pathway.

Related Work
There are several tools to analyze clustering results
and assess the quality of clustering algorithms. A com-
mon approach to evaluate clustering results is to visu-
alize the underlying data: heatmaps [1], for example,
enable users to judge how consistent a pattern is within
a cluster for high-dimensional data.

Seo at el. [21] introduced the hierarchical clustering
explorer (HCE) to visualize hierarchical clustering re-
sults. It combines several visualization techniques such
as scattergrams, histograms, heatmaps and dendro-
gram views. In addition to that, it supports dynamic
partitioning of clusters by cutting the dendrogram in-
teractively. HCE also enables the comparison of dif-
ferent clustering results while showing the relation-
ship among two clusters with connecting links. May-
day [22, 23] is a similar tool that, in contrast to HCE,
provides a wide variety of clustering options.

Lex et al. [24] introduced Matchmaker, a method
that enables both, comparisons of clustering algo-
rithms, and clustering and visualization of homoge-
neous subsets, with the intention of producing better
clustering results. Matchmaker uses a hybrid heatmap
and a parallel sets or parallel coordinates layout

to show relationships between columns, similar to
StratomeX. VisBricks [20] is an extension of this idea
and provides multiform visualization for the data rep-
resented by clusters: users can choose which visualiza-
tion technique to use for which cluster.

In contrast to these techniques, Domino [25] provides
a completely flexible arrangement of data subsets that
can be used to create a wide range of visual repre-
sentations, including the Matchmaker representation.
It is, however, less suitable for cluster evaluation and
comparison.

A tool that addresses the interactive exploration of
fuzzy clustering in combination with biclustering re-
sults is FURBY [26]. It uses a force-directed node-
link layout, representing clusters as nodes and the re-
lationship between them as links. The distance be-
tween nodes encodes the (approximate) similarity of
two nodes. FURBY also allows users to refine or im-
prove fuzzy clusterings by choosing a threshold that
transforms fuzzy clusters into discrete ones.

A tool that is more closely related to our work is
XCluSim [27]. It focuses on visual exploration and val-
idation of different clustering algorithms and the con-
cordance or disconcordance among them. It combines
several small sub-views to form a multiview layout and
provides different views for cluster evaluation. It con-
tains dendrogram and force-directed graph views to
show concordance among different clustering results
and uses colors to represent clusters, without show-
ing the underlying data. It lists used clustering algo-
rithms, its parameters and applied similarity metrics.
It offers a parallel sets view where each row repre-
sents one clustering result and thick dark ribbons de-
pict which groups are clustered throughout all clus-
tering results, referred as stable groups. In contrast to
XCluSim, our methods integrate cluster metrics with
the data more closely and can also bring in other, re-
lated data sources, to evaluate clusters. Also, XCluSim
does not support cluster refinement.

Our methods are also related to silhouette plots,
which visualize the tightness and separation of the
elements in a cluster [28]. Silhouette plots, however,
work best for geometric distances and clearly sepa-
rated and spherical clusters, whereas our approach is
more flexible in terms of supporting a variety of dif-
ferent measures of cluster fit. Also, silhouette plots are
typically static, however, we could conceivably inte-
grate the metrics used for silhouette plots in our ap-
proach. iGPSe [29], for example, is a system similar to
StratomeX that integrates silhouette plots.

Requirements
Based on our experience in designing multiple tools
for visualizing clustered biomolecular data [24, 20, 11,
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12, 30, 25], conversations with bioinformaticians, and
a literature review, we elicited a list of requirements
that a tool for the analysis of clustered, matrices from
the biomolecular domain should address.

R I: Provide representative algorithms with
control over parametrization. A good cluster
analysis tool should enable investigators to flexibly
run various clustering algorithms on the data. Users
should have control over all clustering parameters and
should be able to choose from various similarity met-
rics.

R II: Work with discrete, hierarchical and prob-
abilistic cluster assignments. Visualization tools
that deal with the analysis of cluster assignments
should be able to work with all important types of clus-
tering, namely discrete/partitional, hierarchical, and
fuzzy clustering. The visualization of hierarchical and
fuzzy clusterings is usually more challenging: to deal
with hierarchical clusterings a tool needs to enable
dendrogram cuts, and to address the properties of
fuzzy clusterings, it must support the analysis of am-
biguous and/or redundant assignments.

R III: Enable comparison of cluster assign-
ments. Given the ability to run multiple clustering
algorithms, it is essential to enable the comparison
of the clustering results. This will allow analysts to
judge similarities and differences between algorithms,
parametrizations, and similarity measures. It will also
enable them to identify stable clusters, i.e., those that
are robust to changes in parameters and algorithms.

R IV: Visualize fit of records to their clus-
ter. For the assessment of confidence in cluster as-
signments, a tool should show the quality of cluster
assignments for its records and the overall quality for
the cluster. This enables analysts to judge whether a
record is a good fit to a cluster or whether it’s an out-
lier or a bad fit.

R V: Visualize fit of records to other clusters.
Clustering algorithms commonly don’t find the perfect
fit for a record. Hence, it is useful to enable analysts
to investigate if particular records are good fits for
other clusters, or whether they are very specific to their
assigned clusters. This allows users to consider whether
records should be moved to other clusters, whether a
group of records should be split off into a separate
cluster, and more generally, to evaluate whether the
number of clusters in a clustering result is correct.

R VI: Enable refinement of clusters. To enable
the improvement of clusters, users should be able to
interactively modify clusters. This includes shifting of
elements to better fitting clusters based on similarity,

merging clusters considered to be similar, and exclud-
ing non-fitting groups from individual groups or the
whole dataset.

R VII: Visualize context for clusters. It is im-
portant to explore evidence for clusters in other data
sources. In molecular biology applications in particu-
lar, datasets rarely stand alone but are connected to
a wealth of other (meta)data. Judging clusters based
on effects in other data sources can indicate practical
relevance of a clustering, or can reveal dependencies
between data sets and hence is important for valida-
tion and interpretation of the results.

Design
We designed our methods to address the aforemen-
tioned requirements while taking into account usabil-
ity and good visualization design practices. Our de-
sign was influenced by our decision to integrate the
methods into Caleydo StratomeX as StratomeX is a
well-established tool for subtype analysis. A prototype
of our methods is available at goo.gl/I2qOxz. Please
also refer to the supplementary video for an introduc-
tion and to observe the interaction.

Run 
Clustering
Algorithm

Visually
Explore

Interpret
Result

Manually
Re�ne

Figure 2 The workflow for evaluating and refining cluster
assignments: (1) running clustering algorithms, (2) visual
exploration of clustering results by investigating cluster quality
and comparing cluster results (3) manual refinement and
improvement of unreliable clusters and (4) final interpretation
of the improved results considering contextual data.

We developed a model workflow for the analysis and
refinement of clustered data, illustrated in Figure 2.
This workflow is made up of four core components: (1)
running a clustering algorithm, (2) visual exploration
of the results, (3) manual refinement of the clustering
results, and (4) interpretation of the results.

1. Cluster Creation. Investigators start by choos-
ing a dataset and either applying clustering algorithms
with desired parametrization or selecting existing, pre-
computed clustering results. The clustered dataset is
added to potentially already existing datasets and clus-
terings.
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2. Visual Exploration. Once a dataset and clus-
tering are chosen, analysts explore the consistency of
clusters and/or compare the results to other clustering
outcomes to discover patterns, outliers or ambiguities.
If there are not confident about the quality of the re-
sult, or want to see an alternative clusterings, they can
return to step 1 and create new clusters by adjusting
the parameters or selecting a different algorithm.

3. Manual Refinement. If analysts detect records
that are ambiguous, they can manually improve clus-
ters to create better stratifications in a process that it-
erates between refinement and exploration. The refine-
ment process includes splitting, merging and removing
of clusters.

4. Result Interpretation. Once clusters are found
to be of reasonable quality, the analysts can proceed
to interpret the results. In the case of disease subtype
analysis with StratomeX, they can assess the clinical
relevance of subtypes, or explore relationships to other
genomic datasets, confounding factors, etc. Of course,
supplemental data can also inform the exploration and
refinement steps.

We now introduce a set of techniques to address our
proposed requirements within this workflow.

Creating Clusters
Users are able to create clusters by selecting a dataset
from a data browser window and choosing an algo-
rithm and its configuration (see Figure 3). In our pro-
totype, we provide a selection of commonly used algo-
rithms in bioinformatics, including k-Means, (agglom-
erative) hierarchical clustering, Affinity Propagation,
and Fuzzy c-Means. Each row in the popup repre-
sents one clustering technique with corresponding pa-
rameters, such as the number of clusters for k-Means,
the similarity metric for hierarchical clustering, or the
fuzziness factor for Fuzzy c-Means, addressing R I.
Each execution of a clustering algorithm adds a new
column of data to StratomeX, so that multiple alter-
native results can be easily compared.

Cluster Evaluation
In our application, there are two components that

enable analysts to evaluate cluster assignments: 1) the
display of the underlying data in heatmaps or other
visualizations and 2) the visualizations of cluster fit
alongside the heatmap, as illustrated in Figure 4. The
cluster fit data is either a measure of similarity of each
record to the cluster centroid, or, if fuzzy clustering is
used, the measure of probability that a record belongs
to a cluster. Combining heatmaps and distance data
allows users to relate patterns or conspicuous groups
in the heatmap to their measure of fit.

To evaluate the fit of each record to its cluster
(R IV), we use a distance view, right next to the
heatmap (orange in Figure 4). It displays a bar-chart
showing the distances of each record to the cluster cen-
troid. Each bar is aligned with the rows in the heatmap
and thus represents the distance or correlation value
of the corresponding record to the cluster mean. The
length of a bar encodes the distance, meaning that
short bars indicate well fitting records while long bars
indicate records that are a poor fit. In the case of cross-
correlation, long bars represent records with high con-
cordance whereas small bars indicate a disconcordance
among them. While the absolute values of distances are
typically not relevant for judging the fit of elements to
the cluster, we show them on mouse-over in a tool-tip.
The heatmaps and distance views are automatically
sorted from best to worst fit which makes identifying
the overall quality of a cluster easy. In addition to that,
we globally scaled the length of each bar according to
its distance measure, so that the largest bar represents
the maximal computed distance measure across all dis-
tance views while still fitting into the distance view.
Note that the distance measure used for the distance
view does not have to be the one that was used for clus-
tering. Figure 5 shows a montage of different distance
measures for the same cluster in distance views. No-
tice that while some trends are consistent across many
measures here, this is not for all measures and all pat-
terns, illustrating the strong influence of the choice of
a similarity measure.

Related to cluster fit is the question about the speci-
ficity of a record to a cluster (R V). It is conceivable
that a record is a fit to multiple clusters, or that it
would be a better fit to another cluster. To convey
this, we compute the distances of each record to all
other cluster centroids and visualize it in a matrix of
distances to the right of the within-cluster distance
view (violet in Figure 4). In doing so, we keep the

Figure 3 Example of the control window to apply clustering
algorithms on mRNA genomic data. Different algorithms are
accessible using tabs. Within the tabs, the algorithm can be
configured using algorithm-specific parameters and general
distance metrics.
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Data All Cluster DistancesDistance
Views

Group 2

Group 1

Group 0
Between-Cluster DistancesHeatmaps
Group 0 Group 1 Group 2

Within-Cluster
Distances

Figure 4 Illustration of heatmaps, within-cluster and
between-cluster distance views. The within-cluster distance
view shows the quality of fit of each record to its cluster
(orange). The between-cluster distance view shows the quality
of fit of each record to each other cluster (violet).

Figure 5 A montage of distance views showing different
distance metrics for the same cluster.

row associations intact. We do not display the within-
cluster distances in the matrix, which results in empty
cells along the diagonal. This view helps analysts to
investigate ambiguous records and supports them in
judging whether the number of clusters is correct: if a
lot of records have high distances to all clusters, maybe
they should belong to a separate cluster. On demand,
the heatmaps can also be sorted by any column in the
between-cluster distance matrix. As an alternative to
the bar charts, we also provide a grayscale heat map for

Figure 6 Example of five clusters, shown in heat maps,
within-cluster distances shown to its right as bar charts, and
between cluster distances on the far right as grayscale heat
maps.

between-cluster distances (see Figure 6), which scales
better when the algorithm produced many clusters.

Visualizing Probabilities for Fuzzy Clustering

Since our tool also supports fuzzy clustering (R II)
we provide a probability view, similar to the dis-
tance view, to show the degree of membership of each
record to all clusters. In the probability view, the bars
show the probability of a record belonging to a current
cluster, which means that long bars always indicate a
good fit. As each record has a certain probability to be-
long to each cluster, we use a threshold above which a
record is displayed as a member of a cluster. Records
can consequently occur in multiple clusters. Records
that are assigned to multiple clusters are highlighted
in purple, as shown in Figure 7, whereas unique records
are shown in green. As for distance views, we also show
probabilities of each record belonging to each cluster
in a matrix, as shown in Figure 7 on the right.
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Figure 7 Example of three clusters produced by fuzzy
clustering, shown in heatmaps. The probabilities of each
patient belonging to their cluster are shown to their right.
Green bars represent elements unique to the cluster while
purple indicates patients belonging to more clusters. The
between-cluster probabilities are displayed on the right.

Cluster Refinement
Once scientists have explored the cluster assignments,
the next step is to improve the cluster assignments if
necessary (R VI).

Splitting Clusters
To support splitting of clusters, we extended StratomeX
to enable analysts to define ambiguous regions in a
cluster. The distance views also contain adjustable
sliders that enable analysts to define up to three re-
gions, to classify records into good, ambiguous, and
bad fit (the green, light-green, and bright regions in
Figure 8). By default, the sliders are set to the second
and third quartile of the within-cluster distance distri-
bution. Based on these definitions, analysts can split
the cluster, which extracts the blocks into a separate
column in StratomeX, as illustrated in Figure 8). This
new column is treated like a dataset in its own right,
such that the distance views show the distances to the

Figure 8 Example of a cluster division into three different
subsets determined by two black sliders: (1) reliable, well
fitting groups of elements (greenish color), (2) uncertain
groups (blueish) and (3) unreliable, non-fitting elements
(white color). The divisions are shown as separate column and
related to the original cluster by colored ribbons.

new centroids, and clinical data can be interactively
stratified based on these new blocks. However, these
splits are not static: it is possible to dynamically ad-
just both sliders and hence the corresponding cluster
subsets. In the context of fuzzy clustering, clusters can
also be split based on probabilities. Clusters that were
split and evaluated can then be re-integrated in the
source column.

Refining Split Clusters

Splitting just on distances does not guarantee that the
resulting groups are as homogeneous as they could be:
all they have in common is a certain distance range
from the original centroid. To improve the homogene-
ity of split clusters, we can dynamically shift the ele-
ments between the clusters, so that the elements are
in the cluster that is closest to them, based on the
k-Means algorithm. In the future, we also plan on in-
tegrating re-clustering of individual blocks using arbi-
trary algorithms following this example.

Merging and Exclusion

Our application also has the option to merge clusters.
Especially when several clusters are split first, it is
likely that some of the new clusters exhibit a simi-
lar pattern, and that their distances also indicate that
they could belong together, which can be addressed
with a merge. We also support cluster exclusion since
there might be groups or individual records that are
outliers.

Integration with StratomeX
The original StratomeX technique already enables
cluster comparison R III through the columns and
ribbons approach. It also is instrumental in bringing
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in contextual information for clusters R VII, as men-
tioned before. This can, for example, be used to asses
the impact of refined clusterings on phenotypes. Fig-
ure 9 shows the impact of a cluster split on survival
data, for example.

Usage Scenario
A common question in clustering is how to determine
the appropriate number of clusters in the data. While
there are algorithmic approaches, such as the cophe-
netic correlation coefficient [31], to estimate the num-
ber of clusters, visual inspection is often the initial step
in confirming that a clustering algorithm has separated
the elements appropriately. In this usage scenario we
use our approach to inspect and refine a clustering re-
sult provided by an external clustering algorithm and
to confirm our results with an integrated clustering
algorithm.

We obtained mRNA gene expression data from
the glioblastoma multiforme cohort of The Cancer
Genome Atlas study [2] as well as clustering results
generated using a consensus non-negative matrix fac-
torization (CNMF) [32]. Verhaak et al. [2] reported
four expression-derived gene expression subtypes in
glioblastoma, which motivated us to review the auto-
matically generated, uncurated, CNMF clustering re-
sults with 4 clusters. Visual inspection indicates that
clusters named Group 0 and Group 1 contain patients
(see Figure 10, leftmost column) that appear to have
expression profiles that are very different from the
other patients. Using the within-cluster distance vi-
sualization and sorting the patients in those clusters
according to the within-cluster distance reveals that
the expression patterns are indeed very different and
that the within-cluster distances for those patients are
also notably larger than for the other patients. Re-
sorting the clusters by between-cluster distances to
the other 3 clusters, respectively, shows that these pa-
tients are also different from the patients in the other
clusters (see Figure 10).

Using the sliders in the within-cluster distance vi-
sualization and the cluster splitting function we sepa-
rated aforementioned patients from the clusters named
Group 0 and Group 1. Because their profiles are very
similar, we merged them into a single cluster using the
cluster merging function. The expression profiles in the
resulting new cluster look homogeneous and are visi-
bly different from the expression profiles in the other
4 clusters. We examined patient survival times and
age a disease diagnosis across the 5 clusters and did
not observe any notable differences in the new clus-
ter (see Figure 10). Since the web-based prototype
of StratomeX is currently still lacking the guided ex-
ploration features of the original standalone applica-

tion [12], we were unable to identify a meaningful cor-
relation between the new cluster and mutation and
copy number calls or to identify significantly overlap-
ping clusters in other data types.

However, we also compared the five clusters derived
from the original 4-cluster CNMF result with other
clustering results computed on the same gene expres-
sion matrix and found, for example, that 3-, 4-, and
5-cluster k-Means clustering results using Euclidean
distance and the k-means algorithm include almost ex-
actly the same cluster that we identified in the CNMF
clustering results using visual inspection and manual
refinement.

Implementation
Our tools are fully integrated with the web-version
of Caleydo StratomeX. The clustering algorithms and
distance computation are implemented as server plu-
gins for Caleydo Web [33] in Python. We use the
algorithms as implemented in the SciPy and the
NumPy libraries. The front end is implemented as a
client-side Caleydo web plugin and uses JavaScript
and D3 [34]. The source code is released under the
BSD license and is available at https://github.com/
K3rn1n4tor/stratomex_js.

Scalability and Limitations
Our methods are limited by the inherent limitations of
StratomeX: when working with a large number of clus-
ters, ribbons between the individual columns can cre-
ate clutter. We observe that 10-15 clusters can be used
without too much clutter. Also, the number of columns
is limited to about 10 on typical displays. In terms
of computational scalability, we found that even the
computationally complex clustering algorithms such
as affinity propagation execute almost interactively for
a dataset with about 500x1500 entries, and complete
within one to two minutes for a genomic dataset with
about 500x12000 entries on our t2.micro Amazon EC2
instance with 1 CPU and 1 GB memory.

Our implementation currently cannot appropriately
compare columns clustered with fuzzy algorithms, as
the ribbons connecting the columns assume that ev-
ery row exists only once. We plan on addressing this
limitation in the future. Also, there are certain minor
improvements of the user interface, for example, for
the cluster dialog, that we intend to implement.

Discussion and Conclusions
Clustering is an important yet inherently imperfect
process. In this paper we have introduced methods to
evaluate and refine clustering algorithms for the ap-
plication to matrix data, as it is commonly used in
molecular biology. In contrast to previous approaches,
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Figure 9 Overview of the improved StratomeX. The first column is stratified into three groups using affinity propagation. Distances
between all clusters are shown. The second column shows the same data but is clustered differently using a hierarchical algorithm.
Notice that Group 2 in the second column is a combination of Group 1 and Group 2 of the first column. The second block (Group 1)
of the second column is split, and we see clearly that the patterns in the block at the bottom is quite different from the others. This
block also exhibits a slightly differing phenotype: the Kaplan-Meier plot shows worse outcomes for this block. The rightmost column
shows the same dataset clustered with a fuzzy algorithm. Notice that the second cluster contains mostly unique records (most bars
are green).

Figure 10 Results of manual cluster refinement and comparison with additional data types and clustering results. The original
clustering is shown in the leftmost column. After sorting by within-cluster distances, the bottom sections of the corresponding blocks
contain the expression profiles with poor cluster fit. The second column from the left shows the manually refined clustering with 5
clusters. The Kaplan-Meier plots show patient survival for each of the 5 clusters in the second column. The three rightmost columns
are k-Means clustering results computed with the software. The derived cluster in the second column from the left is highlighted and
the orange bands indicate overlap with patients in the selected cluster.

we combine visualization of the data directly with vi-

sualization of cluster quality. We also allow interactive

refinement of clusters while associating the updated

clusters with contextual data, which allows analysts
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to judge clusters not only by the data used for clus-
tering, but also based on effects observable in related
datasets.

In the future, we plan on extending our work to
datasets that are not in matrix form. This will require
novel visual representations, as there is no equivalent
to the well-defined borders of cluster blocks when clus-
tering graphs or textual data.

Acknowledgements
We thank Samuel Gratzl for his help with the implementation. This work

was funded in part by the US National Institutes of Health (U01 CA198935,

P41 GM103545-17, R00 HG007583) and supported by a fellowship of the

FITweltweit program of the German Academic Exchange Service (DAAD).

List of abbreviations used
GBM: glioblastoma multiforme, TCGA: The Cancer Genome Atlas.

Competing interests
The authors declare that they have no competing interests.

Author details
1Scientific Computing and Imaging Institute, University of Utah, 84112 Salt

Lake City, USA. 2Department of Informatics, Technical University of

Munich, 85747 Garching bei München, Germany. 3Department of

Biomedical Informatics, Harvard Medical School, 02115 Boston, USA.

References
1. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster

analysis and display of genome-wide expression patterns. Proceedings

of the National Academy of Sciences USA 95(25), 14863–14868

(1998). doi:10.1073/pnas.95.25.14863

2. Verhaak, R.G.W., et al.: Integrated Genomic Analysis Identifies

Clinically Relevant Subtypes of Glioblastoma Characterized by

Abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1),

98–110 (2010). doi:10.1016/j.ccr.2009.12.020

3. The Cancer Genome Atlas Research Network: Comprehensive

molecular characterization of clear cell renal cell carcinoma. Nature

499(7456), 43–49 (2013). doi:10.1038/nature12222

4. The Cancer Genome Atlas Research Network: Comprehensive

molecular portraits of human breast tumours. Nature 490(7418),

61–70 (2012). doi:10.1038/nature11412

5. The Cancer Genome Atlas Research Network: Genomic and

Epigenomic Landscapes of Adult De Novo Acute Myeloid Leukemia.

The New England journal of medicine 368(22), 2059–2074 (2013).

doi:10.1056/NEJMoa1301689

6. The Cancer Genome Atlas Research Network: Genomic Classification

of Cutaneous Melanoma. Cell 161(7), 1681–1696 (2015).

doi:10.1016/j.cell.2015.05.044

7. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On Clustering Validation

Techniques. Journal of Intelligent Information Systems 17(2-3),

107–145 (2001). doi:10.1023/A:1012801612483

8. Bolshakova, N., Azuaje, F.: Cluster validation techniques for genome

expression data. Signal Processing 83(4), 825–833 (2003).

doi:10.1016/S0165-1684(02)00475-9

9. Famili, A.F., Liu, G., Liu, Z.: Evaluation and optimization of clustering

in gene expression data analysis. Bioinformatics 20(10), 1535–1545

(2004). doi:10.1093/bioinformatics/bth124

10. Monti, S., Tamayo, P., Mesirov, J., Golub, T.: Consensus clustering: a

resampling-based method for class discovery and visualization of gene

expression microarray data. Machine learning 52(1-2), 91–118 (2003)

11. Lex, A., Streit, M., Schulz, H.-J., Partl, C., Schmalstieg, D., Park,

P.J., Gehlenborg, N.: StratomeX: Visual Analysis of Large-Scale

Heterogeneous Genomics Data for Cancer Subtype Characterization.

Computer Graphics Forum (EuroVis ’12) 31(3), 1175–1184 (2012).

doi:10.1111/j.1467-8659.2012.03110.x

12. Streit, M., Lex, A., Gratzl, S., Partl, C., Schmalstieg, D., Pfister, H.,

Park, P.J., Gehlenborg, N.: Guided visual exploration of genomic

stratifications in cancer. Nature Methods 11(9), 884–885 (2014).

doi:10.1038/nmeth.3088

13. Jain, A.K., Murty, M.N., Flynn, P.J.: Data Clusterin: A Review 31,

264–323 (1999). doi:10.1145/331499.331504

14. Macqueen, J.B.: Some methods for classification and analysis of

multivariate observations. In: In 5-th Berkeley Symposium on

Mathematical Statistics and Probability vol. 1, pp. 281–297. University

of California Press, Berkeley, California, USA (1967)

15. Frey, B.J., Dueck, D.: Clustering by passing messages between data

points. science 315(5814), 972–976 (2007)

16. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: The fuzzy c-means clustering

algorithm. Computers & Geosciences 10(2), 191–203 (1984)

17. Mao, J., Jain, A.K.: A self-organizing network for hyperellipsoidal

clustering (HEC). Neural Networks, IEEE Transactions on 7(1), 16–29

(1996)

18. Gratzl, S., Lex, A., Gehlenborg, N., Cosgrove, N., Streit, M.: From

Visual Exploration to Storytelling and Back Again. Computer Graphics

Forum 35(3), 491–500 (2016). doi:10.1111/cgf.12925

19. Kosara, R., Bendix, F., Hauser, H.: Parallel Sets: Interactive

Exploration and Visual Analysis of Categorical Data. IEEE

Transactions on Visualization and Computer Graphics 12(4), 558–568

(2006). doi:10.1109/TVCG.2006.76

20. Lex, A., Schulz, H.-J., Streit, M., Partl, C., Schmalstieg, D.: VisBricks:

Multiform Visualization of Large, Inhomogeneous Data. IEEE

Transactions on Visualization and Computer Graphics (InfoVis ’11)

17(12), 2291–2300 (2011). doi:10.1109/TVCG.2011.250

21. Seo, J., Shneiderman, B.: Interactively exploring hierarchical clustering

results [gene identification]. Computer 35(7), 80–86 (2002)

22. Gehlenborg, N., Dietzsch, J., Nieselt, K.: A framework for visualization

of microarray data and integrated meta information. Information

Visualization 4(3), 164–175 (2005). doi:10.1057/palgrave.ivs.9500094

23. Dietzsch, J., Gehlenborg, N., Nieselt, K.: Mayday–a microarray data

analysis workbench. Bioinformatics 22(8), 1010–1012 (2006).

doi:10.1093/bioinformatics/btl070

24. Lex, A., Streit, M., Partl, C., Kashofer, K., Schmalstieg, D.:

Comparative Analysis of Multidimensional, Quantitative Data. IEEE

Transactions on Visualization and Computer Graphics (InfoVis ’10)

16(6), 1027–1035 (2010). doi:10.1109/TVCG.2010.138

25. Gratzl, S., Gehlenborg, N., Lex, A., Pfister, H., Streit, M.: Domino:

Extracting, Comparing, and Manipulating Subsets across Multiple

Tabular Datasets. IEEE Transactions on Visualization and Computer

Graphics (InfoVis ’14) 20(12), 2023–2032 (2014).

doi:10.1109/TVCG.2014.2346260

26. Streit, M., Gratzl, S., Gillhofer, M., Mayr, A., Mitterecker, A.,

Hochreiter, S.: Furby: Fuzzy Force-Directed Bicluster Visualization.

BMC Bioinformatics 15(Suppl 6), 4 (2014).

doi:10.1186/1471-2105-15-S6-S4

27. L’Yi, S., Ko, B., Shin, D., Cho, Y.-J., Lee, J., Kim, B., Seo, J.:

XCluSim: a visual analytics tool for interactively comparing multiple

clustering results of bioinformatics data. BMC Bioinformatics 16(11),

1–15 (2015). doi:10.1186/1471-2105-16-S11-S5

28. Rousseeuw, P.J.: Silhouettes: A graphical aid to the interpretation and

validation of cluster analysis. Journal of Computational and Applied

Mathematics 20, 53–65 (1987). doi:10.1016/0377-0427(87)90125-7

29. Ding, H., Wang, C., Huang, K., Machiraju, R.: iGPSe: A visual

analytic system for integrative genomic based cancer patient

stratification. BMC Bioinformatics 15(1), 203 (2014).

doi:10.1186/1471-2105-15-203

30. Turkay, C., Lex, A., Streit, M., Pfister, H., Hauser, H.: Characterizing

Cancer Subtypes Using Dual Analysis in Caleydo StratomeX. IEEE

Computer Graphics and Applications 34(2), 38–47 (2014).

doi:10.1109/MCG.2014.1

31. Sokal, R.R., Rohlf, F.J.: The Comparison of Dendrograms by Objective

Methods. Taxon 11(2), 33 (1962). doi:10.2307/1217208

32. Center, B.I.T.G.D.A.: Clustering of mRNA expression: consensus NMF.

(2013). http://dx.doi.org/10.7908/C16W983Z

33. Gratzl, S., Gehlenborg, N., Lex, A., Strobelt, H., Partl, C., Streit, M.:

Caleydo Web: An Integrated Visual Analysis Platform for Biomedical

Data. In: Poster Compendium of the IEEE Conference on Information

Visualization (InfoVis ’15). IEEE, Chicago, IL, USA (2015)

34. Bostock, M., Ogievetsky, V., Heer, J.: D3: Data-Driven Documents.

IEEE Transactions on Visualization and Computer Graphics 17(12),

2301–2309 (2011). doi:10.1109/TVCG.2011.185

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 4, 2017. ; https://doi.org/10.1101/123844doi: bioRxiv preprint 

http://dx.doi.org/10.1073/pnas.95.25.14863
http://dx.doi.org/10.1016/j.ccr.2009.12.020
http://dx.doi.org/10.1038/nature12222
http://dx.doi.org/10.1038/nature11412
http://dx.doi.org/10.1056/NEJMoa1301689
http://dx.doi.org/10.1016/j.cell.2015.05.044
http://dx.doi.org/10.1023/A:1012801612483
http://dx.doi.org/10.1016/S0165-1684(02)00475-9
http://dx.doi.org/10.1093/bioinformatics/bth124
http://dx.doi.org/10.1111/j.1467-8659.2012.03110.x
http://dx.doi.org/10.1038/nmeth.3088
http://dx.doi.org/10.1145/331499.331504
http://dx.doi.org/10.1111/cgf.12925
http://dx.doi.org/10.1109/TVCG.2006.76
http://dx.doi.org/10.1109/TVCG.2011.250
http://dx.doi.org/10.1057/palgrave.ivs.9500094
http://dx.doi.org/10.1093/bioinformatics/btl070
http://dx.doi.org/10.1109/TVCG.2010.138
http://dx.doi.org/10.1109/TVCG.2014.2346260
http://dx.doi.org/10.1186/1471-2105-15-S6-S4
http://dx.doi.org/10.1186/1471-2105-16-S11-S5
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1186/1471-2105-15-203
http://dx.doi.org/10.1109/MCG.2014.1
http://dx.doi.org/10.2307/1217208
http://dx.doi.org/10.7908/C16W983Z
http://dx.doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1101/123844
http://creativecommons.org/licenses/by/4.0/

	Abstract

