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Supplementary Figures 
 

 
 
Supplementary Figure 1. StratomeX user interface. Stratifications are represented as columns 
of stacked blocks. Bands between columns visualize the overlap of patients between adjacent  
stratifications (see Supplementary Fig. 3 for more details). Here, the first column from the left 
stratifies the patients by the copy number status of a gene (PIK3CA) while the second column 
groups the patients by the result of a clustering algorithm applied to mRNA expression profiles. 
Depending on the data type, different visualizations are used to present the data associated with 
a block (i.e., a group of patients) (Supplementary Fig. 2). While the header block at the top 
summarizes the data of all patients in a given column, the visualization in each block below only 
represents the data of the patients from the corresponding patient subset. The height of the 
blocks is scaled to be proportional to the number of patients they contain, if such scaling can be 
applied to the corresponding visualization technique. Column 3 and 4 are dependent columns, 
meaning that they use the same stratification as the column that they depend on. In this case, the 
third and fourth column use the stratification of the second column, but apply the stratification to a 
different dataset. In the third column, the average mRNA expression of all four groups from the 
second column is color-coded onto the KEGG PI3K-Akt signaling pathway (hsa04151). The 
fourth column shows survival data using the same stratification as the second column. The 
column on the right shows the ‘query wizard’, which is an assistive user interface that supports 
users in the process of adding new columns to StratomeX (see Supplementary Fig. 5 for all 
options that the wizard supports). A detailed description of the user interface and features can be 
found at http://help.caleydo.org. 
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Supplementary Figure 2. Block visualizations in StratomeX. Various visualization techniques 
are provided for visualizing the data associated with a block: (a) heatmaps for tabular data, (b) 
uniformly colored blocks for categorical data, (c) histograms for tabular data, (d) histograms for 
categorical data, (e) box plots for numerical data, (f) Kaplan-Meier plots, and (g) pathways with 
average values mapped onto the nodes. The height of the visualizations in (a) and (b) is scaled 
proportionally to the number of patients they represent, while the height of the other 
visualizations is constant.  
 
 

 
 
Supplementary Figure 3. Correlation between stratifications. The width of the bands denotes 
the overlap between subsets of adjacent stratifications. While there is a strong correlation 
between stratifications 1 and 2, stratifications 2 and 3 are much more dissimilar. The subsets in 
stratifications 1 and 2 are almost identical, except for two subsets (clusters 1 and 4) in 
stratification 1 that are merged into a single larger one (cluster 1) in stratification 2. In contrast, 
the bands between stratification 2 and 3 fan out almost equally, which is an indicator for weak 
correlation. 
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Supplementary Figure 4. Flow chart of query options and the query wizard menu items used to trigger them. Diamond nodes 
denote decision points within the wizard that require user input. Edges describe the options the user can choose from. Gray boxes 
represent actions taken by the user in the StratomeX view, white boxes with gray outlines mark actions executed by the system, and 
colored boxes indicate actions taken by the user in the LineUp view. Depending on the current step, the user either needs to select 
an option from a list, or is instructed to take actions in the user interface, for example, to select a stratification (column) or a set of 
patients (block) in StratomeX (Supplementary Fig. 1) or to perform actions in the LineUp view (Supplementary Fig. 5). Once this 
workflow is successfully completed, a new column will be added to StratomeX. 
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Supplementary Figure 5. LineUp view with multi-attribute ranking and filtering. The 
interactive ranking visualization allows users to filter and order stratifications according to a single 
attribute or a combination of multiple attributes, such as the sum or the maximum of attributes, 
associated with the stratifications. In this example, each row corresponds to a gene for which a 
series of attributes is available. Attributes can be (1) simple general metrics such as the number 
of groups or patients in a stratification, (2) data specific metrics, such as the mutation rate, (3) 
computed scores based on queries triggered by the user, such as the similarity between two 
patient subsets, or (4) imported scores or groupings that have been computed using an external 
tool, such as the Mutation Significance (MutSig) q-value of the genes. By selecting a row, the 
stratification will be added to StratomeX as a new column (see Supplementary Fig. 1). 
Additionally, analysts can search for stratifications of interest by typing their name. The list of 
available datasets on the left allows analysts to select the subset of stratifications that will be 
scored by the query and incorporated into the ranking. In this example, only gene mutation calls 
are included. If the analyst would also select ‘Methylation’, for example, all stratifications 
(clusterings) defined on DNA methylation data would be added to the ranked list as well. The 
‘memo pad’ on the right allows analysts to store attributes that are not of immediate interest, but 
might become relevant later in the analysis and can then be re-added to the ranking visualization 
using drag-and-drop. A detailed description of the user interface and features can be found at 
http://help.caleydo.org. 
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Supplementary Figure 6a. Kaplan-Meier plots for patient survival (‘Days to Death’) 
stratified by mRNA clusters. The stratification applied to the Kaplan-Meier plots (1st column 
from left) is reported in the TCGA ccRCC marker paper. The overlap between mRNA (2nd 
column) and microRNA clusters (3rd column) is shown in addition (see also Supplementary 
Video 1 from 0:32 to 3:16). The band pattern between the mRNA and microRNA columns 
indicates low overall correlation between the clusterings. Two wide bands, however, stand out 
between mRNA cluster m3 and microRNA cluster mi2 and between mRNA cluster m1 and 
microRNA cluster mi3. The former band, representing the intersection of the two patient sets, is 
selected and therefore highlighted in orange. Part of the band between mRNA cluster m3 and the 
corresponding Kaplan-Meier plot is highlighted in orange as well. It represents the subset of 
patients in the selected band. The color of the header blocks indicates the data type of the 
column, e.g., green for mRNA data, blue for microRNA data, and purple for clinical data. The 
survival curves (left column) for the patients stratified by mRNA clusters (center column; m1, m2, 
m3, m4 from top to bottom) indicate that survival of patients in cluster m1 is better than survival 
of those in the other clusters.   

Nature Methods: doi:10.1038/nmeth.3088



7  

 
 
Supplementary Figure 6b. Survival curves for patients stratified by tumor stage and mRNA 
clusters. StratomeX view illustrating the correlation between patient survival (‘Days to Death’) 
stratified by tumor stage (‘Overall Stage’) (1st and 2nd column from left) and mRNA clusters (3rd 
and 4th column), as well as correlation with microRNA clusters (5th column) (see also 
Supplementary Video 1 from 3:34 to 4:27). Patient survival stratified by tumor stage indicates 
that advanced tumor stages are strongly correlated with worse outcomes. Furthermore, the wide 
band between tumor stage set ‘stage I’ and the Kaplan-Meier plot corresponding to mRNA 
cluster m1 shows that the majority of patients in mRNA cluster m1 (63%) also are in the ‘stage I’ 
set. Cluster m1 is selected and the patients in this cluster are represented by the orange highlight 
shown in the bands between all columns. This highlighting emphasizes that only very few 
patients in cluster m1 are also in microRNA cluster mi2. 
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Supplementary Figure 7. Differential expression of ribosomal genes between mRNA 
clusters reported by the TCGA ccRCC marker paper. See also Supplementary Video 1 from 
4:29 to 5:28. The results of a gene set enrichment query against mRNA cluster m4 are shown in 
the LineUp view at the bottom. The table shows KEGG pathways ranked by the PAGE 
enrichment scores (light green bars). Additionally, PAGE p-values are shown next to the 
enrichment scores (the diagonal hatch pattern indicates an 'inverted' mapping, i.e., long bars 
correspond to low p-values), along with the absolute number of genes in the mRNA data set that 
could be mapped to the pathway and the percentage of mapped genes. The KEGG Ribosome 
pathway (hsa003010) is selected, as indicated by the orange highlighting in the table. The 
pathway is also shown in preview mode in the StratomeX view and the query cluster m4 is 
highlighted in orange. Almost all ribosomal genes have higher than average expression levels in 
cluster m4, as indicated by the large red boxes, while they have lower than average expression 
levels in cluster m1, as indicated by the blue boxes. Expression levels are more diverse in 
clusters m2 and m3, and in both clusters the ribosomal genes appear to exhibit similar 
expression patterns. 
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Supplementary Figure 8. Characterization of an mRNA expression cluster with gene mutation 
status. Absence of MTOR mutations (1st column from left) and almost exclusive presence of 
PTEN mutations (3rd column) characterize mRNA clusters m2 and m3 (2nd column), 
respectively. The LineUp view at the bottom shows significantly mutated genes ranked by the 
overlap of their mutated or not mutated patient set with mRNA cluster m2. The top hits for the 
query are MTOR and PTEN, which have also been added to the StratomeX view. The query 
cluster m2 is selected, as indicated by the orange highlighting. The green bars in the LineUp view 
encode the Jaccard Index representing the overlap of the mutated or not mutated patient set with 
mRNA cluster m2, which was computed for all patient sets with a minimum size of 10. The gray 
bars in the adjacent column represent the MutSig q-values ranging between 0 and 0.1. The 
diagonal hatch pattern indicates an 'inverted' mapping of q-values. Additional columns to the right 
show metrics such as the distribution of the mutated and not mutated categories across patients 
for which a mutation status of the corresponding gene is available.  
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Supplementary Figure 9. StratomeX view showing correlation between mRNA expression 
clusters and copy number status of a tumor suppressor gene. TCGA mRNA cluster m3 (left 
column) is correlated with deletions of tumor suppressor gene CDKN2A (right column) (see also 
Supplementary Video 1 from 5:44 to 7:40). The LineUp view at the bottom shows a ranking of 
genes classified as tumor suppressor genes (indicated by ‘TSG’ label in the last column of the 
LineUp view) based on the overlap of the mRNA m3 cluster with the set of patients with a 
deletion of the given gene. The score is the Jaccard Index, which is represented by the green 
bars. The minimum patient set size for which scores were computed was 10. The top 5 genes in 
the results list have very similar scores. Additional metrics show the distribution of copy number 
events for the given genes across the patient cohort. CDKN2A is selected in the results table and 
shown in the StratomeX view. Bands representing patients in cluster m3 with either a 
homozygous or a heterozygous deletion of CDKN2A are selected and highlighted in orange. The 
orange bands connecting to the block representing mRNA cluster m3 indicate that about half of 
all patients in that cluster have a CDKN2A deletion. In the overall cohort, only about a third of all 
patients have either a homozygous (dark blue block) or heterozygous (light blue block) deletion, 
very few have a low level amplification (light red block) and the remainder has two copies (white 
block), as indicated by the block heights in the CDKN2A copy number stratification. 
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Supplementary Figure 10. Querying for mutations correlated with survival. A query was 
triggered using the StratomeX query wizard preview column showing a Kaplan-Meier plot of the 
‘Days to Death’ variable for the overall cohort (see also Supplementary Video 1 from 7:48 to 
9:05). The result of the query is shown in the LineUp view at the bottom and represents a ranking 
of 19 significantly mutated genes based on the logrank score (purple bars) and corresponding p-
values (dark purple bars, diagonal hatch pattern indicates ‘inverted’ mapping with -log(p)), 
obtained by applying the corresponding stratifications to the ‘Days to Death’ variable. The 
minimum patient set size for which scores were computed was 10. Additional columns show 
common metrics for mutated genes, as well as the MutSig q-values ranging between 0 and 0.1. 
The diagonal hatch pattern indicates an ‘inverted’ mapping. The top hit BAP1 has been selected 
in the LineUp view and is shown in the StratomeX view (left column) next to the Kaplan-Meier 
plots for ‘Days to Death’ stratified by BAP1 mutation status (right column) (see also 
Supplementary Video 1 from 9:05 to 9:14). The plots indicate that patients with a mutation in 
BAP1 have worse outcomes than those without a BAP1 mutation. The logrank score is 14.095 - 
rounded to 14.1 - and the p-value is p = 0.00017.  
  

Nature Methods: doi:10.1038/nmeth.3088



12  

 
 
Supplementary Figure 11. StratomeX view showing mutually exclusive mutations. Mutually 
exclusive mutation patterns of SETD2 (1st column from left), KDM5C (2nd column), and BAP1 
(3rd column), as well as patient survival stratified by BAP1 (4th column). Pairwise mutually 
exclusive mutations are easily identified by the distinctive 'X' band crossings visible at the bottom 
of the StratomeX view. The LineUp view shows the list of 19 significantly mutated genes as 
defined by a MutSig q-value of q ≤ 0.1 (last column of the LineUp view) ranked by the overlap of 
the patient set in which they are not mutated with the patient set that has mutations in BAP1, as 
indicated by the orange outline around the red BAP1 mutated block (3rd column, bottom block). 
The top three hits are PBRM1, SETD2, and KDM5C. The rank is derived from the Jaccard index 
score shown in the third column of cyan colored bars, as indicated by the small arrow in the 
column header (“Not Mutated Sim.”). The second column of cyan colored bars (“Mutated Sim. 
to”) shows the scores for the overlap between the set of mutated patients in both the query gene 
BAP1 and the corresponding gene in the set of selected stratifications, while the first column 
(“Sim. to Mutation”) shows the score of the second or third column for the given gene, depending 
on which one is higher.  
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Supplementary Figure 12. RPPA clusters and expression patterns and Kaplan-Meier plots  
showing survival data for the patients in the clusters defined by the RPPA expression 
levels. The LineUp view at the top bottom shows the results of the ‘log rank’ query of mRNA, 
microRNA, RPPA and methylation clustering results against the ‘Days to Death’ variable. 
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Supplementary Figure 13. Newly created two-class stratification of patients with RPPA 
data separating patients in cluster 8 from the rest and associated survival curves. RPPA 
data is shown in the 1st column from the left. The orange selection is highlighting the patients in 
cluster 8. The 2nd column is showing mRNA-seq data using the stratification derived from the 
RPPA data. 
The results of a GSEA query to identify pathways with differential activation in cluster 8 based on 
mRNA-seq expression levels are shown in the LineUp view at the bottom. The top 8 hits include 
homologous recombination, base excision repair, and mismatch repair. 
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Supplementary Figure 14. StratomeX view showing mRNA expression mapped onto the 
homologous recombination, base excision repair, and mismatch repair pathways. The 2nd 
column from the left shows mRNA expression levels. Pathway maps are shown in columns 3 
through 5.  Red boxes indicate expression levels higher than the cohort average and blue boxes 
indicate expression levels lower than the cohort average.  
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Supplementary Figure 15a. StratomeX view showing box plots for silent and non-silent 
mutation rates for cluster 8 compared to the remaining patients. Silent and non-silent 
mutation rates are shown in columns 3 and 4 from the left, respectively. Whiskers in box plots 
end at +/- 1.5 IQR from the 3rd quartile and the 1st quartile, respectively. 
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Supplementary Figure 15b. Detail view of header blocks for silent and non-silent mutation 
rates for cluster 8 compared to the remaining patients. Silent mutation rates are shown in 
blue on the left and non-silent mutation rates are shown in green on the right. Whiskers in box 
plots end at +/- 1.5 IQR from the 3rd quartile and the 1st quartile, respectively. A tendency 
towards higher rates in cluster 8 (top) is visible for both silent and non-silent mutation rates. 
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Supplementary Figure 16. StratomeX view summarizing the findings of the 
characterization of RPPA consensus NMF cluster 8. Patients in cluster 8 are highlighted by 
the orange band. The rightmost column shows stage information for the patients in the cohort 
and the notable overlap of patients with stage III and stage IV tumors with cluster 8. The LineUp 
view at the bottom shows the results of the Jaccard Index query of cluster 8 against categorical 
clinical variables. 
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Supplementary Figure 17. StratomeX view illustrating the overlap between patients with 
BRCA2 heterozygous deletions with patients in cluster 8. BRCA2 copy number status is 
shown in the 1st column from the left and cluster 8 is shown in the 2nd column. The LineUp view 
at the bottom shows the results of the Jaccard Index query of cluster 8 against tumor suppressor 
genes (TSG) with deletions where BRCA2 is ranked third.  
The two mutation rate columns and the overall survival columns have been (temporarily) dragged 
from the view onto the gray area on the left. They can be added back to the main view by 
dragging the thumbnail representations next to any of visible columns. 
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Supplementary Figure 18. Selection of TCGA packages in the Caleydo Project Wizard. The 
wizard is shown when Caleydo launches and the TCGA Data tab provides access to public 
TCGA datasets prepared for use with Caleydo as described in Supplementary Methods. The 
upper half of the TCGA data tab provides an overview of the available data packages grouped by 
analysis date and tumor type. Once the user has selected a data package, information about the 
package contents is shown in the lower half of the tab. When the user clicks the ‘Finish’ button, 
the corresponding data package will be downloaded from our server and opened in Caleydo or 
opened directly from the local file cache. 
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Supplementary Tables 
 

Supplementary Table 1. Comparison of StratomeX and other cancer subtype analysis techniques. We distinguish between 
knowledge-driven (K) and data-driven (D) approaches. The former represents verification of hypotheses that were generated based 
on the knowledge of the analyst and the latter describes the identification of correlations and patterns based on the data without prior 
knowledge of the analyst. 

Technique Description Approach 
How are cluster overlaps 

explored/confirmed? 
What visualization 

support is available? Strengths Weaknesses 

manual (ad hoc 
with generic 
tools) 

correlation testing with 
simple statistics 
(Jaccard index, 
adjusted Rand index, 
etc.) 

K interpretation of numerical 
scores and/or static plots 

● static R/MatLab plots 
● Excel charts 
● etc. 

● flexibility ● hypothesis required 
● scripting skills required 
● time consuming (due to 

generic nature of tools, that 
are not focused on the task) 

algorithmic 
approaches 

(unsupervised) 
clustering, “clusters of 
clusters”, network-
based stratification [1] 

D 
 

interpretation of numerical 
scores and/or static plots 

● static R /Matlab plots 
● Excel charts 
● etc. 

● automation possible 
● comprehensive statistics 

to evaluate significance of 
findings possible 

● difficult interpretation of 
results 

● no user input or interaction 
possible 

● scripting skills required 

matrix-based 
(heatmap) 
visualizations 

matrix with mixed data 
types 

K interpretation of static plots ● heatmaps 
(clustered; mixing 
multiple data types) 

● good for presentation of 
confirmed hypotheses (the 
plots are widely used in 
papers) 

● hypothesis required 
● sorting of rows and columns 

can only be determined by a 
single stratification, making it 
challenging to see correlation 
between multiple data types 

original 
StratomeX 
visualization 
technique 

visualization technique 
for comparison of 
multiple clusterings [2] 

K interpretation of interactive 
visualizations 

● StratomeX only ● intuitive interpretation of 
correlations 

● hypothesis required 

StratomeX w/ 
guided visual 
exploration 

(described in this 
manuscript) 

K + D 
 

interpretation of interactive 
visualizations and 
numerical scores 

● StratomeX for 
comparative 
visualization of 
stratifications 

● LineUp for ranking of 
query results 

● intuitive interpretation of 
correlations 

● visualization supported by 
analytical queries  

● user interface combines 
visualization with queries 

● efficient due to focus on 
subtype exploration 

● no user-integration of novel 
statistical approaches 
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Supplementary Table 2. Molecular data characteristics.  
 
Assay Patients Measurements Type 

mRNA-seq expression 480 18,327 genes continuous matrix 

microRNA-seq expression 481 455 microRNAs continuous matrix 

RPPA protein expression 454 123 proteins continuous matrix 

DNA methylation 294 2,093 genes continuous matrix 

Copy Number status 504 24,174 genes categorical 

Mutation 297 10,749 genes categorical 
 
 
Supplementary Table 3. Clinical data characteristics. Summary statistics were rounded to the 
nearest integer. 
 
Parameter Patients Summary Type 

Age 501 years; min=27, median=61, max=90 continuous  

Age at Diagnosis 502 years; min=26, median=61, max=90 continuous  

Days to Death 159 days; min=2, median=735; max=2830 continuous  

Days to Last Follow Up 498 days; min=0, median=1043, max=3377 continuous  

Ethnicity 352 hispanic/latino=24, not hispanic/latino=328 categorical 

Gender 502 female=173, male=329 categorical 

Histological Type 502 kidney clear cell renal carcinoma=502 categorical 

Lymph Node Assessment 495 no=364, yes=131 categorical 

Race 495 asian=8, black=21, white=466 categorical 

Overall Stage 502 stage I=244, stage II=52, stage III=127, stage IV=78 categorical 

M Stage 502 m0=425, m1=77 categorical 

N Stage 502 n0=234, n1=18, nx=250 categorical 

T Stage 502 t1=22, t1a=125, t1b=102, t2=55, t3a=120, t3b=52, other=26 categorical 

Tumor Tissue Site 502 kidney=502 categorical 

Vital Status 502 deceased=160, living=342 categorical 
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Supplementary Discussion  

StratomeX and Related Approaches 
 
Data analysis and visualization methods for cancer subtype analysis have three distinct 
application areas: (1) data exploration, i.e., discovery of novel insights, (2) hypothesis 
confirmation, i.e., finding supporting evidence for or against a working theory, and (3) 
presentation, i.e., communicating findings to others. Unlike other approaches, our guided visual 
exploration approach aims to address all three areas, with a focus on data exploration and 
hypothesis confirmation. 
 
Data Exploration 
Within the data exploration area, we identify three primary tasks: (a) the creation of novel and 
improved stratifications, (b) judging the quality of stratifications, and (c) reasoning about 
stratifications. Stratifications are created using, e.g., clustering algorithms based on mRNA 
patterns [1] or network based stratification [2]. Our approach employs such methods, i.e., 
enables analysts to run various clustering algorithms, or to import the result of such algorithms. In 
addition, StratomeX enables analysts to manually refine stratifications, e.g., by splitting clusters 
based on a clinical variable.  
The quality of stratifications can be judged based on algorithmically derived measures, such as 
Dunn’s index [3], or silhouette values [4], or visually, either by visualizing the content of clusters 
in, e.g., cluster heatmaps [5], or by visualizing differences between alternative clustering results 
[6]. Our approach is the first to integrate all of these methods: scores can be loaded as 
supplemental data for stratifications, which can then be used to judge and rank stratifications. 
More importantly, StratomeX integrates both, the visualization of cluster content and the analysis 
of cluster differences in a single concise visualization. Finally, our approach enables analysts to 
reason about stratifications, e.g., to identify supporting evidence in clinical or other data, by 
dynamically exploring the whole space of the stratome using targeted queries. This makes it easy 
for analysts to quickly check large quantities of candidate stratifications for mutual support.  
The deep integration of analytical methods and visual exploration distinguishes the method 
described here from our previously published visualization-only approach [7]. The original 
method enables only a knowledge-driven approach, i.e., the confirmation and communication of 
existing hypothesis based on the analyst’s knowledge of the dataset. By integrating methods to 
identify and rank stratifications, clinical variables, and pathways, we enable a data-driven 
approach that does not rely on an analyst’s prior knowledge of the dataset to cancer subtype 
analysis. Such a data driven approach is necessary for data exploration in large datasets to 
discover novel insights. 
 
Confirmatory Analysis 
The data-driven approach, however, also plays a major role in confirmatory analysis. StratomeX 
makes it possible to efficiently put candidate stratifications in context of other data types, such as 
clinical outcomes, to judge effects of different stratifications, or pathways, to speculate about 
causes and effects of a particular cancer subtype. While we employ algorithms such as gene set 
enrichment analysis [8] to identify pathways, and logrank tests to identify interesting stratifications 
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based on clinical variables, it is the deep integration of these analytic processes with the 
interactive visualization that accelerates the analytical workflow. This enables analysts to explore 
a larger number of hypotheses in less time and allows them to perform a deeper analysis of the 
data than possible with other approaches in the same amount of time.  
 
Presentation 
Finally, StratomeX is also well suited for the presentation of results. While it is not the goal of 
StratomeX to produce publication-ready figures, our visual representation is suitable to efficiently 
convey important characteristics of candidate subtypes. The visual encoding used by StratomeX 
is easy to understand and visually appealing. Also, StratomeX can be used to communicate 
among distributed teams, either by exporting figures from StratomeX, or by passing along project 
files that contain all the data as well as the analysis setup.  
 
Comparison with other Approaches 
We have summarized the core features of common approaches for subtype identification and 
characterization in Supplementary Table 1. In addition to listing alternative approaches, we 
distinguish between the original, visualization-only StratomeX and the extended StratomeX 
described here. We emphasize that there is a spectrum of approaches that range from pure 
algorithmic to pure (static) visualization approaches and that the extended StratomeX technique 
combines the strengths of tools from both ends of this spectrum.  
In particular, the key features that are distinguishing the extended StratomeX described here 
from the original publication is the deep integration of analytical and visual methods to enable 
data exploration. Specifically, we integrated the following: (1) integrated algorithms for querying a 
database of stratifications, pathways, and clinical variables (see also Supplementary Methods): 
Jaccard Index, Adjusted Rand Index, logrank Test, Gene Set Enrichment Analysis (GSEA), and  
Parametric Assignment of Gene Set Enrichment (PAGE); (2) a query interface directly built into 
the visualization that provides step-by-step instructions (‘query wizard’); (3) integration of the 
LineUp visualization to show query results; (4) support for columns that show categorical 
(clinical) variables such as tumor staging; (5) new block visualizations like box plot and histogram 
to support numerical (clinical) variables such as mutation rates (see Supplementary Fig. 2).  
 
Usability  
Analysis of large, heterogeneous cancer genomics data sets for the identification and 
characterization of subtypes is without doubt a complex undertaking that requires sophisticated 
tools and expertise. Any tool or approach used for this purpose will require some training for new 
users. We argue that StratomeX is more accessible to users without advanced computational 
skills than the other approaches discussed below, since it (a) offers immediate visual feedback, 
(b) it does not require the scripting skills that are essential for most alternatives and (c) includes a 
visual ‘query wizard’ that provides step-by-step instructions to help users define complex queries.  
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Supplementary Note  

Clear Cell Renal Carcinoma Case Study 
 
A comprehensive integrative study of molecular alterations in clear cell renal carcinoma (ccRCC) 
published by The Cancer Genome Atlas (TCGA) consortium [1], reported subsets of patients 
defined by unsupervised clustering of mRNA and microRNA profiles. Furthermore, these 
potential tumor subtypes were characterized in terms of somatic genomic alterations, 
differentially activated pathways, patient outcomes, and additional criteria. 
By reproducing findings of the TCGA ccRCC paper using publicly available TCGA data, we 
demonstrate that the extended StratomeX is a powerful and efficient approach to discover 
biologically meaningful features that characterize tumor subtypes. We created a Caleydo data 
package containing molecular profiling data, clinical parameters, and automated analysis results 
for clear cell renal carcinoma (known as ‘KIRC’ within TCGA) using the output of the TCGA 
Firehose pipeline maintained by the Broad Institute as of 23 May 2013 as described in 
Supplementary Methods. Additionally, we extracted the microRNA- and mRNA-based patient 
subtype assignments reported in the TCGA consortium paper from the supplementary tables and 
included them in the case study dataset (Supplementary Dataset 1). Furthermore, we obtained 
a list of significantly mutated genes and their q-values [2] (Supplementary Dataset 2) generated 
by the Firehose MutSig v2.0 [3] module and a tumor suppressor gene and oncogene 
classification [4] (Supplementary Dataset 3). Characteristics of the molecular and clinical data 
used in this case study are summarized in Supplementary Tables 2 and 3. The case study was 
conducted with Caleydo 3.1.3, available for Windows, Linux, and Mac OS X computers at 
http://www.caleydo.org. 
 
Characterizing mRNA and microRNA Clusters 
We started our exploration with the mRNA and microRNA subtypes reported in the TCGA ccRCC 
paper (Supplementary Dataset 1). The paper describes four subtypes for each of the two data 
types, named m1 - m4 for mRNA subtypes and mi1 - mi4 for microRNA subtypes, respectively. 
We looked up the two corresponding stratifications and corresponding data matrices in the 
LineUp view and added them to the StratomeX view as heatmap columns (Supplementary Fig. 
6a, see also Supplementary Video 1 from 0:32 to 2:43). While there is little overall correlation 
between the two stratifications, two cluster pairs appear to overlap more than the others. These 
pairs are m1/mi3 and m3/mi2, which have also been reported in the TCGA paper as having a 
significantly higher overlap than the other clusters.  
Next, we used the query wizard to add patient survival times (‘Days to Death’) stratified by the 
mRNA clusters to the StratomeX view. We observed notable differences in outcomes across the 
clusters (Supplementary Fig. 6a, see also Supplementary Video 1 from 2:43 to 3:16). This is 
also in line with the survival analysis reported by the TCGA paper, which found that patients in 
cluster m1 have the best outcomes, while patients in m2 and m3 have the shortest survival times. 
Furthermore, we added a stratification based on tumor staging (clinical variable 'overall stage') as 
well as patient survival times for the four staging groups (Supplementary Fig. 6b, see also 
Supplementary Video 1 from 3:34 to 4:27). Patient outcomes get worse in later tumor stages, 
which is expected. We also found that the m1 cluster, which has the best survival times, consists 
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of over 60% of patients with Stage I tumors, which might play a role in the good survival times 
observed for that cluster.  
We were also interested in whether there are pathways that are enriched in the mRNA clusters. 
Using the query wizard, we queried the KEGG pathway collection [5] for pathways enriched in 
cluster m4 (Supplementary Fig. 7, see also Supplementary Video 1 from 4:29 to 5:28), for 
which the TCGA marker paper reported overexpression of ribosomal gene sets. The PAGE gene 
set enrichment analysis algorithm [6] was applied to the mRNA expression levels of the patients 
in cluster m4 relative to the expression levels of the union of all patients in m1, m2, and m3 by 
selecting m4 as the query set in the query wizard. The resulting list of pathways includes both the 
proteasome (hsa03050) and the ribosome (hsa03010) pathways among the top 10 results. Even 
though the p-values are not significant, visual inspection using the LineUp ‘preview mode’ shows 
that almost all genes in both of these pathways are expressed at much higher levels in m4 than 
in the other three clusters. In the case of the ribosome pathway, this is particularly striking 
(Supplementary Fig. 7, see also Supplementary Video 1 from 5:23 to 5:39) and in accordance 
with the findings of the TCGA marker paper, which used Gene Set Analysis [7] to identify 
differentially expressed gene sets. We confirmed our findings by performing the same query 
using the Gene Set Enrichment Analysis (GSEA) algorithm [8], which ranks the ribosome and the 
proteasome pathways 4th and 5th, respectively. 
We then proceeded to further describe the mRNA subtypes by identifying characteristic presence 
or absence of gene mutations. First, we loaded MutSig q-values from Firehose [2] 
(Supplementary Dataset 2) as an additional attribute for the gene mutation stratifications and 
applied an 'inverted' mapping defined by -log(q), so that lower q-values are recognized as 'better' 
results by LineUp, i.e. represented by longer bars, and ranked higher. By applying a cutoff of q-
value < 0.1, we obtained a filtered list of 19 significantly mutated genes. Using these 
stratifications as input, we queried for overlap between significantly mutated genes and the four 
mRNA clusters using the Jaccard Index. When querying against cluster m2, we found that the 
top results are PTEN and MTOR, which are mutated in zero and one patient in m2, respectively. 
Adding both genes to the StratomeX view revealed that MTOR is mutated in 5.4% to 11.6% of 
patients in m1, m3, and m4, but only in 1.1% of patients in m2, i.e. in one patient. Furthermore, 
we found that apart from a single case in m1, PTEN is mutated only in patients in cluster m3 
(Supplementary Fig. 8). The PTEN mutation observed only in cluster m3 is also highlighted in 
the TCGA marker paper.  
Following this characterization based on significantly mutated genes, we further investigated the 
patients in cluster m3 for distinctive copy number changes. For the purpose of this case study, 
we focused on deletions of known tumor suppressor genes that overlap with the mRNA clusters. 
Therefore, we loaded a classification of genes into tumor suppressor genes and oncogenes [4] 
(Supplementary Dataset 3) and associated this classification with the gene copy number 
stratifications. This allowed us to filter these stratifications based on the classification of the 
corresponding genes, and to remove all oncogenes and genes without classification, resulting in 
a set of 71 tumor suppressor genes. We then queried the copy number stratifications associated 
with these genes for overlap with the m3 cluster and additionally limited the query to those 
patients who have a homozygous or a heterozygous deletion of a tumor suppressor gene. To 
limit the query, we deselected the other options (‘NORMAL’, ‘Low level amplification’, ‘High level 
amplification’) in the dataset-level filter. The top 5 genes returned by the query are PTCH1, 
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PAX5, NOTCH1, TSC1, and CDKN2A. Among these, CDKN2A stood out, since in addition to 
44% of patients in m3 having a heterozygous deletion in this gene, an additional 9% have a 
homozygous deletion of this tumor suppressor gene (53% with any deletion), while in clusters 
m1, m2, and m4 the percentage of patients with any deletion is 16% (m1), 30% (m2), and 36% 
(m4), respectively (Supplementary Fig. 9, see also Supplementary Video 1 from 5:44 to 7:40). 
Like the PTEN mutation, the TCGA marker paper describes the CDKN2A deletion of patients in 
the m3 cluster as a notable feature. The fairly large number of CDKN2A deletions in m4 and m2, 
however, was not reported in the TCGA paper. This discrepancy could be caused by the 
increased number of samples in our case study compared to the TCGA paper (504 vs. 417 
patients with copy number calls) (Supplementary Table 2). 
 
Exploring Gene Mutations 
After characterizing the mRNA and microRNA expression clusters, our next aim was to identify 
significantly mutated genes that affect survival. The list of 19 significantly mutated genes was 
queried against the ‘Days to Death’ survival variable with the ‘logrank query’ of the query wizard. 
The top result (p-value of p = 0.00017, logrank = 14.095) is BAP1. The Kaplan-Meier curves 
indicate that patients with mutations in BAP1 have notably poorer outcomes, which is in 
concordance with the findings of the TCGA marker paper. We added both the Kaplan-Meier plots 
and the mutation stratification for BAP1 to the StratomeX view (Supplementary Fig. 10, see also 
Supplementary Video 1 from 7:48 to 9:14). Next, we performed a mutually exclusive mutation 
query of BAP1 against the 19 significantly mutated genes. This query, which ranks genes based 
on the overlap of the patients without a mutation in the corresponding gene against the patients 
with BAP1 mutations, returned PBRM1, SETD2, and KDM5C as top hits. Like the BAP1 protein, 
the products of all three genes are involved in chromatin remodeling. The mutually exclusive 
nature of these mutations could be an indicator for the role of epigenetic changes in ccRCC, 
which are also noted in the TCGA marker paper. KDM5C is perfectly mutually exclusive to BAP1, 
which is illustrated by the characteristic ‘X’ pattern of the bands connecting the two stratifications 
(Supplementary Fig. 11).  
 
Identification of a Patient Set with Poor Survival Times 
To demonstrate that StratomeX supports the generation and refinement of novel hypotheses 
using a combination of data-driven and knowledge-driven queries, we further explored the clear 
cell renal carcinoma data set. Unlike the findings in previous parts of this case study, the results 
reported here have not been reported by the TCGA marker paper [1] and to our knowledge they 
also have not been reported elsewhere. 
As discussed earlier in this case study, we found that patients with mutations in BAP1 have much 
worse outcomes compared to patients without such mutations (see also Supplementary Fig. 
10). While this observation was made in sequence-level data, we were also interested in whether 
we could find such patient sets based on patterns in functional data, such as the expression 
levels of microRNAs, mRNAs, or proteins.  
We queried a total of 51 clustering results - 16 for mRNA-seq data [9,10], 14 for microRNA-seq 
data [11,12], 14 for protein expression data (reverse-phase protein array, RPPA) [13,14] and 7 
for DNA methylation data [15] - obtained from the 23 May 2013 Firehose analysis run against the 
‘Days to Death’ survival variable with the ‘logrank query’ of the query wizard. 

Nature Methods: doi:10.1038/nmeth.3088



30  

The top result (logrank test score = 68.6, p-value = 1.1e-16,) is a clustering of RPPA data into 8 
clusters found using a consensus non-negative matrix factorization clustering approach [13]. The 
Kaplan-Meier curves indicate that the 57 patients in cluster 8 have notably poorer outcomes (see 
Supplementary Fig. 12). Since the outcomes of the patients in the other groups are all fairly 
similar, we decided to study the patients in cluster 8 (n = 57) relative to the remaining patients (n 
= 397) and created a new stratification of the RPPA data with only two groups: “cluster 8” and 
“rest” (see Supplementary Fig. 13). 
 
Characterization of the Patient Set 
Our goal was to characterize the cluster 8 patient set that we identified based on protein 
expression profiles and the poorer survival times of the patients in that set. Using the Jaccard 
Index query of the query wizard, we searched all gene mutations for overlap with cluster 8, but 
found that even frequently mutated genes such as MTOR and BAP1 are mutated in only 5 and 6 
of the 57 patients in cluster 8, respectively. Due to the low frequency of mutations in cluster 8, 
they are likely not responsible for the overall poor survival times.  
Next, we used gene set enrichment analysis to identify KEGG pathways that exhibit differential 
activation between cluster 8 and the rest of the patients. Since there are only 123 unique proteins 
in the RPPA data set, we applied the cluster 8 vs rest cluster assignment to the mRNA-seq 
expression matrix (see Supplementary Fig. 13) and ran the GSEA query provided by the query 
wizard on the two newly created mRNA expression clusters representing cluster 8 and the rest of 
the patients. The top 8 results contained three DNA repair mechanisms (see Supplementary 
Fig. 13): homologous recombination (hsa03440; rank 3), base excision repair (hsa03410; rank 
6), and mismatch repair (hsa03420; rank 8). We added these pathways to the StratomeX view 
(see Supplementary Fig. 14). Study of the pathway images revealed that generally genes in the 
homologous recombination, base excision repair, and mismatch repair pathway are expressed in 
cluster 8 at levels higher than the cohort average and are therefore shown in red. Notable 
exceptions are BRCA2 and genes of the MRN complex in the homologous recombination 
pathway and members of the MutL-homolog (MLH) and MutS-homolog (MSH) families in the 
mismatch repair pathway, which in cluster 8 are expressed at levels lower than the cohort 
average and are therefore shown in blue. Down-regulation of mRNA expression levels of MSH 
and MLH family genes relative to normal samples has been associated with renal cell carcinoma 
in an RT-PCR-based study [16]. 
In addition to the heterozygous deletion of BRCA2 in close to 40% of patients in cluster 8, the 
differential expression of several DNA repair pathways in the same cluster is a further indicator 
that the DNA of these patients might be harboring more mutations than those of other patients. 
To test this hypothesis, we downloaded the silent and non-silent mutation rates for all available 
patient genomes (24 patients in cluster 8 and 250 in the rest) from the MutSig 2.0 Firehose 
pipeline run of 23 May 2013 [2] (file “KIRC-TP.patients.counts_and_rates.txt”, Supplementary 
Dataset 4). We visualized these mutation rates as box plots based on our 2-class stratification of 
the patients representing cluster 8 and the rest (see Supplementary Fig. 15a). The header block 
detail views for the silent and the non-silent mutation rate columns shows that both silent and 
non-silent mutation rates tend to be higher in cluster 8 (see Supplementary Fig. 15b). Using the 
data export function of StratomeX, we exported the stratified mutation rates and computed 
Welch’s two-sample t-test for both the silent and non-silent mutation rates in R. In both cases the 
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difference in mutation rates is significant (p-value = 0.007967 for non-silent, p-value = 0.009021 
for silent). This result corroborates our previous observation that DNA repair mechanisms might 
be interrupted in the tumors of patients contained in cluster 8. 
Next, we queried cluster 8 against categorical clinical variables and found that it has notable 
overlap with patients whose tumors are classified as stage III (42.11% of patients in cluster 8, 
12.85% of patients in the rest) and stage IV (42.11% of patients in cluster 8, 23.17% of patients 
in the rest) (see Supplementary Fig. 16). With the present data it is not possible to discern, 
however, whether the increased mutation rates and differential activation of DNA repair pathways 
are an effect of the advanced tumor stages of the patients in clusters 8 or if these patients 
present with advanced tumors due to more aggressive cancers caused by high mutation rates 
resulting from defects in DNA repair mechanisms. 
Finally, we looked for overlap between cluster 8 and copy number changes in known tumor 
suppressor genes and oncogenes. Using the cancer gene classification by Vogelstein et al. [4] 
introduced above, and the Jaccard Index query, we searched for amplifications of oncogenes 
and deletions of tumor suppressor genes that overlap with cluster 8. The third best hit of the 
query for tumor suppressor gene deletions is BRCA2, which is heterozygously deleted in 38.6% 
of patients (n = 22) in cluster 8, which also correspond to 29.3% of all patients with a BRCA2 
deletion (see Supplementary Fig. 17). BRCA2 is heterozygously deleted in only 11.84% (n = 47) 
of the remaining 397 patients, which corresponds to 67.62% of patients with a BRCA2 deletion. 
BRCA2 is well known for its involvement in breast and ovarian cancers and its role in DNA repair 
mechanisms such as homologous recombination [17].  This supports our earlier observation that 
DNA repair mechanisms is affected in the patients in cluster 8, which might play a role in their 
poor outcomes. 
In summary, we identified a set of 57 patients in the clear cell renal carcinoma cohort with 
significantly poorer survival times than the remaining patients and more than 85% advanced 
stage tumors that have differentially activated DNA repair pathways and significantly increased 
mutation rates. These are new observations that were not reported in the TCGA marker paper 
publication on clear cell renal carcinoma. Given the evidence found by our exploration of the data 
with StratomeX, a more detailed analysis of this patient set is likely to reveal additional 
information about the molecular changes underlying the observations discussed in this case 
study. 
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Supplementary Methods 

Scoring Queries 
 
In addition to basic browsing, filtering, and ranking of stratifications, pathways, and clinical 
variables, StratomeX supports a series of advanced query methods to find additional 
stratifications and pathways based on patterns identified in the StratomeX view (Supplementary 
Fig. 4).  
Some of the queries implemented in StratomeX are based on hypothesis tests for which p-values 
are provided along with the test scores. The results of these queries, however, must not be 
interpreted as statistically reliable results, since correction for multiple hypothesis testing is not 
provided in the current implementation although some queries involve thousands of tests. 
Generally, the scores are provided to guide the user to stratifications or pathways that provide 
additional insight into patterns observed in the StratomeX view and to generate new hypotheses. 
 
Scoring stratifications based on similarity to a selected stratification 
This query is useful for finding stratifications that are similar to a currently displayed stratification. 
The Adjusted Rand Index [1] is used to compare each stratification in the collection against the 
query stratification selected by the user. 
 
Scoring stratifications based on overlap with a selected patient set 
In contrast to the Adjusted Rand Index, which quantifies similarities between stratifications, this 
type of query is designed to identify stratifications that contain sets similar to a query set in a 
displayed stratification. The score for a set is the Jaccard Index describing its similarity to the 
query set and computed for all sets in every stratification in the collection of stratifications, but 
only the best score for each stratification will be reported. In addition, if the query is triggered 
from a binary stratification, such as mutations, a mutual exclusivity score is computed per set, 
which can be used to identify genes that are mutated in non-overlapping sets of patients. 
 
Scoring stratifications based on logrank test for patient survival 
This query identifies sets of patients that exhibit altered survival times compared to the rest of the 
patients in the same stratification. It uses the logrank test (Mantel-Haenszel test) to score the 
stratifications and assigns larger scores to more extreme differences in survival. Similar to the 
previous method, the score is computed for each considered set of stratifications and the best 
result per stratification is presented to the user. A p-value for the best result is provided as 
guidance. 
 
Scoring pathways based on gene set enrichment for a selected patient set 
This type of query is designed to identify pathways that are over- or underexpressed in a patient 
set relative to the rest of the cohort. It takes a set of patients as input and computes differential 
gene expression levels for patients in the query set against the rest of the patients in the same 
stratification. The differential expression levels are used to score pathways using either Gene Set 
Enrichment Analysis (GSEA) [2] or Parametric Assignment of Gene Set Enrichment (PAGE) [3]. 
Additional meta information, such as the number and percentage of mapped genes, are shown to 
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allow filtering operations, such as exclusion of pathways with too many or few genes with 
expression levels. 
 
Importing externally computed scores 
Any external score associated with stratifications or pathways can be imported using the data 
import wizard, and used for exploration of the data, as demonstrated in the case study presented 
in the Supplementary Note. 

 

TCGA Data Package Generation 
 
Caleydo StratomeX is designed to operate on large and heterogeneous data sets that integrate 
multiple molecular profiling techniques with clinical parameters and various analysis results, such 
as clustering results, copy number calls and mutation calls. Since there is no common file format 
to describe such integrated data sets, data matrices and analysis results are typically distributed 
as individual files, which have to be downloaded and imported into StratomeX one by one. This 
makes it tedious for users of StratomeX to create comprehensive datasets, in particular when the 
data is frequently updated. Caleydo addresses this issue by providing a binary format for project 
files to store and share such datasets. The creation of these data packages can be also be 
automated, for example, to support project file generation for large studies in batch mode. 
The Cancer Genome Atlas (TCGA) project is the most comprehensive source for integrative 
cancer genomics data sets to date. Due to the incremental collection and processing of tumor 
samples, the datasets for the over twenty tumor types studied by the project are changing 
frequently. An automated analysis pipeline called Firehose (http://gdac.broadinstitute.org) has 
been developed at the Broad Institute of MIT and Harvard to preprocess and perform 
comprehensive automated analyses on each tumor cohort without human intervention. The 
outputs of this pipeline are made publicly available as a community resource and represent the 
basis for many integrative analyses performed by TCGA analysis teams.  
We have developed a data packaging tool to assemble Caleydo project files based on multiple 
input sources. We use this tool to generate project files based on the output of the Firehose 
analysis pipeline for all TCGA tumor types processed by Firehose. Our tool takes advantage of 
the standardized output format and directory structure used by all Firehose workflows. In the 
current implementation up to 24 data files from 18 Firehose workflows are included in the data 
package for each tumor type. The data packages are generated for each public Firehose 
analysis run. 
 
Data Matrices and Analysis Results extracted from Firehose 
Since package generation is performed for multiple tumor types and Firehose pipelines runs, the 
following variables are used:  
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Variable Description 

<analysis(date:format> Firehose analysis run date, e.g. 2013-05-23. In addition, a specific date format can be 
given, e.g. ‘<analysis-date:YYYYMMDD>’ resolves to ‘20130523’. 

<data(date:format> Firehose data run date, e.g. 2013-05-23. See above for formatting. 

<tumor(base> Tumor type, e.g. KIRC, GBM 

<tumor(subset> 
Tumor type including the sample type, e.g. KIRC-TP;  
By default, we extend <tumor-base> with '-TP' (primary tumor) unless <tumor-base> 
is SKCM, which is mapped to SKCM-TM (metastatic tumor) or LAML, which is 
mapped to LAML-TB (blood). 

<profile> The molecular data type, e.g. mRNA, microRNA 
 
In addition, due to the evolution of the Firehose pipeline itself and missing data, fallback files are 
used. By default, data files containing full matrices with all genes/microRNAs/proteins are used. If 
they are not available, data files containing only the 1500 most variable 
genes/microRNAs/proteins, or another Firehose-provided subset, are used. If a data package 
cannot be found at all, it will be ignored by the data packager. 
 
All package locations given below are relative to this base URL: http://gdac.broadinstitute.org/ 
 
mRNA Data Matrices 
Default 

Package 
runs/analyses__<analysis(date:YYYY_MM_DD>/data/<tumor(base>/<analysis(
date:YYYYMMDD>/gdac.broadinstitute.org_<tumor(
subset>.mRNA_Preprocess_Median.Level_4.<analysis(date:YYYYMMDD>00.0.0.tar.gz 

File <tumor(subset>.medianexp.txt 

 
Fallback 

Package 
runs/analyses__<analysis(date:YYYY_MM_DD>/data/<tumor(base>/<analysis(
date:YYYYMMDD>/gdac.broadinstitute.org_<tumor(
subset>.mRNA_Clustering_CNMF.Level_4.<analysis(date:YYYYMMDD>00.0.0.tar.gz 

File outputprefix.expclu.gct 

Notes Contains only the most variable genes. 
 
mRNA-seq Data Matrices 
Default 

Package 
runs/data__<data(date:YYYY_MM_DD>/data/<tumor(base>/<data(
date:YYYYMMDD>/gdac.broadinstitute.org_<tumor(
subset>.mRNAseq_Preprocess.Level_4.<data(date:YYYYMMDD>00.0.0.tar.gz 

File <tumor(base>.uncv2.mRNAseq_RSEM_normalized_log2.txt 

Altern. File 1 <tumor(base>.uncv1.mRNAseq_RPKM_log2.txt 

Altern. File 2 <tumor(base>.mRNAseq_RPKM_log2.txt 
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Fallback 

Package 
runs/analyses__<analysis(date:YYYY_MM_DD>/data/<tumor(base>/<analysis(
date:YYYYMMDD>/gdac.broadinstitute.org_<tumor(
subset>.mRNAseq_Clustering_CNMF.Level_4.<analysis(date:YYYYMMDD>00.0.0.tar.gz 

File outputprefix.expclu.gct 

Notes Contains only the most variable genes. 
 
microRNA Data Matrices 
Default 

Package 
runs/data__<data(date:YYYY_MM_DD>/data/<tumor(base>/<data(
date:YYYYMMDD>/gdac.broadinstitute.org_<tumor(subset>.miR_Preprocess.Level_4.<data(
date:YYYYMMDD>00.0.0.tar.gz 

File <tumor(subset>.miR_expression.txt 
 
Fallback 

Package 
runs/analyses__<analysis(date:YYYY_MM_DD>/data/<tumor(base>/<analysis(
date:YYYYMMDD>/gdac.broadinstitute.org_<tumor(
subset>.miR_Clustering_CNMF.Level_4.<analysis(date:YYYYMMDD>00.0.0.tar.gz 

File outputprefix.expclu.gct 

Notes Contains only the most variable microRNAs. 
 
microRNA-seq Data Matrices 
Default 

Package 
runs/analysis__<analysis(date:YYYY_MM_DD>/data/<tumor(base>/<analysis(
date:YYYYMMDD>/gdac.broadinstitute.org_<tumor(
subset>.miRseq_Preprocess.Level_4.<analysis(date:YYYYMMDD>00.0.0.tar.gz 

File <tumor(base>.uncv2.miRseq_RSEM_normalized_log2.txt 

Altern. File 1 <tumor(base>.mRNAseq_RPKM_log2.txt 

 
Fallback 

Package 
runs/analyses__<analysis(date:YYYY_MM_DD>/data/<tumor(base>/<analysis(
date:YYYYMMDD>/gdac.broadinstitute.org_<tumor(
subset>.miRseq_Clustering_CNMF.Level_4.<analysis(date:YYYYMMDD>00.0.0.tar.gz 

File outputprefix.expclu.gct 

Notes Contains only the most variable microRNAs. 
 
DNA Methylation Data Matrices 
Default 

Package 
runs/analyses__<analysis(date:YYYY_MM_DD>/data/<tumor(base>/<analysis(
date:YYYYMMDD>/gdac.broadinstitute.org_<tumor(
subset>.Methylation_Clustering_CNMF.Level_4.<analysis(date:YYYYMMDD>00.0.0.tar.gz 

File outputprefix.expclu.gct 

Notes Contains only the most variable genes. 
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Reverse Phase Protein Array (RPPA) Data Matrices 
Default 

Package 
runs/analyses__<analysis(date:YYYY_MM_DD>/data/<tumor(base>/<analysis(
date:YYYYMMDD>/gdac.broadinstitute.org_<tumor(
subset>.RPPA_Clustering_CNMF.Level_4.<analysis(date:YYYYMMDD>00.0.0.tar.gz 

File outputprefix.expclu.gct 

Notes Contains only the most variable proteins. 
 
Patient Clustering by Consensus Non-Negative Matrix Factorization 
For mRNA(-seq), microRNA(-seq), DNA Methylation, and RPPA matrices we obtain the following 
clustering results: 

Package 
runs/analyses__<analysis(date:YYYY_MM_DD>/data/<tumor(base>/<analysis(
date:YYYYMMDD>/gdac.broadinstitute.org_<tumor(
subset>.<profile>_Clustering_CNMF.Level_4.<analysis(date:YYYYMMDD>00.0.0.tar.gz 

File cnmf.membership.txt 

 
Patient Clustering by Consensus Non-Negative Matrix Factorization 
For mRNA(-seq) and microRNA(-seq) matrices we obtain the following clustering results: 

Package 
runs/analyses__<analysis(date:YYYY_MM_DD>/data/<tumor(base>/<analysis(
date:YYYYMMDD>/gdac.broadinstitute.org_<tumor(
subset>.<profile>_Clustering_Consensus.Level_4.<analysis(date:YYYYMMDD>00.0.0.tar.gz 

File <tumor(subset>.allclusters.txt 

 
Copy Number Calls 

Package 
runs/analyses__<analysis(date:YYYY_MM_DD>/data/<tumor(base>/<analysis(
date:YYYYMMDD>/gdac.broadinstitute.org_<tumor(
subset>.CopyNumber_Gistic2.Level_4.<analysis(date:YYYYMMDD>00.0.0.tar.gz 

File all_thresholded.by_genes.txt 

 
The copy number calls are represented as ordinal categorical data and we apply the following 
mapping: 
 

Value Label 

-2 Homozygous deletion 

-1 Heterozygous deletion 

0 NORMAL 

1 Low level amplification 

2 High level amplification 
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Mutation Calls 

Package 
runs/analyses__<analysis(date:YYYY_MM_DD>/data/<tumor(base>/<analysis(
date:YYYYMMDD>/gdac.broadinstitute.org_<tumor(
subset>.MutSigNozzleReport2.0.Level_4.<analysis(date:YYYYMMDD>00.0.0.tar.gz 

File <tumor(subset>.final_analysis_set.maf 

 
Only binary status for mutations ('not mutated' or 'mutated') is currently supported. We parse the 
MAF file row by row and for each row <x>, we assign status 'mutated' to gene <x.HUGO_Symbol> in 
patient <x.Tumor_Sample_Barcode>VandV'not mutated' if there is no such row in the MAF file. 
 
Clinical Parameters 

Package 
runs/data__<data(date:YYYY_MM_DD>/data/<tumor(base>/<data(
date>/gdac.broadinstitute.org_<tumor(subset>.Merge_Clinical.Level_1.<data(
date>00.0.0.tar.gz 

File <tumor(base>.clin.merged.txt 

 
We use the 'patient.bcrpatientbarcode' field in the extracted clinical data file to identify patients 
and then map the following clinical parameters (depending on availability): 
 

Label Field (prefix 'patient.') Type 

Gender gender categorical 

Ethnicity  ethnicity nominal categorical 

Race  race nominal categorical 

Age (days)  daystobirth natural number 

Days to Death daystodeath natural number 

Vital Status  vitalstatus nominal categorical 
Age At Initial Pathologic 
Diagnosis ageatinitialpathologicdiagnosis natural number 

Days To Last Follow Up  daystolastfollowup natural number 

Histological Type histologicaltype nominal categorical 

Tumor Tissue Site  tumortissuesite nominal categorical 

Radiation Risk Exposure personlifetimeriskradiationexposureindicator categorical 

Lymph Node Assessment primarylymphnodepresentationassessment ordinal categorical 

Focus Type primaryneoplasmfocustype nominal categorical 
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Label Field (prefix 'patient.stageevent.') Type 

Overall Stage pathologicstage ordinal categorical 

T Stage tnmcategories.pathologiccategories.pathologict ordinal categorical 

N Stage tnmcategories.pathologiccategories.pathologicn ordinal categorical 

M Stage tnmcategories.pathologiccategories.pathologicm ordinal categorical 
 
 
 
Preprocessing Steps performed by the Package Builder 
The following preprocessing is performed by the package builder on the extracted data matrices 
containing mRNA(-seq), microRNA(-seq), DNA Methylation, and RPPA measurements.  
 

1. Missing values in gene/microRNA/protein expression matrices and DNA methylation 
matrices are imputed using a k-nearest neighbors (kNN) imputation algorithm [4]. We 
chose k = 10 and determine the distance between a gene/microRNA/protein expression 
profile or DNA methylation profile X with missing values and all other profiles Yi by 
computing d(X,Y) = mean((Xi - Yi) * (Xi - Yi)) (squared and normalized Euclidean distance) 
for all i, based on all non-missing values. The missing value for a patient p in X is 
replaced by the average value for the given patient p across the k nearest Yi. If a gene X 
contains more than 50% missing values, the missing values are imputed using the global 
patient mean, instead of the mean of the k nearest neighbors mean, because it is unlikely 
to find appropriate neighbors in such cases. The patient mean is also used in situations 
where all neighbors have missing values for the patient for which a missing value is to be 
imputed. 

2. The matrices are z-score normalized unless the fallback options are used (which are 
already z-score normalized), where each entry x is replaced with (x - mean)/sd, where 
mean and sd correspond to the gene/microRNA/protein expression profile mean and 
standard deviation, respectively. 

3. If a full gene matrix is available for a given data type, a sampled version is created for 
visualization purposes. The sampled matrix contains the 1500 most variable genes, 
according to their median absolute deviation (MAD). Genes with more than 80% missing 
values are discarded. 

4. For sampled matrices, we apply hierarchical clustering with average linkage using 
Euclidean distance to the mRNA/microRNA/protein dimension of the matrix. This step is 
performed for improved visualization of the data in heatmaps, which display only the 
sampled data. 
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