
Eingereicht von

DI Andreas Hinterreiter

Angefertigt am

Institut für Computergrafik

Erstbetreuer

Univ.-Prof. Dr. Marc Streit

Zweitbetreuer

Prof. Dr. Bernhard Kainz

November 2022

Visual Explanations of High-dimensional and
Temporal Processes

Dissertation
zur Erlangung des akademischen Grads

Doktor der Technischen Wissenschaften
im Doktorratsstudium der

Technischen Wissenschaften

JOHANNES KEPLER

UNIVERSITÄT LINZ

Altenberger Straße 69

4040 Linz, Österreich

www.jku.at

http://www.jku.at

E I D E S S T A T T L I C H E E R K L Ä R U N G

Ich erkläre an Eides statt, dass ich die vorliegende Dissertation selbstständig
und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und
Hilfsmittel nicht benutzt bzw. die wörtlich oder sinngemäß entnommenen
Stellen als solche kenntlich gemacht habe.

Linz, November 2022 Andreas Hinterreiter

i

A B S T R A C T

Visualization and machine learning research are both driven by a desire to
extract insights from data. However, the means to this end differ substantially
between the two fields. While machine learning typically tries to automate
decisions, visualization focuses on the human in the loop. A combination of
these disparate approaches can help users to acquire insights from data more
effectively. This thesis compiles results from five studies in which visualiza-
tion and machine learning were brought together with a focus on temporal
and/or high-dimensional processes. These works span the range from visual-
izations for model analysis to data processing for visualization. ConfusionFlow
and InstanceFlow are two interactive visualization systems that let machine
learning developers analyze the temporal progression of the training of clas-
sification models. A more general analysis of high-dimensional, temporal
processes is possible with the Projection Path Explorer, which visualizes pro-
cesses as trajectories in a low-dimensional embedding space. The Projection
Path Explorer makes use of unsupervised machine learning for nonlinear
dimensionality reduction. Projective Latent Interventions show how these
unsupervised techniques can be adapted to give users more control over, and
a better understanding of, the latent representations of classification models.
To this end, parametric extensions of dimensionality reduction techniques
are introduced, which allow users to manipulate the embeddings in such a
way that changes can be propagated back to the original classification model.
Finally, ParaDime is a framework for specifying such parametric dimension-
ality reduction routines in a flexible and customizable way. ParaDime unifies
existing techniques and facilitates experimentation with new embedding
methods for visualization. These five works illustrate the variety of possible
combinations of machine learning and visualization, and showcase how such
combined approaches can help users to better understand high-dimensional,
temporal processes.

i i i

K U R Z F A S S U N G

Erkenntnisgewinn aus Daten ist die Hauptmotivation sowohl für Forschung
im Bereich der Datenvisualisierung als auch im maschinellen Lernen. Die
Mittel, mit denen dieses Ziel erreicht werden soll, unterscheiden sich jedoch
erheblich zwischen diesen Feldern. Während das maschinelle Lernen in der
Regel versucht Entscheidungen zu automatisieren, rückt die Visualisierung
den Menschen in den Mittelpunkt. Eine Kombination dieser unterschiedli-
chen Ansätze kann Nutzer:innen dabei unterstützen, effektive Einblicke in
Daten zu erhalten. Diese Dissertation fasst die Ergebnisse aus fünf Arbeiten
zusammen, in denen Visualisierung und maschinelles Lernen kombiniert
werden – mit Fokus auf zeitliche und/oder hochdimensionale Prozesse. Dabei
spannen diese Arbeiten den Bogen von Visualisierungen zur Modellanalyse
bis hin zur Datenverarbeitung für Visualisierung. ConfusionFlow und Instance-
Flow sind zwei interaktive Visualisierungssysteme, mit denen Entwickler:in-
nen den zeitlichen Verlauf des Lernprozesses von Klassifikationsmodellen
untersuchen können. Eine allgemeinere Analyse von hochdimensionalen,
zeitlichen Prozessen ermöglicht der Projection Path Explorer, in dem Prozesse
als Trajektorien in einem niedrigdimensionalen Einbettungsraum dargestellt
werden. Der Projection Path Explorer nutzt Modelle des unüberwachten
maschinellen Lernens zur nichtlinearen Dimensionalitätsreduktion. Projec-
tive Latent Interventions zeigen auf, wie diese unüberwachten Techniken
adaptiert werden können, um Benutzer:innen mehr Kontrolle über – und ein
besseres Verständnis für – die latenten Repräsentationen von Klassifikations-
modellen zu gewähren. Hierfür werden parametrisierte Erweiterungen von
Dimensionalitätsreduktionstechniken eingeführt, dank derer Änderungen,
die Benutzer:innen in der niedrigdimensionalen Darstellung vornehmen,
auf das ursprüngliche Klassifikationsmodell zurückgeführt werden können.
ParaDime ist schlussendlich ein Programmiergerüst, mit dem solche parame-
trisierten Dimensionalitätsreduktionsroutinen auf flexible und anpassbare
Weise spezifiziert werden können. ParaDime vereinheitlicht bestehende Tech-
niken und erleichtert Experimente mit neuen Projektionsmethoden, welche
für Visualisierungen verwendet werden können. Diese fünf Arbeiten ver-
anschaulichen die Bandbreite möglicher Kombinationen des maschinellen
Lernens mit Visualisierung und zeigen, wie solche kombinierten Ansätze Be-
nutzer:innen dabei helfen können, hochdimensionale und zeitliche Prozesse
besser zu verstehen.

v

“... there is much pleasure to be gained from ‘useless’ knowledge.”

— A. Montagu & E. Darling,
paraphrasing Bertrand Russell

A C K N O W L E D G E M E N T S

First of all I would like to thank my supervisor Marc Streit. Marc took a leap
of faith when he accepted me as a PhD student coming from a completely
different field. Thanks to his expertise and excellent guidance, this endeavor
turned out a success. Marc has fostered a great atmosphere for research in his
lab and I thoroughly enjoyed my time as a PhD student under his supervision.
I would also like to thank my co-supervisor Bernhard Kainz for his ideas and
for broadening my research horizon. I wish my stay in London would have
been under different circumstances, but the time I spent in his group was
inspiring nonetheless.

Special thanks go to my fellow PhD students Patrick Adelberger, Vaishali
Dhanoa, Klaus Eckelt, Christina Humer, Christian Steinparz, and Conny
Walchshofer. Between the scientific discussions, the—sometimes “slightly”
extended—coffee breaks, and our bouldering sessions they have become true
friends. I am thankful for the time we have spent together and I hope it will
continue this way. Additionally, I would like to thank all my collaborators
who I have not yet mentioned, in particular Jürgen Bernard, Moritz Heckman,
Benedikt Leichtmann, Martina Mara, Michael Pühringer, Holger Stitz, and
Kai Xu, as well as all my colleagues at the ICG. I would also like to express
my gratitude to all my old physics colleagues who were involved in one way
or another in preparing me for my scientific journey.

Next, I want to thank my brothers Matthias and Michael. Usually I would
try to think of something funny to put here, but I guess it is time for a
heartfelt “Thank you!” I am truly happy to have them as companions. I am
also indebted to Tia Truglas. She gave me the confidence to take this step
and I will forever remain grateful for her support. Finally, I owe the most
special thanks to my parents Barbara and Peter. They instilled in me the
desire for knowledge and the ability to think critically. Thanks to their trust,
love, and generosity I could pursue my path free from most worries.

This PhD was carried out within the Human-Interpretable Machine Learning project, a collab-
oration between Johannes Kepler University Linz and Imperial College London funded by the
State of Upper Austria. Additional financial support by Johannes Kepler University Linz, the
Linz Institute of Technology (LIT), the State of Upper Austria, and the Federal Ministry of
Education, Science and Research (LIT-2019-7-SEE-117), by the Austrian Science Fund (FWF
P27975-NBL and FWF DFH 23–N), by the Austrian Research Promotion Agency (FFG 851460
and FFG 854184), by the Wellcome Trust (IEH 102431 and EPSRC EP/S013687/1.), and by the
Boehringer Ingelheim Regional Center Vienna is gratefully acknowledged.

ix

C O N T E N T S

1 introduction 1
1.1 Visualization & Machine Learning 1
1.2 About this Thesis 4

2 related work 9
2.1 Time Series Visualization 9
2.2 Dimensionality Reduction 10

3 confusionflow 13
3.1 Problem Space Characterization 14
3.2 Related Work on Model Analysis 17
3.3 ConfusionFlow Technique 21
3.4 Evaluation 26
3.5 Discussion 34
3.6 Conclusion 35

4 instanceflow 37
4.1 User Tasks 37
4.2 Related Instance-level Approaches 38
4.3 InstanceFlow Technique 39
4.4 Usage Scenario: CIFAR-10 Image Classification 43
4.5 Limitations & Future Work 45
4.6 Conclusion 45

5 projection path explorer 47
5.1 Related Work on Projected Sequential Data 48
5.2 Technique 50
5.3 Interactive Visualization Prototype 56
5.4 Applications 57
5.5 Discussion 71
5.6 Conclusion 75

6 projective latent interventions 77
6.1 Introduction 77
6.2 Context & Contribution 77
6.3 Method 78
6.4 Experiments 80
6.5 Discussion 83
6.6 Conclusion 83

7 paradime 85
7.1 Related Work on Generalizing and Constraining DR 86

xi

xii contents

7.2 The ParaDime Grammar of Parametric DR 86
7.3 Framing Existing Techniques in Terms of ParaDime 90
7.4 Experimenting With Combined Techniques 94
7.5 Discussion 100
7.6 Conclusion 101

8 summary & outlook 103
8.1 Automation & Guidance 103
8.2 The Tooling Landscape 104
8.3 Societal Impact & Outreach 105

references 107

appendix 126
a ConfusionFlow: Additional Information 127
b Rubik’s Cube Demonstrator 133

L I S T O F F I G U R E S

1.1 Amodel for the analysis of iterative processes with interactive
visualizations . 3

3.1 Levels of detail for the performance analysis of classifiers . . 14
3.2 Principle working practice for the analysis of classification

model as observed with our collaborators 17
3.3 Screenshot of the ConfusionFlow user interface 21
3.4 Visual encoding of the ConfusionFlow matrix 22
3.5 Visual comparison of instance selection strategies for effec-

tive data labeling using ConfusionFlow 27
3.6 Within-superclass comparison in ConfusionFlow 31
3.7 Visual comparison of different neural network pruning strate-

gies using ConfusionFlow . 33

4.1 Screenshot of the InstanceFlow user interface 39
4.2 Flow view, distribution charts, instance glyphs and traces in

InstanceFlow . 40
4.3 Condensed tabular view in InstanceFlow 41
4.4 Summarized tabular view in InstanceFlow 42
4.5 Sorted tabular view for CIFAR-10 instances in InstanceFlow 44
4.6 Instance traces for CIFAR-10 in InstanceFlow 45

5.1 Screenshot of the Projection Space Explorer user interface . 48
5.2 Trajectories arising from the interemdiate states of different

sorting algorithms . 53
5.3 Patterns emerging from visualizing multiple trajectories in

the same embedding space 54
5.4 Projected solution trajectories for 100 Rubik’s cubes solved

with the beginner’s and Fridrich’s method 59
5.5 Projected solution trajectories for the same initial Rubik’s

cube state solved with the beginner’s and Fridrich’s method 60
5.6 Analysis of clusters and sub-clusters along trajectory bundles

for Rubik’s cube solutions 61
5.7 Trajectory visualization of 200 chess games with different

openings . 64
5.8 Trajectory visualization of neural network learning processes

with different learning rates 66
5.9 Trajectory visualization of neural network learning processes

with different initializations 68
5.10 Fingerprint visualization used for the Gapminder interaction

dataset (Walchshofer et al., 2021) 70

xiii

xiv list of figures

5.11 Provectories visualizations for an easy and a hard cluster
identification task (Walchshofer et al., 2021) 71

5.12 Trajectory visualizations (t-SNE) of chess games for different
perplexity values . 73

5.13 Visual encodings for analyzing different types of relationships
in embeddings (Eckelt et al., 2022) 74

6.1 Schematic of the Projective Latent Intervention workflow . . 77
6.2 Embedded latent spaces before, during, and after performing

Projective Latent Interventions 80
6.3 Results of Projective Latent Interventions for standard plane

classification in ultrasound images 81

7.1 Data flow in ParaDime and parametric t-SNE example for the
MNIST dataset . 85

7.2 Normalized stress for parametric versions of metric MDS
compared with non-parametric implementations 91

7.3 Embeddings of hybrid embedding/classification routines for
the MNIST dataset created with ParaDime 94

7.4 Supervised embeddings of a subset of the forest covertype
dataset created with ParaDime 96

7.5 Attribute-guided embeddings of a subset of the forest cover-
type dataset created with ParaDime 98

8.1 Visual summary of the contributions of this thesis 103
8.2 Visitor in the AI Forest installation 106

a.1 Class-conditional precision and recall in the context of the
confusion matrix . 128

a.2 Global accuracy during training of a neural network on the
CIFAR-100 images dataset 128

a.3 Superclass ConfusionFlow matrix for a neural network clas-
sifier trained on the CIFAR-100 image dataset 129

a.4 ConfusionFlow matrix for a neural network classifier trained
on the CIFAR-100 image dataset (10 classes with lowest 𝐹1-
scores) . 130

a.5 ConfusionFlow matrix for a neural network classifier trained
on the CIFAR-100 image dataset (classes in 20 most confused
pairs) . 131

b.1 Schematic of a physical demonstrator setup for illustrating
Rubik’s cube solution paths 134

L I S T O F T A B L E S

3.1 Analysis tasks relevant to the design of ConfusionFlow . . . 16
3.2 Publications related to ConfusionFlow 20

4.1 User tasks addressed by InstanceFlow 38
4.2 Comparison of InstanceFlow visualization components &

difficulty measures . 43

5.1 Key terms and definitions for the construction of trajectories
in low-dimensional embeddings 51

5.2 Chess state-space representations before and after various
kinds of moves on a simplified 2 × 2 chessboard with two
different pieces . 62

6.1 Global and class-specific performance measures for standard
plane classification in fetal ultrasound images with and with-
out Projective Latent Interventions 82

xv

I N T R O D U C T I O N

11.1 visualization & machine learning

In his 1962 landmark paper The Future of Data Analysis, statistician John
Tukey wrote:

All in all, I have come to feel that my central interest is in data analysis, which I
take to include, among other things: procedures for analyzing data, techniques
for interpreting the results of such procedures, [...] and all the machinery
and results of (mathematical) statistics which apply to analyzing data. (Tukey,
1962, p. 2)

Tukey’s multi-faceted vision of data analysis was one of the catalysts that
spurred the “rebirth of data visualization”. Under this slogan, psychologist
Michael Friendly summed up the time between 1950 and 1975, when data
visualization rose from a decade-long slumber (Friendly, 2008). Interestingly,
the period that saw the “rebirth of data visualization” also coincides with
several major milestones in the early development of machine learning (ML):
Rosenblatt introduced the first perceptron in 1958 (Rosenblatt, 1958) and
Werbos pioneered backpropagation in 1974 (Werbos, 1974). Arguably, the
developments in both data visualization and early machine learning research
around this time were driven by a joint goal—to better understand how to
transform raw data into useful insights.

Both fields have since come a long way, but the desire to obtain insights
from data has remained a common denominator of the fields of visualiza-
tion (“vis”) and machine learning. The strategies for insight acquisition,
however, vary substantially between the two fields. Data visualization pro-
vides “visual representations of datasets designed to help people carry out
tasks more effectively” (Munzner, 2014, p. 1, emphasis added). Machine learn-
ing, in contrast, “focuses primarily on learning (predictive) models from large
sets of collected data, with the common goal of automatizing a certain task”
(Ngo et al., 2022, p. 1, emphasis added).

Over the last decades it has become increasingly obvious that the visual,
human-centered approach of vis and the automation-focused one of ML do
not have to be competitors, but can benefit from each other. Works emerging
from the mutual influence of visualization and ML have been categorized
into ML4Vis and Vis4ML, depending on the main direction of influence.

1.1.1 Vis4ML

The recent surge in applications of deep learning has been met with an
increased desire for model interpretability, and visualization has been iden-
tified as a vital tool in this context (Hohman et al., 2018). In addition to
interpretability, Hohman et al. (2018) identified model comparison, model
improvement, and teaching/education as the main motivations for Vis4ML

1

2 introduction

(Why in their interrogative classification). The use of visualizations for ma-
chine learning has proliferated to such an extent, that the body of work on the
topic by now suffices for a survey of survey papers (Chatzimparmpas et al.,
2020). In their meta-analysis of works covering mostly the last two decades,
Chatzimparmpas et al. (2020) used latent Dirichlet allocation to generate
10 major topics related to the use of visualization for ML. Most pertinent to
the content of this thesis are the topics of “model and clustering visualization
for time-series data” and “dimensionality reduction (DR) and projections
visualization”. These topics roughly align with the modes “line charts for
temporal metrics” and “dimensionality reduction & scatter plots” identified
as How by Hohman et al. (2018). The importance of DR and temporality in
the context of this thesis is outlined further below.

1.1.2 ML4Vis

Q.Wang et al. (2021, p.1) defined ML4Vis as the application of “ML techniques
to solve visualization-related problems using the knowledge extracted from
data”. They identified seven visualization processes that can be supported by
ML. In addition to processes that help with the automatic creation of figures
or with analyzing user behavior, they highlight the role of “data processing
for vis” (Q. Wang et al., 2021, p. 2). C. Wang and Han (2022) surveyed
deep learning techniques for scientific visualization and categorized the
works along various axes. For the research-task axis, they identified “data
generation” and “feature learning and extraction” as two of the five main
categories. Endert et al. (2017) had previously introduced a 2D categorization
of research works related to integrating machine learning in visual analytics.
They divided their algorithm axis into dimensionality reduction, clustering,
classification and regression. Most of these subtasks introduced by Endert
et al., in particular DR, are also part of the definitions of “data processing for
vis” by Q. Wang et al. (2021) and of “data generation” and “feature learning
and extraction” by C. Wang and Han (2022).

1.1.3 The Special Role of Dimensionality Reduction

As stated above, dimensionality reduction has been adduced both as an ex-
ample for Vis4ML and ML4Vis. This makes DR a particularly interesting
showcase of the cross-pollination between vis and ML. Dimensionality re-
duction has become such an integral part of both fields, that in its case the
direction of influence between the two fields is no longer obvious. Ngo et al.
(2022) recently reflected on their experience working at the intersection of
vis and ML. As an example, they introduce a tool for visual parameter space
analysis for dimensionality reduction. Users interact with a “meta map” that
shows each DR technique with a certain hyperparameter setting as a point in
2D. Here, a visualization of data created with an ML algorithm (i.e., the meta
map) helps users to pick another ML algorithm for later use in visualization
or in yet another ML pipeline. This example shows how deeply connected
the two fields, vis and ML, have become, and what special role dimensionality
reduction can play in this connection.

visualization & machine learning 3

1.1.4 The Special Role of Temporality

The importance of interaction for modern visualization systems has long
been recognized (Pike et al., 2009; Thomas& Cook, 2005). Interacting with vi-
sualizations allows a user to progress from a static role as a viewer to an active
participant in a feedback loop. Endert et al. (2017) ground their discussion of
integrating ML with visual analytics on such formalized feedback loops. In
particular, they refer to the sensemaking loop by Pirolli and Card (2005) and
the human-computer knowledge generation model of Sacha et al. (2014). In
a similar vein, S. Liu et al. (2017) and Sacha et al. (2017) introduced iterative
pipelines specifically for working with DR. In all these formalized loops, a
user’s mental model is continually updated and new insights are fed back into
the pipeline. Conceptually, this optimization of mental models is strikingly
similar to the optimizations of algorithmic models that are ubiquitous in ML.
A holistic analysis of outcomes of iterative ML processes—within sensemak-
ing processes which are themselves iterative—is only possible by recognizing
the special importance of sequential and/or temporal data created in these
loops (Hinterreiter, Ruch, et al., 2022).

1.1.5 The Model Analysis Process

Figure 1.1 shows an adapted version of the visual analytics process model
by Keim et al. (2010). In this general workflow combining vis and ML, raw
data is first fed into a model. The model is optimized, creating a temporal
sequence of derived data and/or insights (e.g., predictions or low-dimensional
data representations). The derived data (potentially together with raw data)
is presented to the user in an interactive visualization. Based on insights
gained from the visualization, the user can go back and update the model
and/or refine the original data. These updates can either be triggered via the
visualization or performed directly by the user.

Note that the importance of temporality discussed above manifests itself
in the explicit inner loop (i.e., the model optimization). The data created
in this inner loop is typically high-dimensional, and, as explained above,
dimensionality reduction is a well-established approach for tackling high-
dimensional data both in ML and vis. The interaction model depicted in
Figure 1.1 is tightly connected to the overarching research question of this
thesis:

Figure 1.1: A model for the analysis of
iterative processes with interactive vi-
sualizations, based on the visual an-
alytics process model by Keim et al.
(2010).

4 introduction

How can visualization, machine learning, and dimensionality reduction
come together to provide users with a better understanding of high-
dimensional, temporal processes?

In the following section, variations of this question, combined with the inter-
action, serve as the basis for a categorization of the individual contributions
of this thesis.

1.2 about this thesis

The core of this thesis is formed by several publications to which I contributed
in a leading role (PEN-NIB). This core is augmented with content extracted from
other publications, to which I contributed as a co-author (PEN-NIB). In this section,
I list all these publications, summarize their content, detail my contribution
to them, and explain how they fit into the bigger frame of the thesis. To this
end, I refer back to the interaction model (Figure 1.1) and the overarching
research question introduced in the previous section. Finally, I describe how
the content of the publications relates to the chapters and sections of this
thesis.

1.2.1 Main Contributions

The following publications form the core of this thesis. Each publication
corresponds to a chapter of the thesis, as outlined in Section 1.2.3. The publi-
cations are listed here in the same order in which they appear in the thesis,
and this order is mostly chronological. Note, however, that the publication
dates do not necessarily reflect the chronological order due to differences in
review times.

PEN-NIB Hinterreiter, A., Ruch, P., Stitz, P., Ennemoser, M., Bernard, J., Strobelt,
H., & Streit, M. (2022). ConfusionFlow: A model-agnostic visualization
for temporal analysis of classifier confusion. IEEE Transactions on Visu-
alization and Computer Graphics, 28(2), 1222–1236. https://doi.org/10.
1109/TVCG.2020.3012063.

ConfusionFlow is an interactive visualization tool for the combined tempo-
ral and comparative analysis of the performance of classification models.
It extends the traditional class confusion matrices to allow a visualiza-
tion of performance characteristics (“Derived Data” in Figure 1.1) over
time. This way, ConfusionFlow acknowledges the temporal nature of the
model optimization loop in the analysis process model. ConfusionFlow
is model-agnostic and can be used to compare performances for different
model types, model architectures, and/or training and test datasets. We
apply ConfusionFlow in an active learning scenario and in the context of
neural network pruning.

My contributions: preparation of manuscript; task analysis; study of
related work; use cases for scalability and pruning.

PEN-NIB Pühringer, M., Hinterreiter, A., & Streit, M. (2020). InstanceFlow: Vi-
sualizing the evolution of classifier confusion at the instance level. 2020

https://doi.org/10.1109/TVCG.2020.3012063
https://doi.org/10.1109/TVCG.2020.3012063

about this thesis 5

IEEE Visualization Conference –- Short Papers. https://doi.org/10.1109/
VIS47514.2020.00065.

Similar to ConfusionFlow, InstanceFlow allows the temporal analysis of
the performance of classification models over time. However, it focuses
on the level of individual instances rather than the level of class confusion.
InstanceFlow presents instance-level data through glyphs and trajectories,
while a Sankey-diagram visualizes class-level information. In a short
case study, we show how a model developer might use InstanceFlow
to determine and fix problems in the data distribution (see “Updates”
edge in Figure 1.1) based on an interactive investigation of the sequential
performance data.

My contributions: conceptual input; preparation of manuscript.

PEN-NIB Hinterreiter, A., Steinparz, C. A., Schöfl, M., Stitz, H., & Streit, M. (2021).
Projection Path Explorer: Exploring visual patterns in projected decision-
making paths. ACMTransactions on Interactive Intelligent Systems, 11(3–4),
Article 22. https://doi.org/10.1145/3387165.

The Projection Path Explorer resulted from the idea of creating a more
generalized visualization of high-dimensional, temporal data derived from
optimization loops. To this end, we employ collections of Time Curves
(Bach et al., 2016)—trajectories through points in a low-dimensional em-
bedding space. We discuss which patterns can emerge from drawing
many such trajectories together, and we relate those patterns to the
underlying high-dimensional processes. Using several examples from
diverse application areas, we show that the Projection Path Explorer is
not limited to data from optimization processes, but generalizes to a wide
variety of high-dimensional data.

My contributions: conception and implementation of examples; descrip-
tion of patterns; mathematical description; preparation of manuscript.

PEN-NIB Hinterreiter, A., Streit, M., & Kainz, B. (2020). Projective Latent In-
terventions for understanding and fine-tuning classifiers. In J. Cardoso
et al. (Eds.), Interpretable and annotation-efficient learning for medical
image computing. Proceedings of the 3rd workshop on interpretability of
machine intelligence in medical image computing (iMIMIC 2020) (pp. 13–
22). Springer. https://doi.org/10.1007/978-3-030-61166-8_2. Best Paper
Award at iMIMIC 2020.

Our experience with analyzing low-dimensional embeddings prompted
an interesting research question: Can these low-dimensional representa-
tions be used to manipulate the underlying high-dimensional processes?
This idea led to the development of Projective Latent Interventions (PLIs).
PLIs allow ML model developers to retrain classification models by back-
propagating manual changes made to low-dimensional embeddings of the
latent space. The backpropagation is enabled via parametric extensions
to existing DR techniques. With PLIs, users indirectly modify a machine

https://doi.org/10.1109/VIS47514.2020.00065
https://doi.org/10.1109/VIS47514.2020.00065
https://doi.org/10.1145/3387165
https://doi.org/10.1007/978-3-030-61166-8_2

6 introduction

learning model by interacting with a visualization (central dashed edge
in Figure 1.1).

My contributions: concept; implementation; preparation of manuscript.

PEN-NIB Hinterreiter, A., Humer, C., Kainz, B., & Streit, M. (2022). ParaDime:
A framework for parametric dimensionality reduction. arXiv: 2210.04582.
https://doi.org/10.48550/arXiv.2210.04582. To be submitted to EuroVis
’23.

ParaDime is a framework for parametric dimensionality reduction (DR).
It builds on the idea that the objective functions of several modern DR
techniques result from transformed inter-item relationships. ParaDime
provides a common interface for specifying these relations and trans-
formations, thereby unifying parametric versions of several existing DR
techniques. In ParaDime, each aspect of the DR is fully customizable,
which makes it easy to experiment with novel DR techniques. With
respect to the interaction model in Figure 1.1, ParaDime focuses on user
control of the DR model, which may then be applied further in visualiza-
tion or ML pipelines.

My contributions: concept; implementation of framework; documentation;
preparation of manuscript.

1.2.2 Secondary Contributions

The following is a list of additional publications that are related to this thesis.
I refer to these publications in different ways throughout the chapters. For
details about where each publication is referenced, see Section 1.2.3. The
publications are again listed in the order in which they appear in the thesis.

PEN-NIB Steinparz, C. A., Hinterreiter, A., Stitz, H., & Streit, M. (2019). Visu-
alization of Rubik’s cube solution algorithms. In T. v. Landesberger &
C. Turkay (Eds.), EuroVis workshop on visual analytics (EuroVA ’19). The
Eurographics Association. https://doi.org/10.2312/eurova.20191119.

Here we discuss visualizations of solution strategies for Rubik’s cube.
The visualization approach is the same one as that used in the Projection
Space Explorer.

My contributions: preparation of manuscript; conceptual input.

PEN-NIB Walchshofer, C., Hinterreiter, A., Xu, K., Stitz, H., & Streit, M. (2021).
Provectories: Embedding-based analysis of interaction provenance data.
IEEE Transactions on Visualization and Computer Graphics (Early Access).
https://doi.org/10.1109/TVCG.2021.3135697.

Provectories are trajectory-based visualizations of user interaction data,
which are analyzed within the Projection Path Explorer. We apply Provec-
tories to data from two user studies to better understand the users’ inter-
action histories. In one of the studies, users interacted with an AI-assisted
visual analytics tool.

https://doi.org/10.48550/arXiv.2210.04582
https://doi.org/10.2312/eurova.20191119
https://doi.org/10.1109/TVCG.2021.3135697

about this thesis 7

My contributions: conceptual input; implementation of data processing
pipeline; preparation of parts of the manuscript.

PEN-NIB Eckelt, K., Hinterreiter, A., Adelberger, P., Walchshofer, C., Dhanoa, V.,
Humer, C., Heckmann, M., Steinparz, C. A., & Streit, M. (2022). Visual
exploration of relationships and structure in low-dimensional embeddings.
IEEE Transactions on Visualization and Computer Graphics (Early Access).
https://doi.org/10.1109/TVCG.2022.3156760.

This work extends the Projection Path Explorer with additional visual
encodings and interactions for exploring hierarchical structures.

My contributions: conceptual input; description of item/group relation-
ships; preparation of parts of the manuscript.

PEN-NIB Leichtmann, B., Humer, C.,Hinterreiter,A., Streit, M.,&Mara, M. (2023).
Effects of explainable artificial intelligence on trust and human behavior
in a high-risk decision task. Computers in Human Behavior, 139, 107539.
https://doi.org/10.1016/j.chb.2022.107539.

In this collaboration with colleagues from the JKU Robopsychology Lab,
we performed an online experiment to better understand how visual
explanations of AI predictions influence trust and performance in a high-
risk decision task.

My contributions: conceptual input; app design; preparation of parts of
the manuscript.

PEN-NIB Leichtmann, B.,Hinterreiter,A., Humer, C., Streit, M.,&Mara, M. (2022).
Explainable artificial intelligence improves human decision-making: Re-
sults from a mushroom picking experiment at a public art festival. OSF
Preprint. https://doi.org/10.31219/osf.io/68emr. To be submitted to the
International Journal of Human–Computer Interaction.

After the online study mentioned above, we conducted a replication study
in an immersive, artificial forest environment within the context of a
public art exhibition.

My contributions: conceptual input; app design; draft for game design; su-
pervision of study and installation; preparation of parts of the manuscript.

PEN-NIB Humer, C.,Hinterreiter,A., Leichtmann, B., Mara, M.,& Streit, M. (2022).
Comparing effects of attribution-based, example-based, and feature-based
explanation methods on AI-assisted decision-making. OSF Preprint. h

ttps://doi.org/10.31219/osf.io/h6dwz. Submitted to the 27th Annual
Conference on Intelligent User Interfaces (IUI ’23).

Finally, we conducted a second online study to compare the effects of
three different explanation methods, reusing some of the gamification
elements developed for the replication study.

https://doi.org/10.1109/TVCG.2022.3156760
https://doi.org/10.1016/j.chb.2022.107539
https://doi.org/10.31219/osf.io/68emr
https://doi.org/10.31219/osf.io/h6dwz
https://doi.org/10.31219/osf.io/h6dwz

8 introduction

My contributions: conceptual input; app design; draft for game design;
preparation of parts of the manuscript.

1.2.3 Structure

The structure of this thesis is, for the most part, based on the publications
listed above. In Chapter 2 I summarize existing research work that is related
to several of the publications that form the core of this thesis. Additional
related work that is specific to the individual contributions is part of the
respective chapters. Chapters 3 and 4 discuss ConfusionFlow (Hinterreiter,
Ruch, et al., 2022) and InstanceFlow (Pühringer et al., 2020), respectively.
Chapter 5 introduces the Projection Path Explorer (Hinterreiter et al., 2021).
Two of the application scenarios discussed in Section 5.4 of this chapter
coincide with secondary contributions mentioned above: the visualization of
Rubik’s cube solutions (Steinparz et al., 2019) is the core of Section 5.4.1, while
Section 5.4.4 is based on Provectories (Walchshofer et al., 2021). Section 5.5.5
of this chapter’s discussion is based on Eckelt et al. (2022). Projective Latent
Interventions are introduced in Chapter 6. Chapter 7 forms the basis of
the ParaDime preprint (Hinterreiter, Humer, et al., 2022). Finally, Chapter 8
concludes the thesis. Here I discuss future challenges and I also reflect on
experiences from interdisciplinary research collaborations with psychologists
(Leichtmann et al., 2022; Leichtmann et al., 2023).

R E L A T E D W O R K

2As outlined in Section 1.1, the analysis of temporal and high-dimensional data
plays a major role at the intersection of ML and visualization. This chapter
summarizes related work on time series visualization and dimensionality
reduction that is relevant in the bigger frame of this thesis. More specific
work related to the individual contributions is discussed in the respective
chapters.

2.1 time series visualization

In data mining, ML, and visualization research, principal goals of temporal
data analysis are the exploration, identification, and localization of tempo-
ral patterns (Fayyad et al., 1996; Fu, 2011; Miksch & Aigner, 2014). Task
characterizations in the visualization community include the localization
of single (i.e., atomic) values as the finest granularity of temporal analysis
(Aigner et al., 2011; Andrienko & Andrienko, 2006). Building on these atomic
localization tasks, most visualization techniques support the assessment of
multiple points in time, enabling users to grasp higher-level temporal pat-
terns. Depending on the application context, such patterns include trends,
outliers, or periodic patterns (Bernard, 2015).

In this thesis, time series visualization is applied to the training of ma-
chine learning models, where the identification of trends plays a crucial role.
A model’s performance tends to increase throughout the learning process
until it reaches a saturation value. Other frequently investigated patterns
include outliers and anomalies (Bernard, 2015; Blázquez-García et al., 2022).
The assessment of anomalies in the context of ML models is highly relevant
but challenging. In contrast to trends and outliers, periodic patterns and
cycles hardly play a role in the temporal analysis of classifier training.

2.1.1 Trajectories in Time Series Visualization

Visualizing how processes progress through different states (e.g., during
model optimization) is equivalent to visualizing multivariate time series data.
A dataset with two quantitative attributes that change over time can be
readily visualized as a trajectory in the 2D data space, with time varying
implicitly along the line. The DimpVis system, for instance, demonstrated
the use of trajectories as an important factor in interactive displays of time
series data (Kondo & Collins, 2014).

Trajectories naturally play an important role in visual analytics of move-
ment (Andrienko & Andrienko, 2013). When many trajectories (also known
as trails) are shown at once, visual clutter can be a problem. To address this
issue, edge-bundling techniques (Ersoy et al., 2011; Holten & Wijk, 2009)
have been adapted to trail visualization (Du et al., 2015; Hurter et al., 2013;

9

10 related work

Peysakhovich et al., 2015). In order to gain additional insights from tra-
jectories, numerous data mining techniques have been developed (Zheng,
2015).

Often the data to be visualized as trajectories has more than two dimen-
sions. While some data attributes can be encoded in additional channels (e.g.,
line color, line width, or marker shape), dimensionality reduction becomes
inevitable for more than just a few data dimensions.

2.1.2 Similarity of Time Series

Assessing the similarity between multiple time series has been studied exten-
sively for various encodings of one-dimensional temporal data. This includes
line charts, heatmaps/colorfields and horizon graphs (Gogolou et al., 2019),
and image encodings (Z. Wang & Oates, 2015). However, these encodings of
one-dimensional data cannot exhibit many of the interesting patterns that
arise from trajectories. Such patterns are cycles, parallel segments, and/or
points visited multiple times, and they result from the fact that—in case of the
trajectory encoding—time varies implicitly along the path through multiple
dimensions. From these patterns a notion of self-similarity follows (Bach
et al., 2016), which is arguably one of the strengths of the trajectory encod-
ing. Plotting multiple trajectories together enables the assessment of both
similarity between time series and self -similarity of individual time series.

2.2 dimensionality reduction

A multitude of dimensionality reduction techniques has been developed, and
their usefulness for data visualization has been studied (Engel et al., 2012;
Espadoto et al., 2019; van der Maaten et al., 2009). Dimensionality reduction
can be categorized broadly into linear and nonlinear techniques. Parametric
extensions of the latter play an important role in the context of this thesis.

2.2.1 Linear Techniques

The oldest linear technique, principal component analysis (PCA), has been
known for over a century, tracing back to Pearson (1901) or even Cauchy
(Abdi & Williams, 2010). The survey by Cunningham and Ghahramani
(2015) provides an excellent overview of the many linear techniques that
have since been developed. Besides PCA, another “traditional” technique
is multidimensional scaling (MDS) (Torgerson, 1952). Classical MDS is an
eigenvalue problem with a close relationship to PCA (Cox & Cox, 2008;
Williams, 2002). In contrast, metric MDS is a more general approach for
finding a low-dimensional configuration of points whose pairwise distances
best match those of the high-dimensional data.

2.2.2 Non-linear Techniques

Metric MDS, with its principle of comparing pairwise distances, is the intel-
lectual predecessor of many modern, non-linear techniques, such as Isomap
(Tenenbaum, 2000), SNE (G. E. Hinton& Roweis, 2002), t-SNE (van derMaaten

dimensionality reduction 11

& Hinton, 2008), and UMAP (McInnes et al., 2018). Isomap tries to find a low-
dimensional configuration based on geodesic (i.e., shortest-path) distances
computed on a high-dimensional neighborhood graph (Tenenbaum, 2000). In
SNE, Gaussian kernels are used to transform pairwise distances into neigh-
borhood probability distributions for both the high- and low-dimensional
data. These probability distributions are then compared using the Kullback–
Leibler (KL) divergence (G. E. Hinton & Roweis, 2002). To avoid the so-called
crowding problem in the resultant embeddings, t-SNE instead uses the more
fat-tailed Student’s t-distribution for computing the probabilities in the low-
dimensional space (van der Maaten & Hinton, 2008). Finally, UMAP replaces
the t-distribution with a modified Cauchy distribution and uses a cross en-
tropy loss instead of the KL divergence (McInnes et al., 2018; Sainburg et al.,
2021). The conceptual similarities of these non-linear DR techniques were
highlighted in different contexts by Bengio et al. (2004), Böhm et al. (2022),
and Agrawal et al. (2021). Recently, the relationship between t-SNE and
UMAP has been subject to a lot of debate (Becht et al., 2019; Damrich et al.,
2022; Damrich & Hamprecht, 2021; Kobak & Linderman, 2021).

2.2.3 Parametric Techniques

Apart from their conceptual similarities, many non-linear DR techniques
share a practical limitation: they involve the calculation of pairwise distances.
Adding new points to existing embeddings—a problem known as out-of-
sample extension—usually requires recomputing the whole embedding. This
drawback has been addressed by approximating embeddings with parametric
functions, using kernel-based approaches (Bengio et al., 2004; Gisbrecht et al.,
2012; Gisbrecht et al., 2015), mixture models and data imputation (de Bodt
et al., 2019), or neural networks (Min et al., 2010; Sainburg et al., 2021; van
der Maaten, 2009). Parametric versions of t-SNE and UMAP are examples of
manifold learning (Bengio et al., 2013), a subfield of representation learning.
The general idea of using neural networks to reduce data dimensionality,
in particular with autoencoders (G. E. Hinton, 2006; G. E. Hinton & Zemel,
1993), predates the techniques mentioned above. Additionally, parametric,
non-linear DR techniques based on neighborhood information are related to
metric learning (Bellet et al., 2013; Kulis, 2012), where representations are
created by learning features and distance metrics conjointly.

C O N F U S I O N F L O W

3Classification is one of the most frequent machine learning (ML) tasks. Many
important problems from diverse domains, such as image processing (K. He
et al., 2016; Krizhevsky et al., 2017), natural language processing (Glorot
et al., 2011; Nogueira dos Santos & Gatti, 2014; Socher et al., 2013), or drug
target prediction (Mayr et al., 2018), can be framed as classification tasks.
Sophisticated models, such as neural networks, have been proven to be
effective, but building and applying these models is difficult. This is especially
the case for multiclass classifiers, which can predict one out of several classes
(as opposed to binary classifiers, which predict one out of two).

During the development of classifiers, data scientists are confronted with
a series of challenges. They need to observe how the model performance
develops over time, where the notion of time can be twofold: on the one
hand, the general workflow in ML development is incremental and iterative,
typically consisting of many sequential experiments with different models;
on the other hand, the actual (algorithmic) training of a classifier is itself
an optimization problem, involving different model states over time (see
Figure 1.1). In the first case, comparative analysis helps the data scientists
gauge whether they are on the right track. In the latter case, temporal analysis
helps to find the right time to stop the training, so that the model generalizes
to unseen samples not represented in the training data.

Model behavior can depend strongly on the choices of hyperparameters,
optimizer, or loss function. It is usually not obvious how these choices
affect the overall model performance. It is even less obvious how these
choices might affect the behavior on a more detailed level, such as commonly
“confused” pairs of classes. However, knowledge about the class-wise perfor-
mance of models can help data scientists make more informed decisions.

To cope with these challenges, data scientists employ three different types
of approaches. One, they assess single value performance measures such
as accuracy, typically by looking at temporal line charts. This approach is
suitable for comparing learning behavior, but it inherently lacks information
at the more detailed class level. Two, data scientists use tools for comparing
the performances of classifiers. However, these tools typically suffer from
the same lack of class-level information, or they are not particularly suited
for temporal analysis. Three, data scientists assess class-level performance
from the class-confusion matrix (Sokolova & Lapalme, 2009). Unfortunately,
the rigid layout of the classic confusion matrix does not lend itself well to
model comparison or temporal analysis.

So far, few tools have focused on classification analysis from a combined
temporal, model-comparative, and class-level perspective. However, gaining
insights from all three points of view in a single tool can (1) serve as a start-
ing point for interpreting model performances, (2) facilitate the navigation

13

14 confusionflow

Figure 3.1: A classifier’s performance
can be evaluated on three levels of
detail: global aggregate scores (l1);
class-conditional scores and class con-
fusion (l2); and detailed, instance-
wise information (l3). Confusion-
Flow operates on the class level l2,
enabling a temporal analysis of the
learning behavior.

through the space of model adaptations, and (3) lead to a better understanding
of the interactions between a model and the underlying data.

The primary contribution of this chapter is ConfusionFlow, a precision-
and recall-based visualization that enables temporal, comparative, and class-
level performance analysis at the same time. To this end, we introduce a
temporal adaptation of the traditional confusion matrix.

As secondary contributions we present (1) a thorough problem space
characterization of classifier performance analysis, including a three-level
granularity scheme; (2) a case study showing how ConfusionFlow can be
applied to analyze labeling strategies in active learning; (3) an evaluation of
ConfusionFlow’s scalability; and (4) a usage scenario in the context of neural
network pruning.

3.1 problem space characterization

The development of new classification models or the adaptation of an existing
model to a new application domain are highly experimental tasks. A user
is confronted with many different design decisions, such as choosing an
architecture, a suitable optimization method, and a set of hyperparameters.
All of these choices affect the learning behavior considerably, and influence
the quality of the final classifier. Consequently, to obtain satisfying results,
multiple classifiers based on different models or configurations need to be
trained and evaluated in an iterative workflow. Here, we chose the term
configuration to refer to the set of model, optimization techniques, hyperpa-
rameters, and input data. This design process requires the user to compare the
learning behaviors and performances of different models or configurations
across multiple training iterations. To this end, model developers typically
inspect performance measures such as precision and recall.¹ Depending on¹ For detailed definitions of the most

common performance metrics, see
Appendix a.1.

the measures used, the analysis can be carried out on three levels of detail.

3.1.1 Analysis Granularity

Based on our reflection of related works (see Section 3.2), most performance
analysis tasks for classifiers can be carried out on three levels of detail (see
left part of Figure 3.1):

problem space characterization 15

l1 Global level— At the global level, a classifier’s performance is judged by
aggregate scores that sum up the results for the entire dataset in a single
number. The overall accuracy is a typical example for a global perfor-
mance measure. For showing trends across multiple training iterations,
global aggregate scores can be represented in simple line charts.

l2 Class level— At the class level, performance measures are derived from
subsets of the results based on specific class labels. Typical performance
measures at the class level are class-wise accuracy, precision, or re-
call. Like for the global level, the temporal evolution of these measures
throughout training can be visualized as line charts. More detailed
class-level information is contained in the confusion matrix. This work
addresses the problem of visualizing the confusion matrix across multiple
training iterations.

l3 Instance level— At the instance level, quality assessment is based on
individual ground truth labels and predicted labels (or predicted class
probabilities). This allows picking out problematic input data. Strate-
gies for how to further analyze these instances vary strongly between
different models and data types. Depending on the specific problem,
interesting information may be contained in input images or feature
vectors, network outputs, neuron activations, and/or more advanced
concepts such as saliency maps (Simonyan et al., 2014).

These three levels are different degrees of aggregation of individual in-
stance predictions. The right part of Figure 3.1 shows schematically how
data at these levels can be visualized across iterations to enable an analysis
of the training progress.

ConfusionFlow aims at a temporal analysis of per-class aggregate scores,
introducing a visualization of the confusion matrix across training iterations.
ConfusionFlow thus operates on the second of the three levels (l2).

3.1.2 Analysis Tasks

ConfusionFlow is designed for experts in data science and ML, ranging from
model developers to model users. Building upon the reflection of these user
groups from related work (see Section 3.2) and the characterization of the
working practices of our collaborators, we break-down user goals and intents
into a task characterization as follows. The principal structure of tasks is
along two axes, which correspond to the two high-level goals of comparative
analysis (g1) and temporal analysis (g2).

The comparative axis differentiateswithin-classification comparisons from
between-classification comparisons. This frequently used within/between
dichotomy accounts for analyses that are conducted with a single classifica-
tion result (within), as well as those relevant for multiple results (between).
The notion of within-comparison also alludes to the different levels of detail
discussed in Section 3.1.1. All between-classification analyses share the prin-
ciple of comparing multiple classification results. In general, users have a
series of classification configurations at hand, aiming at identifying common-

16 confusionflow

alities and differences. According to our collaborators, multiple classification
configurations can result from (a) different (hyper-)parameter choices of the
same model, (b) different classification models, or (c) different datasets or
dataset folds used for classifier training and validation. While the differenti-
ation between these three different types of classification configurations is
interesting from a methodological perspective, the requirements to tools for
quality assessment are very similar.

The second axis structures the temporal analysis tasks (g2). Along this
axis we differentiate between tasks as they are typically applied in time series
analysis (Aigner et al., 2011): looking up values, assessing trends, and finding
anomalies.

The complete crosscut of these two axes leads to six primary analysis
tasks, t1 to t6, which are listed in Table 3.1. Fore each task, an exemplary
scenario is given, which explains how the abstract low-level task relates to
the ML analysis procedure.

In Section 3.1.1, we already hinted at the fact that existing tools mostly
support temporal analysis (g2) only on a global level (l1). As our literature
survey below shows, comparison between classifiers (g1b) is rarely supported
on a class level. The main novelty of ConfusionFlow is enabling precision-
and recall-based class-level analysis in a comparative and temporal way.

Figure 3.2 illustrates all possible scenarios of performing the high level
tasks g1 and g2 at the same time, with special focus on between-classification
comparison (g1b). This schematic shows the most general case, where the
models (𝐶 ⇔ 𝐷) and the datasets (𝑋 ⇔ 𝑌) are different, and the datasets
additionally change over time (𝑋𝑖 ≠ 𝑋𝑗). Many specialized comparison and/or
temporal analysis tasks can be derived from the general case depicted in
Figure 3.2, when either the dataset or the model are kept constant:

• In the simple case of observing how a single model is trained on a constant
data set (𝑋𝑡 = 𝑋 for all 𝑡), the user is interested only in the sequence
𝐶(𝜃1)(𝑋)⋯𝐶(𝜃𝑇)(𝑋). This corresponds to the performance measuring (t1)
and progress measuring tasks (t2).

Table 3.1: Analysis tasks relevant to the design of ConfusionFlow. The space of low-level tasks t1–t6 is generated by two axes of high-level
goals, comparative (g1) and temporal analysis (g2), respectively.

g 1 Comparative analysis
a Within-classific. comparison b Between-classification comparison

g 2 Temporal analysis Different models Different hyperparameters Different data
a Lookup values t 1 Measure performance t 4 Compare performances

Read off quality measure at
certain epoch

Assess final and
intermediate model
suitability

Relate final performance to
hyperparameter space

Estimate final
generalization
capabilities

b Assess trends t 2 Measure learning progress t 5 Compare learning progress

Assess characteristic satura-
tion curve for learning process

Compare learning
speeds for different
models

Relate learning speeds to
hyperparameter choices

Identify over- or
underfitting

c Find anomalies t 3 Detect temporal problems t 6 Relate temporal problems
Identify performance spikes
and drops

Relate anomalies to
model

Relate learning failure to
parameter choice

Identify problematic
instance sampling

related work on model analysis 17

Temporal analysis of training (T2)

D(1)(Y1)

C(01)(X1) C(02)(X2) C(0T)(XT)

Comparison of classifier
performance (T1)

Comparison of learning
behavior (T1 + T2)

D(2)(Y2) D(T)(YT)

Figure 3.2: Principle working practice
as observed with our collaborators.
The two main goals of comparative
and/or temporal analysis of classifiers
led us to define the two axes that help
to structure the analysis tasks. This
schematic shows the most general
case of different models and different,
changing datasets.

• For comparing the final performances of two classification models, 𝐶
and 𝐷, acting on the same test set 𝑋, the user analyzes the pair 𝐶(𝜃𝑇)(𝑋)
vs. 𝐷(𝜁𝑇)(𝑋). This is a typical realization of task t4.

• Often, the performances of a classifier on two different dataset folds, such
as training and test folds, need to be compared temporally. This scenario
implies 𝐶 = 𝐷, and 𝑋𝑡 = 𝑋 and 𝑌𝑡 = 𝑌 for all 𝑡, but 𝑋 ≠ 𝑌. The user now
needs to compare the sequence 𝐶(𝜃1)(𝑋)⋯𝐶(𝜃𝑇)(𝑋) with the sequence
𝐶(𝜃1)(𝑌)⋯𝐶(𝜃𝑇)(𝑌). This analysis includes a comparative assessment of
trends and anomalies (tasks t5 and t6).

• A more complex example is the comparison of two classifiers during active
learning (see Section 3.4.1). In this case, both models are trained on the
same dataset, but the dataset changes over time. The user compares the
sequence 𝐶(𝜃1)(𝑋1)⋯ 𝐶(𝜃𝑇)(𝑋𝑇) with the sequence 𝐷(𝜁1)(𝑋1)⋯𝐷(𝜁𝑇)(𝑋𝑇).
All fine-grained tasks t1 to t6 may be relevant in this complex example.

We deliberately kept all example scenarios in Table 3.1 level-agnostic. The
tasks t1 to t6 are equally relevant on any of the three levels of detail. Confu-
sionFlow focuses on enabling users to perform the tasks on the class level
l2, but also includes some global information deducible from the confusion
matrix.

3.2 related work on model analysis

The recent resurgence of ML in general and the increasing popularity of deep
learning in particular have led to an increased demand for ML development
and monitoring tools, but also to an increased desire to better understand
existing techniques. This interplay between algorithm design on the one
hand, and the challenge of makingML algorithms explainable or interpretable
on the other hand, has spawned high activity in the field of visualization for
ML. The survey of survey papers by Chatzimparmpas et al. (2020) gives a
comprehensive overview of the recent research activity.

In the following, we discuss approaches that (1) target the user goal of
comparison across models and/or configurations (see goal g1b); (2) enable a
temporal analysis of the learning behavior (see goal g2); and/or (3) operate

18 confusionflow

on the class level (l2) as defined in our contextualization in Section 3.1.1.
Table 3.2 summarizes which of these three aspects is covered by each of
our selected publications. We also briefly review previous work on time
series visualization and comparison, since ConfusionFlow is a small multiples
approach, that should support users in performing typical temporal analysis
tasks.

Our literature survey shows that hardly any tool so far has focused on
simultaneously addressing—on the class level of detail (l2)—the two high-
level goals of comparison (especially between models, g1b) and temporal
analysis (g2).

3.2.1 Model Comparison

Gleicher et al. (2011) structured the design space for visual comparisons into
three main categories: juxtaposition, superposition, and explicit representa-
tion. Most ML model comparison visualizations use superposition for plots
of single-number performance metrics, and juxtaposition for comparison of
multidimensional (e.g., vectors or matrices) or unstructured data (e.g., images
or text).

One of the most well-known visualization systems for developing, debug-
ging, and evaluating neural networks is TensorFlow’s TensorBoard (Abadi
et al., 2016; Wongsuphasawat et al., 2018). It combines a visualization of the
computation graph with a display of various performance metrics, but it is
not designed for comparing multiple ML models in the same view. Tensor-
Flow also includes Google’s What-If Tool (Wexler et al., 2019), which enables
comparison of a model with a changed version of itself upon hypothetical
changes to the dataset.

For certain types of model architecture, tools with specialized comparison
features have been developed: RNNVis by Ming et al. (2017) for recurrent
neural networks, GANViz by J. Wang et al. (2018) for generative adversar-
ial networks, and CNNComparator by Zeng et al. (2017) for convolutional
neural networks. RNNVis features a main view with a glyph-based sen-
tence visualization. On demand, two models can be compared side by side.
GANViz focuses on the comparison of the outputs of the generative net-
work with those of the discriminative network that together make up the
GAN. CNNComparator consists of a histogram of parameter values for a
selected network layer, a matrix visualization of the convolution operation, as
well as an instance-level side-by-side comparison of two selected networks’
performances. It allows comparison of two different configurations or of
two different model states for the same configuration, but does not feature
immediate access to class confusion measures. ShapeShop by Hohman et al.
(2017) is aimed at non-experts, and enables comparison of the performances
of convolutional neural networks. It is designed to give the user a basic
understanding of what the network learns, rather than provide in-depth
evaluation functionality.

Zhang et al. (2019) presented Manifold, a model-agnostic framework for
interpreting, comparing, and diagnosing ML models. Small multiples of

related work on model analysis 19

scatter plots visualize how two different models generate different class
outputs. Color coding gives a sense of each model’s class confusion, but
there is no option to track the models’ learning behaviors.

Comparison of two models cannot only be used to select which model
performs better on its own. It can also be part of a workflow to construct
new ensemble models or adapt models interactively. In BaobabView by van
den Elzen and van Wijk (2011), decision trees can be pruned interactively,
and the performances of the resulting tree can be compared to the initial one,
for example, by looking at the confusion matrices. EnsembleMatrix by Talbot
et al. (2009) displays confusion matrices for different classifiers, allowing the
user to construct a weighted combination from among them. The resulting
ensemble model can be evaluated, again in terms of class confusion.

Each of these techniques enables the user to compare the performances
of multiple models or model states in some way (addressing goal g1b), but
misses either the temporal aspect (g2), or does not yield class confusion
information (l2).

3.2.2 Temporal Analysis of Training

TensorBoard (Abadi et al., 2016) and GanViz (J. Wang et al., 2018) augment
their main visualization with line charts of accuracy or other performance
scores. Similarly, Chung et al. (2016) show temporal training statistics in
an extra window of their ReVACNN system for real-time analysis of con-
volutional neural networks. In CNNComparator (Zeng et al., 2017), limited
temporal information is accessible by comparing two model states from
different training epochs.

DeepEyes by Pezzotti et al. (2018) is a progressive visualization tool that
combines curves for loss and accuracy with perplexity histograms and activa-
tion maps. Progressive line charts of loss during the training are also used in
educational tools for interactive exploration, such as TensorFlow Playground
(Smilkov et al., 2017) or GAN Lab (Kahng et al., 2019).

DeepTracker by D. Liu et al. (2019) displays performance data in a cube-
style visualization, where training epochs progress along one of the three axes.
A different approach to enable inspection of the learning behavior is a selector
or slider which is linked to a main visualization or multiple visualizations in a
dashboard and allows accessing individual iterations. Chae et al. (2017) made
use of this technique in their visualization of classification outcomes, as did
J. Wang et al. (2019) in DQNViz , a tool for understanding Deep Q-networks.
In one of the views in ML-o-scope Bruckner (2014) an epoch slider is tied
to a confusion matrix, in which cells can be interactively augmented with
example instances. The Blocks system by Alsallakh et al. (2018) also features
a confusion matrix bound to an epoch slider. Blocks supports investigation
of a potential class hierarchy learned by neural networks, which requires the
visualization to be scalable to many classes.

Of all the tools for exploration of the learning behavior (g2) mentioned
above, none focuses on class confusion (l2) while also providing comparison
functionality (g1b).

20 confusionflow

Table 3.2: Publications related to ConfusionFlow, classified by whether they allow
between/classification comparison (g1b), offer temporal information (g2), and/or
operate at the class level (l2).

System Publication g1b g2 l2

RNNVis Ming et al., 2017 Check N/A

CNNComparator Zeng et al., 2017 Check Check

GANViz J. Wang et al., 2018 Check Check Check

DQNViz J. Wang et al., 2019 Check Check N/A

TensorBoard Abadi et al., 2016 Check Check

ReVACNN Chung et al., 2016 Check

DeepEyes Pezzotti et al., 2018 Check

DeepTracker D. Liu et al., 2019 Check Check

unnamed Chae et al., 2017 Check Check Check

Blocks Alsallakh et al., 2018 Check Check

ML-o-scope Bruckner, 2014 Check Check

Confusion wheel Alsallakh et al., 2014 Check

ManiMatrix Kapoor et al., 2010 Check

Squares Ren et al., 2017 Check Check

BaobabView van den Elzen and van Wijk, 2011 Check Check

EnsembleMatrix Talbot et al., 2009 Check Check

Manifold Zhang et al., 2019 Check Check

Check Covered Check Partly covered N/A Not applicable

3.2.3 Class Confusion

When evaluating the output of classifiers at level l2, class confusion can be
interpreted in two ways. Typically, it describes the aggregate scores used in
the individual cells of the confusion matrix. However, the term “between-
class confusion” is sometimes also used to describe high probability values
for more than one class in a classifier’s output for an individual instance.
In order to avoid ambiguity, we call this notion “per-instance classification
uncertainty” in our discussion.

Of the works mentioned so far, BaobabView (van den Elzen & van Wijk,
2011), EnsembleMatrix (Talbot et al., 2009), ML-o-scope (Bruckner, 2014),
and Blocks (Alsallakh et al., 2018) all allow, at least partially, performance
analysis on the class level (l2). In these tools, this is realized by visualizing
class confusion in terms of standard confusion matrices, either for the final
classifier or for one training step at a time.

The confusion matrix is also the heart of the ManiMatrix tool by Kapoor
et al. (2010), where it is used to interactively modify classification boundaries.
This lets the user explore how constraining the confusion for one pair of
classes affects the other pairs, aiming at class-level model optimization and
interpretability.

confusionflow technique 21

Figure 3.3: The ConfusionFlow ma-
trix (a) visualizes confusion of classi-
fiers across training iterations. Per-
formance data for multiple classifiers
can be loaded (e) and compared with
each other. Additionally, class-wise
performance measures and class dis-
tributions are displayed in a second
view (b). The timeline (d) allows in-
teractive exploration and selection
of temporal regions of interest. On
demand, plots can be expanded to
the detail view (c). Here, we com-
pare the performance of a neural
network classifying images from the
train set () and test set () of CIFAR-
10 (Krizhevsky, 2009), and a recently
proposed alternative test set () from
CIFAR-10.1 (Recht et al., 2018), respec-
tively. The line chart (c) shows that
the relative number of misclassified
images for the selected classes auto
and truck deviates notably between
the original and the new test set. For
the remaining classes the classifier
performs similarly on the new test set
and the original CIFAR-10 test set.

Next to the confusionmatrix, some alternative ways of evaluating classifier
performance on level l2 have been proposed. Alsallakh et al. (2014) introduced
the confusion wheel. It consists of a circular chord diagram, in which pairs
of classes with high confusion counts are connected with thicker chords. On
the outside, ring charts encode FN, FP, TP, and TN distributions for each
class. Squares by Ren et al. (2017) is focused on visualizing per-instance
classification uncertainty. Histograms of prediction scores can be unfolded to
access individual instances, whose predictions are then encoded using parallel
coordinates. Additionally, sparklines for each class give an impression of
aggregate class confusion. Squares allows a hybrid-level (l2 and l3) confusion
analysis.

None of the existing tools for class-level performance analysis (l2) provide
an immediate, temporal representation of the learning behavior (g2), and
most are relatively ill-suited for between-classification comparison (g1b).

3.3 confusionflow technique

The ConfusionFlow interface consists of three views, as illustrated in Fig-
ure 3.3: (a) the ConfusionFlow matrix presenting the confusion of one or
more classifier(s) over time; (b) the class performance and distribution view,
including plots of precision, recall, and 𝐹1-score, as well as visualizations of
the instances’ class distributions; and (c) the detail view showing magnified
plots of interactively selected confusion or performance curves. Additionally,
ConfusionFlow features (d) a timeline for selecting the range of training steps
that are used for exploration; and (e) an input field for loading datasets, which
also serves as a legend for the whole visualization.

Figure 3.3 shows how ConfusionFlow can be used to compare the image
classification performance of a neural network on different datasets. For this

22 confusionflow

example, we have loaded confusion data for a neural network image classifier
trained on the training set () of CIFAR-10 (Krizhevsky, 2009), and evaluated
on the images from the corresponding test set (), as well as on a recently
proposed new test set () from CIFAR-10.1 (Recht et al., 2018), respectively.

3.3.1 ConfusionFlow Matrix

The ConfusionFlow matrix, shown in Figures 3.3-a and 3.4, is a visualiza-
tion of classification errors that supports the within- and between model
comparison (g1) as well as temporal analysis (g2). In the classic confusion
matrix, cell (𝑖, 𝑗) lists the number of instances with ground truth label of class
𝑖 that are classified as class 𝑗. While the classic confusion matrix is limited
to showing confusion data for a single model at one specific time step, the
ConfusionFlow matrix visualizes the class confusion for multiple classifiers
over multiple training steps (see Figure 3.1). As described in Section 3.1.2, the
different classifiers can come from ML experiments with different models or
ML experiments with different datasets or dataset folds. The ConfusionFlow
matrix is a small multiples approach: for each cell, the single value of the
classic confusion matrix is replaced with a plot of the values for a selected
time range (see Figure 3.4).

The ConfusionFlow matrix should enable temporal analysis (g2) and
comparison (g1b) at the same time, while conserving the familiar layout of
the confusion matrix. This means that the confusion visualization for each
classification model should only take up little space, but should still be able
to show a fine-grained temporal resolution. At the same time, individual
temporal progressions for different models should be easily distinguishable to
enable users to perform tasks t2 and t5. Accordingly, we chose the heatmap
idiom for the visualization of class confusions (Bernard et al., 2019). One-
dimensional heatmaps, sometimes called colorfields, have been shown to
support the task of time series comparison well, particularly in terms of task
completion time (Gogolou et al., 2019). The thumbnail at the top right of
this paragraph shows how temporal confusion values for a single cell of

Figure 3.4: The ConfusionFlow matrix
with its two different encoding op-
tions. Left: Stacked heatmap encod-
ing (lasagna plot; Swihart et al., 2010).
Right: Superimposed line charts with
background heatmap corresponding
to the selected iteration.

confusionflow technique 23

the matrix are encoded in this idiom. Each matrix cell contains one time
series per loaded model. In a line chart encoding, multiple time series are
plotted together in the same chart (superposition strategy, cf. Gleicher et al.
(2011)). If each line is instead transferred to a one-dimensional heatmap, the
heatmaps can be stacked for comparison without any overplotting issues
(juxtaposition strategy (Gleicher et al., 2011)). These stacked heatmaps are
sometimes called “lasagna plots” (Swihart et al., 2010). The confusion value
is encoded as brightness, and a unique hue is automatically assigned to each
classifier. To ensure visual consistency, the hue for each classifier is kept
constant across all linked views. The left part of Figure 3.4 shows a matrix
made up of such stacked heatmaps in a real example.

Users can interactively switch from the heatmap to a line chart encoding of
class confusion. This option is available for two reasons. First, we found that
ML users are particularly used to viewing temporal performance measures as
line charts. Second, the line charts can facilitate reading off and comparing
absolute values, either for individual epochs of interest (t1) or between
models (t4).

If the line chart encoding is selected and the user additionally selects a
single iteration (see Section 3.3.4 for information on the timeline selector),
then a stacked heatmap of the confusion values for the selected iteration
is plotted as background for the line charts. An example of this encoding
is shown in the right part of Figure 3.4. The gray background heatmaps
correspond to the confusion values for the three models at the time step
indicated by the dashed vertical line. This additional background heatmap
increases the visual saliency of problematic class-pairs for the line chart
encoding This increased saliency is already inherent in the heatmap encoding.
The heatmap/line chart switch, as well as several other controls for visual
encoding options, can be seen to the left of the ConfusionFlow matrix in
Figure 3.3.

To facilitate comparison of cells for a given predicted class, time by default
progresses left-to-right, regardless of the encoding choice. This choice lines
up with most users’ expectations for plots of time series data. On demand,
users can rotate the cell contents by 90° for easier comparison along a given
ground truth class, if the heatmap encoding is selected.

The diagonal elements of the classic confusion matrix list the numbers of
correctly classified instances for each class. For well-functioning classifiers,
these numbers are typically much higher than the confusion counts. To keep
the user’s focus on the exploration of the error behavior and to keep lookup
of confusion values feasible (t1 and t4), we decided to replace the diagonal
cells in the ConfusionFlow matrix by class labels. In this way, we retain high
visual contrast in the off-diagonal cells, and facilitate navigating through the
matrix.

To let users assess the overall performance of individual classes, we show
temporal plots of false negatives for each class in an additional column to
the right, slightly offset from the matrix. Likewise, an additional row at the
bottom shows the false positives for each class. We use the diagonal element
at the intersection of the additional row and column to show the temporal

24 confusionflow

progression of the overall accuracy of the classifier(s). This allows the user
to perform all analysis tasks t1 to t6 on a global level (l1)—especially when
this chart is brought to the detail view (see Section 3.3.3).

To enable performance comparison between datasets of different sizes (t4
to t6), such as training versus test sets, ConfusionFlow includes an option to
switch from absolute to relative performance values. To obtain the relative
performance scores, the confusion counts are simply divided by the total
number of classified instances.

In order to address anomaly detection and comparison tasks (t3 and t6),
peak values for problematic pairs of classes or training iterations should be
visible and salient by default. However, these particularly high confusion
counts can sometimes hide potentially interesting findings in other cells. To
address this issue, we let users toggle between linear and logarithmic scales
for the plots. Using an exponential scaling slider, lower values can be further
accentuated. In the heatmap encoding, this corresponds to increasing the
contrast.

If users are only interested in a subset of the class alphabet, they can
narrow down the number of selected classes in a class selection dialog. In
order to maintain a meaningful confusion matrix, a minimum of two classes
need to be selected at all times. The number of displayed classes is not limited
in terms of implementation, but there are some practical limitations which
we discuss in depth in Section 3.4.2. Class aggregation is a second strategy
to reduce the number of displayed classes. This strategy is currently not
supported within ConfusionFlow and is only relevant for datasets with a
distinct class/superclass hierarchy.

In case of the CIFAR-10 example shown in Figure 3.3, the ConfusionFlow
matrix reveals that the confusion between classes auto and truck is consid-
erably higher for the CIFAR-10.1 test set. Due to ConfusionFlow’s focus
on temporal analysis, it is immediately visible that this error is consistent
across all training epochs (cf. tasks t4 and t5). For all other pairs of classes,
the network generalizes well. In those cells, this can be seen by the similar
brightness values for all three selected datasets. Without these class-level
observations, the reason for the decrease in overall accuracy would remain
unclear; by performing a comparative analysis with ConfusionFlow, the
performance decrease can be traced back to changes in the underlying data
distribution.

3.3.2 Class Performance & Distribution View

A thorough, class-level (l2) analysis of a classifier’s performance should not
only focus on pairs of classes, but also include an assessment of the general
performance for individual classes. To this end, ConfusionFlow provides
temporal (g2) line charts of precision, recall, and 𝐹1-score for all selected
classes (see Figure 3.3-b). In contrast to the ConfusionFlow matrix, horizontal
space is not as limited for these plots, and visual clutter is thus less of an
issue even in case of noisy data. For comparison between multiple classifiers
(g1b), we superimpose the line charts. Again hue is used to differentiate

confusionflow technique 25

between different classifier results, and the hues are consistent with those
chosen for the ConfusionFlow matrix. To let users assess the size and class
distributions for each dataset, bar charts encode the number of instances per
class. The bars are placed next to the per-class performance metrics and are
colored consistently with all other views. A mouseover action reveals the
number of instances for each bar.

In case of the CIFAR example (Figure 3.3), the class distribution charts
reveal that the updated test set from CIFAR-10.1 is considerably smaller than
that from CIFAR-10. The precision, recall, and 𝐹1-score charts confirm that
the recall for class auto and the precision for class truck are particularly
bad for the new test set, but they also suggest that the classifier could not
generalize well for plane instances from CIFAR-10.1. This assessment of
generalization capabilities over multiple epochs is an example of task t5.
While the class performance charts can lead to interesting insights on their
own, they should also lead the user to re-examining the ConfusionFlow
matrix.

3.3.3 Detail View

All cells in the ConfusionFlow matrix, as well as all per-class performance
charts can be selected to be shown in greater detail in a separate view (see
Figure 3.3-c). We visualize the temporal development of selected cells as
line charts and superimpose the curves for multiple classifiers, keeping the
hue for each model/configuration consistent. The detail view particularly
addresses the tasks of pin-pointed temporal identification of problematic
instances (t3 and t6) as well as reading off and comparing numeric values
(t1 and t4), as space in the ConfusionFlow matrix is rather limited. Upon
loading a new performance dataset, by default the overall (global) accuracy
is shown in the detail view, as users are accustomed to this plot from many
other performance analysis tools.

For the CIFAR example, the detail view confirms that, for a typical iteration,
the confusion value of interest (auto vs. truck) is about twice as high for the
updated CIFAR-10.1 test set than for the CIFAR-10 test and train sets.

3.3.4 Timeline

ConfusionFlow should aid users in exploring the error behavior of classifiers
at different temporal granularities, involving single-time step tasks (t1 andt4)
and multiple-time-step tasks (t2, t3, t5, and t6). Moving from a temporally
rough to a more fine-grained analysis is facilitated by the timeline shown in
Figure 3.3-d.

By default, the whole range of available iterations is selected upon loading
performance data. Users can select a subset of iterations by dragging the
left and right boundaries of the highlighted range in the timeline. All linked
views, such as the ConfusionFlow matrix or the detail view, are updated
automatically according to the selection. This range selection corresponds to
a temporal zoom-in.

To support users in locating and comparing values for a specific time

26 confusionflow

step across multiple views, they can additionally select a single training
step by clicking the iteration number below the range selector. A black line
in the timeline marks the currently selected single iteration. The selected
iteration is then dynamically highlighted by a vertical marker in all linked
components. If the line chart encoding is selected for the ConfusionFlow
matrix, the background heatmap is also updated, as described in Section 3.3.1.

The performance data for the example in Figure 3.3 spans 50 epochs. The
user has selected the epoch range 0 to 42, and found an interesting peak for
the confusion auto vs. truck at epoch 22 in the detail view.

3.3.5 Dataset Selection

As stated above, a unique hue is automatically assigned to each classifica-
tion run upon loading the respective performance data. An input field with
dynamic drop-down suggestions lets the user select from pre-loaded perfor-
mance data for a number of classification configurations (see Figure 3.3-e).
After the user made the selection, the input field serves as a legend for the
visualization, representing each run with a colored box.

ConfusionFlow is a model-agnostic visualization technique. This means
that the kind of data on which ConfusionFlow relies does not depend on
the nature of the model. During training, only the classifier output for each
instance needs to be logged after each iteration, and stored along with the
ground truth labels. Along with our prototype implementation (see Sec-
tion 3.3.6 below) we provide Python code examples for logging and exporting
data for the commonly used ML frameworks TensorFlow and PyTorch.

In Figure 3.3, the input field serves as a legend to remind the user that
performance data for the training () and test set () of CIFAR-10 (Krizhevsky,
2009), as well as the recently proposed new test set () from CIFAR-10.1
(Recht et al., 2018), have been loaded.

3.3.6 Implementation

ConfusionFlow is a server-client application based on the Caleydo Phovea
framework² and the Flask framework³. The server side is written in Python² Caleydo Phovea: https://github

.com/phovea/

³ Flask: http://flask.pocoo.org
and the client side is written in TypeScript using D3.js (Bostock et al., 2011).
The code for ConfusionFlow—including the logging tools mentioned above—
is available on GitHub⁴. A deployed prototype of ConfusionFlow with several⁴ Repository: https://github.com

/ConfusionFlow/confusionflow pre-loaded example datasets is available online⁵.
⁵ Prototype: https://confusionflow
.caleydoapp.org

3.4 evaluation

To evaluate the usefulness of ConfusionFlow we describe three scenarios.
First, we describe a case study which we performed in collaboration with ML
researchers. Our collaborators used ConfusionFlow for visually comparing
labeling strategies in active learning. In a second evaluation scenario, we
analyze how ConfusionFlow scales to datasets with many (≳ 10) classes.
A third use case shows how ConfusionFlow can be applied to study the
effects of different neural network pruning strategies.

https://github.com/phovea/
https://github.com/phovea/
http://flask.pocoo.org
https://github.com/ConfusionFlow/confusionflow
https://github.com/ConfusionFlow/confusionflow
https://confusionflow.caleydoapp.org
https://confusionflow.caleydoapp.org

evaluation 27

Figure 3.5: Visual comparison of in-
stance selection strategies for effec-
tive data labeling. In an experiment,
our collaborators tested three differ-
ent labeling strategies: Greedy (),
Smallest Margin (), and Dense Ar-
eas First (). Using ConfusionFlow,
our collaborators made a series of
findings regarding the overall perfor-
mances (a, d1, d2) as well as the
temporal progression of class confu-
sions (b, c, d3) for the different
strategies.

3.4.1 Case Study: Effective Labeling in Active Learning

Labeled data is a prerequisite for supervised ML tasks. The labeling process
requires human supervision to attach semantics to data instances. The chal-
lenge addressed in this case study refers to the instance selection problem:
which instance should be selected next for labeling, in order to (a) improve
a classifier most effectively, and (b) keep the effort of human labelers at a
minimum?

Within the field of active learning (Settles, 2012), Visual-Interactive La-
beling (VIAL) (Bernard, Zeppelzauer, Sedlmair, et al., 2018) is a concept to
combine the strengths of humans and algorithmic models to facilitate ef-
fective instance selection. To this end, VIAL combines active learning with
visual-interactive interfaces which enable humans to explore and select in-
stances (Bernard, Hutter, et al., 2018).

One model-based active learning strategy used in this study is Smallest
Margin (Wu et al., 2006), which always selects the remaining unlabeled
instances with the highest classifier uncertainty. In contrast, one instance
selection strategy frequently applied by humans isDense Areas First, reflecting
the idea that humans tend to select instances in the dense areas of the data
(Bernard, Zeppelzauer, Lehmann, et al., 2018).

Our collaborators aim at making the labeling process a more effective,
efficient, and human-friendly endeavor. Given that recent experiments con-
firmed that human-based strategies and model-centered strategies have com-
plementary strengths (Bernard, Zeppelzauer, Lehmann, et al., 2018), our
collaborators are interested in further analyzing the differences between
strategies.

ConfusionFlow allows our collaborators to compare the model-based
Smallest Margin with the human-based Dense Areas First strategy. As a third

28 confusionflow

strategy, a Greedy algorithm based on ground truth information serves as the
theoretical upper limit of performance. For their analyses, our collaborators
chose the MNIST handwritten digits dataset (LeCun et al., 1998) as an intu-
itive and well-established dataset that does not require domain knowledge.
Another advantage of MNIST over other datasets is the ability of users to
label most instances unambiguously.

Our collaborators use ConfusionFlow’s temporal analysis capability to an-
alyze and compare the labeling process over time. Accordingly, each training
epoch corresponds to one labeling iteration (consisting of instances selection,
labeling, and model re-training). Figure 3.5 shows how the collaborators
compared the labeling processes of the three strategies visually (Smallest
Margin, Dense Areas First, and Greedy).

The primary comparison goal (g1) of our collaborators is between models,
accompanied by more detailed analyses of individual within-model charac-
teristics. Due to the exploratory nature of the analysis, all three temporal
analysis goals (g2) are relevant. As a result, the information requirements of
our collaborators include all six analysis tasks (t1 to t6, see Table 3.1).

The Greedy strategy (Figure 3.5,) shows a steep performance increase
(t2) at the beginning (a1), leading to more than 50 percent accuracy after
only 10 iterations (t1). As the theoretical upper performance limit, Greedy
has the strongest upward trend compared to the other strategies. It converges
earlier (t5) and at the highest level of accuracy (t4). With only 50 labels the
Greedy strategy already achieves almost 80 percent accuracy (t1).

Our collaborators also identified a known anomaly pattern in the accuracy
curve (t3), which happens after ten instances (i.e., when all labels have been
visited exactly once; see Figure 3.5-a2). This pattern is unique to the Greedy
strategy (t6): with the eleventh label the training set becomes unbalanced,
leading to a significant temporal decrease of classification accuracy. With
ConfusionFlow, our collaborators could relate this anomaly to increased
confusions between the classes 0, 4, and 9 (t4). Future repetitions of the
experiment will clarify whether this effect can be related to the semantics of
the particular classes or can be explained by other influencing factors.

The Smallest Margin strategy (Figure 3.5,) starts with a short and very
early peak (instances 3 to 6) (t3) a pattern that the other two strategies
do not show (t6). Thereafter, an almost linear upwards trend continues
until instance 50 (t2), where the Margin strategy has almost 60 percent
accuracy (t1).

In the ConfusionFlow matrix, our collaborators identified considerably
high confusion values of class 8 (t1) with almost any remaining class (Fig-
ure 3.5-b1). This poor performance for class 8 is also clearly visible in the
precision curve. An interesting pattern was the significant decrease of confu-
sion between classes 0 vs. 8, roughly beginning at the 35th time step (b2). It
seems that sometimes a single labeled instance can make a difference and
support the accuracy of a classifier. Additionally, up to around instance 50,
confusion values for class 2 are relatively high (t3), leading to many false
positives for this class (b3).

The Dense Areas First strategy (Figure 3.5,) exhibits a minor but steady

evaluation 29

increase in the early phase of the labeling process (t2). After 50 labels, the
strategy achieves almost 55 percent accuracy t1. At a glance, Dense Areas
First and Smallest Margin have similar overall accuracy curves (t5).

By inspecting the ConfusionFlow matrix, the analysts gained a series
of different insights. Some class confusions lasted for the entire labeling
process (t2) (1 vs. 3, 5 vs. 3, 2 vs. 6; see Figure 3.5-c1). Conversely, some class
confusions seemed to have different levels of intensity during the labeling
process (t2) (2 vs. 4, 7 vs. 4, 9 vs. 4). One class confusion even increased
during the process (t2) (7 vs. 9), visible both in the matrix and in the FP
chart (c2). Some training steps introduced peaks of confusion (t3) (class 6,
roughly at instance 10). Finally, some classes did not suffer from considerable
confusions at all (0, 1, 5, and 7).

One of the most interesting findings—according to our collaborators—was
that the confusion patters for some pairs of classes differed considerably over
time and between strategies. In case of the classes 9 vs. 4, for example, the
confusions of the model-based Smallest Margin and the human-based Dense
Areas First strategy show a strongly contrasting behavior (see Figure 3.5-d3).
This observation strengthens our collaborators’ view that strategies have
complementary strengths.

As a result of their analysis with ConfusionFlow, our collaborators are
motivated to perform in-depth follow-up analyses. They are particularly
interested in using their class-level insights (l2) gained with ConfusionFlow
as a starting point for drilling down to the instance level (l3). This way,
they will be able to confirm general class-related patterns or trace back
performance changes to individual images.

3.4.2 Use Case: Scalability to Many Classes

The traditional confusion matrix—as a class-level aggregation technique—
scales well to large datasets with many instances. However, the confusion
matrix organizes the inter-class confusion counts across all pairs of dataset
classes, so datasets with more classes result in larger confusion matrices.
Doubling the number of classes in a dataset reduces the available area for
each cell in the confusion matrix by a factor of four.

The ConfusionFlow visualization idiom inherits these scalability issues
from the traditional confusion matrix. In its current implementation, Confu-
sionFlow works well for classification problems with up to around fifteen
classes. This is sufficient to support the majority of freely available datasets
for multiclass classification⁶: a query on www.openml.org (Vanschoren et al., ⁶ ConfusionFlow can also be applied

to binary classification tasks, but the
analysis of binary classifiers does not
benefit much from ConfusionFlow’s
focus on the class level (l2).

2014) in February 2020 revealed that out of 434 datasets for multiclass classi-
fication problems, 368 datasets have fewer than 15 classes.

Still, given the popularity of certain benchmark datasets for image classifi-
cation with higher numbers of classes—such as ImageNet (Deng et al., 2009)
(1000 classes), Caltech 101 (Li Fei-Fei et al., 2004) and 256 (Griffin et al., 2007)
(101 and 256 classes, resp.), and CIFAR-100 (Krizhevsky, 2009) (100 classes)—it
is worth evaluating ConfusionFlow’s scalability. To this end, we assess the
characteristics of the ConfusionFlow matrix in the context of two class reduc-

www.openml.org

30 confusionflow

tion strategies, class selection and class aggregation (cf. Section 3.3.1), when
applied to an image classifier trained on the CIFAR-100 dataset.

The one hundred classes of CIFAR-100 are semantically divided into
twenty superclasses. Each superclass groups five classes, e.g., the classes
fox, porcupine, possum, raccoon, and skunk together make up the super-
class medium-sized mammals. We chose this dataset as it already includes
a proposed class aggregation scheme, making it suitable for an unbiased
comparison between the two approaches for reducing the dimensions of the
confusion matrix.

We trained a simple convolutional neural network to classify images from
the CIFAR-100 dataset into one of the 100 classes, logging confusion data for
100 epochs. After each epoch, we evaluated the network’s performance on
the train fold as well as the test fold of the whole dataset. We determined
superclass confusion values from the class predictions.

We studied class selection based on two different selection criteria: 𝐹1
scores and off-diagonal confusion matrix entries. We first selected the ten
classes with the lowest 𝐹1-scores on the test set in the last epoch. Among
these classes were many representing furry, brown or gray animals (bear,
otter, rabbit, kangaroo, and seal).

In the ConfusionFlow matrix, we saw that these classes were frequently
confused with each other (see Figure a.4 in the appendix). The remaining
classes with low 𝐹1-score were related to images of young humans (i.e., boy,
girl, and baby). ConfusionFlow’s rescaling functions helped to show that the
confusion values for these three human-related classes are much higher than
for the animal classes. This means that the poor performance for animals is
spread out over many more classes than in the case of humans, as the final
𝐹1-scores were similarly bad for all classes (t1).

While these findings could have been made without looking at temporal
data, ConfusionFlow reveals that all these classes suffer from severe overfit-
ting (t4). This overfitting was apparent in the precision, recall, and 𝐹1-score
plots of all classes as well as in the overall accuracy (see Figure a.2 in the
appendix).

However, we could not find particular pairs of classes in this submatrix for
which the confusion score got significantly worse over the course of training
as a result of the overfitting. Using only this class selection mechanism, we
could not assess whether overfitting was a general issue or affected certain
pairs of classes more severely than others.

We thus moved on to evaluate a second class selection mechanism. We
searched for the ten largest off-diagonal values in the confusion matrix for the
test set and for the final training epoch. In the pairs of classes describing these
cells, 14 classes were represented (see Figure a.5 in the appendix). Among
these 14 classes are three different types of trees and four different types of
flowers. The classes boy and girl are part of the list again, which matched
our previous findings. The temporal aspect of ConfusionFlow reveals that
the performance of the tree-related classes does not suffer as badly from
overfitting as most other classes (t5).

Had we not chosen the CIFAR-100 dataset for its superclass structure,

evaluation 31

Figure 3.6: ConfusionFlow matrix for
the ten classes making up the vehi-
cle 1 and vehicle 2 superclasses for the
train () and test folds () of CIFAR-
100. Streetcar is more often confused
with bus than with classes from its
own vehicle superclass (a). Perfor-
mance for tractor images suffers par-
ticularly from overfitting (b). Unsur-
prisingly, rocket seems to be hardly
confused with any other vehicle (c),
even though too long training causes
some tractors and buses to be misclas-
sified as rockets.

these results from the class selection strategy would have hinted strongly at
the presence of a class hierarchy. While ConfusionFlow was not designed
specifically for analyzing class hierarchies, it can help to build some intuition
about their possible existence.

We resumed our evaluation by looking at the ConfusionFlow matrix for
all 20 superclasses (see Figure a.3 in the appendix). We realized from the
precision, recall, and 𝐹1-charts that the performance on the test set for all
superclasses except for trees gets worse compared to the performance on
the training set (t5). This is in line with the results for the individual tree
classes. It seems that the network has such a hard time to distinguish between
different types of trees, that it is not capable of overfitting. From looking
exclusively at the superclass confusion matrix, it would seem like this is
an advantage, but obviously this behavior is only caused by generally high
confusion within the superclass.

There are some superclass pairings that have large confusion values be-
tween superclasses with temporal characteristics that hint at overfitting
problems. In particular, confusion values for the two vehicle classes vehicles 1
and vehicles 2 increase over time (t5).

With the insights gained from the class aggregation we could now go
back and explore the fine-grained classes again. We looked at the ten classes
making up the superclasses vehicles 1 (bicycle, bus, motorcycle, pickup truck,
and train) and vehicles 2 (lawn-mower, rocket, streetcar, tank, and tractor).
The ConfusionFlow visualization for these ten classes is shown in Figure 3.6.

32 confusionflow

The confusion values for the pairs of classes within vehicles 1 are generally
much higher than those for pairs of classes within vehicles 2 and pairs of
classes across the two superclasses. A strong exception to this rule is class
pairings featuring the streetcar class (see Figure 3.6-a), which hints at a
flawed definition of superclasses. It seems appropriate to swap the superclass
memberships of train and streetcar.

Again, the temporal aspect of ConfusionFlow was helpful in assessing
problems caused by overfitting. In particular, the performance of tractor gets
worse over time (t5), which is most likely related to confusion with train
and tank (see Figure 3.6-b. Interestingly, while the network is generally good
at distinguishing rockets from other vehicles, too long training causes some
tractor and bus images to be classified as rockets (Figure 3.6-c). These temporal
anomalies (t3) would have been hard to detect from a single “snapshot” of
the sparse confusion matrix.

3.4.3 Use Case: Neural Network Pruning

Neural networks are often heavily over-parameterized and contain millions
of weights whose values are irrelevant for the network’s performance. One
technique for removing redundant parameters from a neural network is
called pruning. During learning, connections in the network are successively
removed (pruned) according to different selection strategies. Successful prun-
ing results in a compressed model that retains its accuracy while requiring
fewer computations and less memory. This facilitates deployment in embed-
ded systems (Han et al., 2015) and sometimes even leads to faster learning
and better generalization than the initial dense model (Frankle & Carbin,
2018; Z. Liu et al., 2018).

We examined the performance of several fully connected networks with
different architectures trained on the Fashion-MNIST dataset (Xiao et al.,
2017). This dataset consists of grayscale images of fashion objects organized
in 10 classes (trouser, pullover, sandal, etc.). Specifically, we investigated the
effects of pruning a neural network and re-initializing the resulting sparse
network with the initial weights as described by Frankle and Carbin (2018).
Using ConfusionFlow’s temporal-comparative analysis features, we tried
to get a better understanding of how removing certain weights affects the
model’s ability to distinguish between classes.

Figure 3.7 shows the ConfusionFlow visualization for three different net-
works trained on the Fashion-MNIST dataset. The original network () had
6-layers, each with 200 hidden units and ReLU activation functions. The
learning rate was 0.012, with a batch size of 60. In the second network (),
20 percent of the connections were removed at each epoch (this approach
is called online pruning). The sparse network resulting after 15 epochs was
then re-initialized with the same weights as the original dense network, and
re-trained from scratch (). In this network less than 4 percent of the original
connections remain.

It is immediately obvious from the overall accuracy plot (Figure 3.7-a) that
the training of the original model () fails completely after 10 epochs (t3).

evaluation 33

Figure 3.7: Visual comparison of differ-
ent neural network pruning strategies.
An original network (), a pruned net-
work (), and a re-initialized sparse
network () were trained to clas-
sify Fashion-MNIST images. Confu-
sionFlow reveals how the accuracy
drop after 10 to 14 epochs (a) relates
to confusions for different pairs of
classes (b–d). The learning behavior
of the re-initialized sparse network is
much more stable compared to that
of the other two models.

Training of the online-pruned network () fails slightly later (t6). The per-
formance of the re-initialized sparse network (), however, remains high.
Remarkably, it even performs better than the other two networks right from
the start (t5). ConfusionFlow allows relating this global (l1) accuracy im-
provement to pairwise class confusions.

Inspection of the ConfusionFlow matrix shows that the confusion counts
for all shoe-related pairs of classes (sneaker vs. sandal, ankle boot vs. sneaker,
etc.) increase considerably during later epochs for the non-pruned and online-
pruned networks (Figure 3.7-b). The re-initialized sparse network, on the
other hand, continues to learn to better distinguish between these classes (t5).
Another reason for the complete failure of the original network seems to be
related to the classes trouser and coat (see Figure 3.7-c), with extremely high
FP values for these two classes in two of the later epochs (t6).

Even though the global accuracy plot showed a pronounced accuracy drop
for the non-pruned and the online-pruned networks, both models retain an
accuracy of about 30 percent (t1). The ConfusionFlow matrix reveals that
this remaining accuracy in the later epochs is related to a better performance
for the pairs shirt vs. T-shirt/top and pullover vs. shirt (Figure 3.7-d). The
better generalization of the re-initialized sparse network across other classes
comes at the cost of higher confusion values for images showing different
kinds of upper body garments.

These findings demonstrate that ConfusionFlow allows a more nuanced
evaluation of classifier performance, enabling the user to trace accuracy
changes back to the class level.

34 confusionflow

3.5 discussion

In this section, we summarize additional findings from the use cases and
insights about ConfusionFlow from discussion with our collaborators.

3.5.1 Visual Design

Our collaborators found ConfusionFlow easy to use and appreciated that its
visual design incorporated two visualization idioms that they were already
acquainted with: the confusion matrix and temporal line charts. The famil-
iar layout of the confusion matrix along with the consistent color-coding
of models helped our collaborators to navigate their analysis through the
information-rich display. They mentioned, however, that in the case of
more classes or more models they would welcome additional focus + context
capabilities, perhaps similar to those provided by tools such as LiveRAC
(McLachlan et al., 2008).

3.5.2 Comparative & Temporal Analysis

The different scenarios in our case study on active learning and our scala-
bility evaluation revealed a general strength of the combined temporal and
comparative analysis capabilities (g1 + g2) in ConfusionFlow, in particular
with regards to the class level (l2). As classifiers learn, the off-diagonal ele-
ments of the confusion matrix tend to get sparse. Temporally fine-grained
learning—such as model updates after each mini-batch or even after individ-
ual instance, as is the case in active learning—can result in confusion matrices
of final classifiers that may not be representative of general patterns. Our
collaborators appreciated ConfusionFlow’s temporal-comparative approach,
as it enabled them to identify temporally stable patterns. We found the same
aspect useful in our scalability study, where the high number of classes leads
to particularly sparse matrices. Furthermore, looking at the class level reveals
how likely the model is to fluctuate. Global-level performance measures tend
to hide this susceptibility of models to random or systematic changes during
the training, as they average over all classes.

3.5.3 Scalability

Our scalability study with the CIFAR-100 dataset showed that ConfusionFlow
can be used to analyze up to about 20 classes, although for more than 15
classes, screen resolution and label placement start to become limiting factors.
It was still possible to derive insights from the 20-superclass confusion matrix,
which could be used downstream in a subsequent class-level analysis.

3.5.4 Bidirectional Analysis

Typically, users apply ConfusionFlow after they already went through a
reasoning process about a model’s potential usefulness. With enough prior
knowledge about the motivations behind the initial models, insights gained

conclusion 35

with ConfusionFlow can be directly used to “go back” and optimize these
models—resulting in a bidirectional analysis and development workflow.

However, in most cases true bidirectionality requires further tools. The
three scenarios presented in this section showed that the specific require-
ments for a holistic analysis are domain-specific and/or model-specific (keep
in mind that ConfusionFlow is fully model-agnostic). Additionally, in some
cases instance-level information (l3) is required.

After the discussions with our collaborators, we see ConfusionFlow as
one step in a bidirectional, iterative analysis workflow. We see its main
strength in that it provides temporal and comparative insights which can
serve as additional mental inputs for a more application-specific analysis.
Examples of tools that could be used in conjunction with ConfusionFlow
are LIME (Ribeiro et al., 2016) for instance-based explanations and Blocks by
Alsallakh et al. (2018) for exploring class hierarchies. Chapter 4 introduces
InstanceFlow (Pühringer et al., 2020), a temporal visualization that operates
on the instance-level and that serves as an analysis springboard similar to
ConfusionFlow. Our collaborators showed particular interest in such an
instance-level tool for further continuing their analysis of selection strategies
based on insights gained with ConfusionFlow.

3.6 conclusion

In this chapter we introduced ConfusionFlow, a tool for visualizing and
exploring the temporal progression of classifier confusion. ConfusionFlow
combines a visualization of the confusion matrix over time with charts for
global and per-class performance metrics. We evaluated the usefulness of
ConfusionFlow’s interactive exploration capabilities by means of a case study
on instance selection strategies in active learning. Furthermore, we analyzed
ConfusionFlow’s scalability and presented a use case in the context of neural
network pruning.

ConfusionFlow was not designed as a catch-all, standalone tool, but to be
used in conjunction with other tools and visualization components. In partic-
ular, we plan to complement ConfusionFlow’s class-level information with a
novel visualization tool focused on temporal observation of instance-level
confusion. However, by offering model comparison and temporal training
analysis at the class level, ConfusionFlow can fill an important gap in an ML
workflow towards understanding and interpreting classification models.

I N S T A N C E F L O W

4As discussed above, the application of increasingly complex machine learning
models to real-world problems has led to a growing interest in visualizations
for post-hoc model explainability (Barredo Arrieta et al., 2020; Chatzimparm-
pas et al., 2020; Hohman et al., 2018). One of the most important supervised
ML tasks, with a wide variety of application areas, is classification. In the
previous chapter on ConfusionFlow (Hinterreiter, Ruch, et al., 2022), we
established that the performance of classification models can be analyzed
and visualized at three levels of detail globally (l1), at the class level (l2),
and at the instance level (l3). We also discussed that existing approaches
often focus on fully trained models and disregard the temporal evolution
that led to this final model state. Tools that enable temporal performance
analysis are typically limited to global, single-value performance measures
(Ferri et al., 2009).

With ConfusionFlow, we argued that extending a temporal performance
analysis to the class-level can lead to new insights (Hinterreiter, Ruch, et al.,
2022). Similarly, a temporal drill-down to the instance level can help model
developers to distinguish stable (mis)classification patterns from stochastic
effects caused by the partially random training.

The main contribution of this chapter is InstanceFlow, a visualization that
combines aggregated temporal information in a Sankey diagramwith detailed
traces of individually selected instances. Instances of interest can be located
via a tabular view that allows users to rank and filter instances by several
temporal difficulty measures. With this dual approach, InstanceFlow aims
to bridge the gap between class- and instance-level analysis of the learning
behaviors of classification models.

4.1 user tasks

InstanceFlow focuses on a temporal analysis of instance-level classification
performance. Such an analysis can concentrate either on exploring instance-
based properties of certain epochs, or analyzing the temporal characteristics
of individual instances. Consequently, we organize the user tasks addressed
by InstanceFlow according to whether they are epoch- or instance-focused
(see Table 4.1).

We based the individual user tasks on a survey of existing instance-level
visualizations (Section 4.2)—with a focus on filling gaps related to model
agnosticism and temporal analysis—and on discussions with ML researchers
in our previous work (Hinterreiter, Ruch, et al., 2022). InstanceFlow primarily
addresses model developers and builders (cf. Who? in Hohman et al. (2018))
who seek to better understand the training process.

The instance-focused tasks (it) are concerned with finding instances
which are hard to classify correctly (it1) or whose predictions evolve un-

37

38 instanceflow

Table 4.1: User tasks addressed by InstanceFlow, categorized by their focus on epochs (e t)
or instances (it).

Task Description

it 1 Find difficult instances
it 2 Trace an instance’s classification history
it 3 Analyze whether an instance visits many or few classes
it 4 Find instances oscillating between classes

e t 1 Assess class distributions for a given epoch
e t 2 Find momentarily wrong and/or correct instances
e t 3 Find instances that stay in their class or move between classes

between epochs

usually (it2–it4). This allows users to assess temporally (un)stable char-
acteristics of the model or detect potentially mislabeled input data. The
epoch-focused tasks (et) are related to analyzing epoch-wise class distribu-
tions (et1) or locating problematic epochs (et2, et3). Problematic epochs
are those for which weight or parameter changes produce a non-beneficial
outcome, such as increased confusion between two critical classes.

4.2 related instance-level approaches

Previous work on visualizing instance-level information in ML has focused
mostly on model-dependent parameters such as the activation of neurons in
deep neural networks in response to a given input instance. In many cases,
the visualizations concentrate on the behavior of individual layers of the
networks (Chung et al., 2016; Kahng et al., 2017; Pezzotti et al., 2018; Zhong
et al., 2017), particularly the convolutional layers of CNNs (Bruckner, 2014;
D. Liu et al., 2019; Zeng et al., 2017). Similar visualizations exist for GANs
(J. Wang et al., 2018) and Deep Q-networks (J. Wang et al., 2019). Most of
these model-specific approaches are further limited because they provide
information for only one training iteration at a time.

Likewise, visualizations that focus on the performance analysis of classi-
fiers typically do not truly enable temporal analysis. Chae et al. (2017) showed
instance-wise predictions and aggregated distributions; Alsallakh et al. (2018)
focused on class confusion with basic drill-down functionality to explore
instances. In both cases, limited temporality is achieved via single-epoch
selection sliders.

Squares by Ren et al. (2017) is closely related to our work in terms of visual
design and the type of information shown. Users can switch between aggre-
gated prediction distributions and a fine-grained instance-wise visualization
that uses rectangular glyphs. However, Squares only shows the final model
predictions.

InstanceFlow aims to enable a true temporal performance analysis at the
instance level. It is a direct companion to ConfusionFlow (Hinterreiter, Ruch,
et al., 2022), which uses an adaptation of the confusion matrix to enable

instanceflow technique 39

A

B C

Figure 4.1: InstanceFlow visualizes the
evolution of a classifier’s predictions
throughout the training process on
an instance level. The Flow View (a)
shows all instances and their corre-
sponding class association as rect-
angular glyphs. A Sankey diagram
shows the fractions of instances mov-
ing between classes. Additionally, the
traces of single instances can be high-
lighted. The Tabular View (b) of the
instance predictions over time along
with custom performance scores (c)
allows finding, ranking, and grouping
instances.

temporal class-level analysis. Visually, InstanceFlow combines a multiform
Sankey diagram like those used in VisBricks (Lex et al., 2011) and StratomeX
(Lex et al., 2012) with a sortable, aggregatable tabular view (cf. Table Lens by
Rao and Card (1994), LineUp by Gratzl et al. (2013), and Taggle by Furmanova
et al. (2020)).

4.3 instanceflow technique

The InstanceFlow interface consists of two main components, as illustrated
in Figure 4.1: The Flow View (a) shows a Sankey diagram of the model’s
instance predictions throughout the selected training epochs; the Tabular
View (b) lists detailed temporal instance information including performance
scores (c).

The Flow View supports different levels of granularity. In its basic form,
the Flow View visualizes “class changers” in a Sankey diagram. Distribu-
tion Bar Charts emphasize the proportions of correctly versus incorrectly
classified instances. At the finest granularity, Instance Glyphs encode each
individual sample, with Instance Traces connecting the instances to reveal
their classification history, that is, their “paths” through the epochs.

The Tabular View lists all instances along with their associated predictions
over time and allows finding, ranking, and grouping instances via custom
instance-level performance measures.

The Flow View and Tabular View are fully linked, such that traced or
selected instances are highlighted in both views simultaneously.

4.3.1 Flow View

To visualize the overall flow of instances between classes, we use the well-
established Sankey diagram. The flow visualization can be seen in Figure 4.2a,

40 instanceflow

Figure 4.2: Flow View: (a) the ba-
sic Flow View only consists of the
Sankey diagram; (b) Distribution Bar
Charts emphasize the class distri-
bution; (c) Instance Glyphs show
the underlying instances; and (d) In-
stance Traces reveal individual paths
through epochs.

(a) Flow View (basic) (b) Distribution Bar Charts

(c) Instance Glyphs (d) Instance Traces

where the 𝑥-axis denotes the epoch and the 𝑦-axis denotes the predicted
classes. The thickness of each band in the diagram encodes how many
instances move from one class to another in the following epoch. The user
selects classes of interest, and each class is assigned to a vertical region
in the Sankey diagram. All non-selected classes are aggregated as “Other”
and also assigned to a dedicated vertical region. The range of epochs to be
visualized can be selected via an epoch slider. Hovering over a section of the
Sankey diagram reveals the exact number of instances moving between the
corresponding classes. Clicking on a section of the Sankey diagram selects
those instances.

Distribution Charts To emphasize the class distributions in each
epoch, horizontal Distribution Bar Charts, placed between the Flow visu-
alizations, can be switched on (see Figure 4.2b). While this information is
already implicitly encoded by the thicknesses at the borders of each band in
the Flow View, the horizontal bar charts facilitate a quantitative comparison.

Instance Glyphs For a more detailed view, the individual instances
can be represented by rectangular glyphs (see Figure 4.2c). The color of
an Instance Glyph denotes the actual class of the instance (e.g., � and � in
Figure 4.2). The shape indicates whether the instance prediction is temporally
stable (), coming from a different class (), leaving for a different class (),
or coming from and leaving for different classes (). The horizontal positions
encode the same information, with glyphs for incoming instances placed at
the left, outgoing ones at the right, and stable ones at the center. To visually
rank the instances by their “importance”, the opacity and the vertical position
of each glyph together encode one of the calculated numerical difficulty
measures described in Section 4.3.2.

Instance Traces To allow users to track the paths of specific instances
throughout the training epochs, their traces can be visualized as lines con-

instanceflow technique 41

necting the corresponding instance glyphs (see Figure 4.2d). The color of an
Instance Trace indicates whether the instance is moving to the correct () or
incorrect () class. Instance Traces are only shown for instances selected by
clicking on an Instance Glyph or a section of the Sankey diagram, or chosen
from the Tabular View.

4.3.2 Tabular View

The per-class distribution flow is effective for finding anomalies in the learn-
ing process, but recognizing specific instances can be difficult due to the
high information density. To facilitate the tasks of identifying problematic
instances (it1–it4), all instances are organized in a sortable, filterable, and
customizable table. The LineUp technique allows an interactive exploration
of rankings based on multiple attributes of a tabular dataset (Gratzl et al.,
2013). Each instance is a row in the LineUp table. By default, only instances
with at least one incorrect classification are shown in InstanceFlow’s Tabular
View.

The columns include the input data (i.e., images in the case of image
classification), the ground-truth class label, and several “difficulty” measures
defined in Section 4.3.2. One column shows the class predictions over time as
a colored heatmap (see sixth column in Figure 4.1), using a categorical color
scheme to encode the sequence of predicted classes. An additional column
shows a histogram of correct (�), incorrect (�), and other (�) predictions (see
fifth column in Figure 4.1). Here, “incorrect” and “other” refer to predictions of
the wrong class within and outside the selected subset of classes, respectively.
The encodings in both of these columns can be switched between time-
dependent heatmaps and summarizing histograms.

The LineUp technique includes a number of interactive features for ex-
ploring the instance predictions: (1) Ranking: instances can be sorted by
each of the attributes in the columns or by user-defined combinations of
attributes; (2) Filtering: Users can further filter the instances, either by the
value of an individual column or by combining filters on multiple columns.

Figure 4.3: Condensed mode of all in-
stances, revealing patterns of success-
ful learning in the classification pro-
cess.

42 instanceflow

Advanced filtering with respect to temporally changing attributes is possible
via regular expressions. (3) Grouping and Aggregating: Users can gain an
overview of the table by switching to a display mode in which the height
of each row is reduced to a minimal height of a single pixel (see Figure 4.3).
As a result, the previously individual heatmaps and bar charts now form a
dense, two-dimensional table that reveals overall patterns, similar to visu-
alizations produced by the Table Lens technique (Rao & Card, 1994). Users
can further condense the display by using the group aggregation feature of
LineUp, which shows only summary visualizations for the selected classes.
Depending on the attribute type, classes are summarized using histograms
or box plots (see Figure 4.4). The summary histograms for the prediction
distributions encode the same information as a confusion matrix.

Figure 4.4: Summary mode of the Tab-
ular View. The overview is similar to a
confusion matrix, with correct classi-
fications along the diagonal.

Difficulty Measures The ranking and filtering operations can help
users to identify interesting instances when used in conjunction with mea-
sures that describe how difficult an instance is to classify. In this section, we
describe three such measures.

Let 𝑚 be the total number of instances, 𝑛 the number of classes, and 𝑘 the
number of selected epochs. Let 𝐶(𝑖) be the actual class of instance 𝑖 and 𝑃(𝑖, 𝑗)
the prediction for instance 𝑖 in epoch 𝑗.

The misclassification score 𝑆 of an instance is the fraction of epochs in
which it was assigned to the wrong class: 𝑆(𝑖) = (1/𝑘)∑𝑘

𝑗=1[𝑃(𝑖, 𝑗) ≠ 𝐶(𝑖)].
A misclassification score of 0 means the model predicted the correct class in
every epoch, whereas a score of 1 means that the model never predicted the
correct class.

The variability 𝑉 is the fraction of class labels that the model predicted
for an instance across all epochs: 𝑉 (𝑖) = (1/𝑛)|{𝑃(𝑖, 𝑗)}𝑗∈{1,…,𝑘}|. A variability
of 1/𝑛means that the model predicted the same class in every epoch, whereas
𝑉 = 1 means that the model predicted every possible class at least once.

The frequency 𝐹 is the fraction of epoch transitions for which the model’s
prediction jumps between classes: 𝐹(𝑖) = 1/(𝑘 − 1)∑𝑘−1

𝑗=1 [𝑃(𝑖, 𝑗) ≠ 𝑃(𝑖, 𝑗 + 1)].
A frequency of 0 means that an instance always stayed in the same class,
whereas a frequency of 1 means that the prediction changed between any
two epochs.

4.3.3 Relationship between Views and Tasks

The different levels of detail in the Flow View and the Tabular View with
its different numerical measures have complementary strengths. Table 4.2

usage scenario: cifar-10 image classification 43

assigns the proposed user tasks from Table 4.1 to the various visualizations/
measures, depending on whether the tasks are well supported (Check), partially
supported (Check), or not supported. Instance-focused tasks (it1–it4) are en-
abled primarily by the Flow View at full detail, whereas the epoch-focused
tasks (et1–et3) are better supported by the more aggregated visualizations.
The Tabular View supports a wide range of tasks.

Table 4.2: Comparison of InstanceFlow visualization components &
difficulty measures with respect to the user tasks introduced in Sec-
tion 4.1.

Visualization / Metric it1 it2 it3 it4 et1 et2 et3

Flow View (basic) Check Check Check

Distribution Bar Charts Check Check Check

Instance Glyphs & Traces Check Check Check Check Check Check

Tabular View Check Check Check Check Check Check Check

Misclassification Score Check Check Check

Variability Check Check Check

Frequency Check Check Check

For the instance-level analysis, the Flow View focuses primarily on the free
exploration of a classifier’s behavior, or on tracing individual instances once
they have been located. Localizing interesting instances is enabled by the
Tabular View with its ranking and filtering operations based on the difficulty
measures. For epoch-level analysis, the aggregated Sankey visualization
provides a good overview of the class distributions and overall flows.

4.3.4 Implementation

InstanceFlow is a client-side web application built using the React frame-
work. The code for InstanceFlow is available on GitHub (https://github
.com/jku-vds-lab/InstanceFlow). A deployed prototype of InstanceFlow with
example datasets and the ability to upload new datasets is available at https
://instanceflow.pueh.xyz/.

4.4 usage scenario: cifar-10 image classification

For this usage scenario, let us assume that amodel developer has built a simple
CNN to classify images from the CIFAR-10 dataset. This training and test set
consists of 60,000 color images (32 × 32 px) divided into 10 different classes,
such as Auto, Truck, Cat, and Dog (Krizhevsky, 2009). The model developer
is satisfied with the overall classification performance, but notices errors for
Auto and Truck instances. The developer wants to better understand what
causes these errors and uses InstanceFlow to analyzes the training process.

1. The user trains the neural network to classify CIFAR-10 images, and loads
the classification results into InstanceFlow.

https://github.com/jku-vds-lab/InstanceFlow
https://github.com/jku-vds-lab/InstanceFlow
https://instanceflow.pueh.xyz/
https://instanceflow.pueh.xyz/

44 instanceflow

2. In the Tabular View, the user groups instances by their actual class and
enables the condensed mode with the predictions shown as histograms,
revealing the class confusion over the epoch range selected.

3. The user notices that most classes are predicted correctly (with the bin for
correct classification being by far the highest), but for the Auto class the
user finds that the Truck bar is similarly high as the bar for the actual class
(and vice versa). This is an immediate indicator of a high class confusion
between Auto and Truck.

4. The user is now interested in why the neural network classifies Auto
images incorrectly as Truck. To focus on this confusion, the user hides
all other classes. Additionally, the user filters the instances to show only
those classified as Auto or Truck at least once. Finally, the user switches
from the condensed mode to the normal mode to gain access to the actual
underlying instances. Sorting by a high misclassification score and a low
variability reveals to the user that the most problematic instances are
mainly Auto images classified as Truck.

5. Now the user notices a common pattern: the topmost images all show old
and bulky cars (see Figure 4.5).

6. The user proceeds by investigating the flow of these images (see Figure 4.6).
It becomes clear that all of them were classified correctly in early epochs,
but then suddenly changed to Truck one after another.

7. The user checks the traces of random modern-looking cars and finds that
in stark contrast to the previous instances, many of them are temporally
stable and correctly classified after an initial misclassification. This leads
the user to hypothesize that the network, over time, learns features that
tend to prioritize modern cars over bulky, antique cars.

8. The user can use these new insights in the subsequent model development
or refinement process, for example, by increasing the number of problem-
atic instances in an attempt to improve the accuracy and temporal stability
for Auto images.

Figure 4.5: InstanceFlow showing
Auto and Truck instances of CIFAR-
10 sorted by a high misclassifica-
tion score and a low variability, and
grouped by the ground-truth label.

limitations & future work 45

Figure 4.6: Instance Traces for sev-
eral selected Auto images of bulky, an-
tique cars. These images are correctly
classified as Auto at the beginning,
but tend to be classified consistently
as Truck over time.

4.5 limitations & future work

Scalability The basic Flow View (without Instance Glyphs and Traces)
and the Tabular View of InstanceFlow scale well to large datasets. However,
for more than ∼ 100 selected instances and at full detail, the InstanceFlow
visualization can become cluttered. Additionally, with each selected class,
the number of possible paths in the Sankey visualization increases. Thus,
class aggregation or automatic class and/or instance selection mechanisms
would be necessary for exploring datasets with many (≳ 15) classes.

Comparison of Datasets A comparison of multiple classification mod-
els can be helpful for evaluating the effectiveness of modifications applied dur-
ing model development. We introduced a combined temporal-comparative
approach for class-level analysis with ConfusionFlow (Hinterreiter, Ruch,
et al., 2022). However, there is no straightforward, effective way to extend
InstanceFlow to enable similar comparisons.

4.6 conclusion

We have introduced InstanceFlow, a visualization of the evolution of instance
classifications in machine learning. The Flow View visualizes the temporal
progression of predicted class distributions. Detailed visualizations allow
users to trace the predictions for individual instances over time. Interesting
instances can be located effectively in the Tabular View, which allows ranking
and filtering by numerical difficulty measures. With its various aggregation
levels, InstanceFlow integrates class-level and instance-level performance
evaluation and enables full temporal analysis of the training process.

P R O J E C T I O N P A T H E X P L O R E R

5The act of solving problems usually involves sequences of decisions. In
most contexts, decisions can be viewed as transitions between states in a
representation space. For example, solving logic puzzles such as the Rubik’s
cube requires decisions about how to transform an object from a random
initial configuration to a solved final state. Strategy games can also be viewed
as progressions through game states; each decision transforms the board state
and leads closer to a player’s victory or defeat. Even optimization processes,
such as the training of neural networks, involve decisions about transitioning
from one intermediate state to another in the hope that the process ultimately
converges to a final solution.

In many application domains, the decisions determining a transition from
one state to another are made consciously by human agents, often after a
complex reasoning process. In other cases, the transitions between states can
be based on decisions made automatically by algorithms. Examining patterns
in the paths towards a problem solution can lead to a better understanding
of approaches used by humans and machines to solve complex tasks.

For almost all real-world problems, the possible representation spaces
are not only vast, but also high-dimensional. Many attributes are needed to
accurately describe each intermediate state along the pathway to a solution.
The high dimensionality of the state spaces makes assessing patterns in
solution paths challenging. Previously, dimensionality reduction techniques
have been used in conjunction with trajectory visualizations to explore high-
dimensional sequences of states (Bach et al., 2016).

Research has so far focused mostly on discovering patterns in single solu-
tion paths. However, the exact path towards a solution may depend strongly
on the initial state for that particular instance of the problem. For example,
in the case of optimization algorithms, paths of convergence might depend
on the chosen initialization. In other domains, for instance in strategy games
such as chess, the initialization is always the same. Here, early decisions
might force the solution path along one particular of many different tracks.

In both cases, it is not enough to view single solution paths without the
context of many other paths. In fact, many interesting patterns emerge
only from multiple paths. In this chapter, we present an extension of estab-
lished trajectory techniques for visualizing high-dimensional paths through
complex representation spaces. We identify patterns emerging from sets of
projected solution trajectories. Using interactive visualization, we enable
users to find such patterns and explore their relationships with the underlying
real-world processes.

We present a general interactive prototype for the visualization of multiple
high-dimensional solution trajectories and show how minimal adaptations
can make this prototype useful in a diverse range of application domains.

47

48 projection path explorer

Figure 5.1: The Projection Path Ex-
plorer visualization prototype allows
exploration of patterns in decision-
making paths. Multiple series of high-
dimensional states are visualized as
trajectories through a joint embed-
ding space.

Specifically, we present examples in which we compare Rubik’s cube solution
algorithms, find patterns in chess games, and assess meaningful represen-
tations of neural network training processes. These examples show how
extending the self-similarity concept of single projected solution trajecto-
ries to include similarities between multiple trajectories can provide more
insights into problem-solving processes.

This chapter is structured as follows. Section 5.1 gives an overview of
publications related to our work. In Section 5.2 we introduce our technique
and discuss how it extends existing work. In Section 5.2.3 we characterize
the possible patterns emerging from our visualization technique. Section 5.3
is a description of our prototype implementation of Projection Path Explorer,
which we used to analyze data from several application domains. In Sec-
tion 5.4 we show the results of these analyses. The general insights gained
from these applications and ideas for future work are discussed in Section 5.5.
Section 5.6 concludes the chapter.

5.1 related work on projected sequential data

We study patterns emerging from multiple dimensionality-reduced trajec-
tories through a problem state space. For a general discussion of the im-
portance of trajectories for time series visualization, see Section 2.1. The
most widely used dimensionality reduction techniques are reviewed in Sec-
tion 2.2. Here, we discuss previous attempts at using trajectories for visualiz-
ing dimensionality-reduced data.

related work on projected sequential data 49

5.1.1 Combining Dimensionality Reduction and Trajectories

Without any additional encoding, trajectories can be readily used only to
visualize time series with two attributes. For time series with more attributes,
a combination of dimensionality reduction with trajectory visualization can
be a powerful approach.

Schreck et al. (2007) used self-organizing maps (SOMs) to display projected
trajectories of high-dimensional, time-resolved financial data. For document
visualization, Mao et al. (2007) derived representations of n-gram data akin
to phase-space trajectories used in theoretical physics. Ward and Guo (2011)
generalized the notion of n-grams to non-textual data, yielding a shape-space
representation of snippets of time series data. In TimeSeriesPath, data points
of multivariate time series are projected using PCA, and shown as trajectories
in 2D space (Bernard et al., 2012).

All these similar approaches are summarized in the Time Curve idiom
by Bach et al. (2016). Time Curves are “based on the metaphor of folding
a timeline visualization into itself so as to bring similar time points close
to each other” (Bach et al., 2016, p. 559). The versatility of Time Curves
is reflected in the diverse range of application domains: high-dimensional
dynamic networks (Boz, 2019; van den Elzen et al., 2016), neural network
training (Rauber et al., 2017), user-interaction data (Brown et al., 2018), trend
and outlier detection (Cakmak et al., 2018), sport-game visualization (Zhu &
Chen, 2016), and representation data (J. He & Chen, 2017).

5.1.2 Context of This Work

The usefulness of the Time Curves idiom is based on a number of character-
istics of the projected trajectories, such as point density and irregularity, as
well as patterns such as transitions, cycles, and oscillations (Bach et al., 2016).
However, Bach et al. focused on the interpretation of single trajectories and
only hinted at the power of constructing and interpreting multiple trajec-
tories together. We build upon their classification, but focus on additional
patterns emerging from multiple trajectories.

Other authors have demonstrated the potential of constructing multiple
trajectories in the same embedding space in particular contexts. Zhu and
Chen (2016) detected outliers among multiple basketball games visualized
as trajectories. Brown et al. (2018) discovered differences in velocities along
multiple trajectories from interaction data, and traced back these differences
to varying user speeds. However, little work has focused on identifying
general patterns emerging from multiple embedded trajectories throughout
different application domains.

In this chapter we apply our approach to data from diverse application
domains, including games and puzzles, neural network training, and user
interaction data. Depending on the application context, the number of tra-
jectories we plot conjointly in the same embedding space varies between a
few and several hundred. We argue that general statements about the visual-
ized decision-making processes can be made based on similarities between
multiple trajectories.

50 projection path explorer

5.2 technique

Prior to visualizing paths of problem solutions with trajectories through an
embedding space, a number of important decisions have to be made. The
visualization depends strongly on how the real-world states are represented
as vectors. The distance metric for these vectors needs to be chosen carefully,
as must the dimensionality reduction technique. Finally, a suitable visual
encoding for the low-dimensional states and trajectories needs to be chosen.
We discuss all these aspects in the following section. We also present a
discussion of possible patterns emerging from multiple trajectories in the
same embedding space.

5.2.1 State-space Representation

As previously mentioned, our visualization approach is similar to the Time
Curve technique introduced by Bach et al. (2016). Time Curves are trajecto-
ries drawn through projections of high-dimensional data points. They are
constructed by defining a distance metric in the high-dimensional domain
and embedding the data points in two dimensions such that certain character-
istics of the high-dimensional distance metric are preserved. The projected
points are connected depending on the timestamps associated with each
high-dimensional data point. Table 5.1 lists the key terms and definitions in
the context of dimensionality-reduced trajectories.

The timestamps of the projected points are not relevant to their place-
ment in the embedding space. Only the relative temporal ordering is used
for connecting the embedded points. In most scenarios, projected trajec-
tories are thus visualizations of sequences (or ordered sets) of states. This
trajectory technique can therefore be applied to any process that involves
an object undergoing several sequential states, and state indices can entirely
replace actual timestamps. Bach et al. (2016) use the term “data snapshot”
to refer to the individual high-dimensional data items that—together with
the timestamps—make up the multivariate time series. They call the pairs
of timestamps and data snapshots time points. In contrast, we refer to data
snapshots as states, and we call the snapshot domain state space. This stresses
our focus on sequential processes in which the actual time values are not
necessarily of interest or even unavailable (e.g., as in the guiding example
below).

An essential requirement for constructing a meaningful visualization of
trajectories through an embedding space is the way in which the real-world
object (that goes through the sequential steps) is “digitized”. In our opin-
ion, this is the first, and possibly most important decision when combining
projection with trajectories, but it was not discussed in detail by Bach et al.
(2016). We refer to this digitization as state-space representation and define it
as a mapping from the “real world” ℛ to the state space 𝕊. Importantly, the
state-space representation directly influences the meaning of any potential
distance metrics.

A state-space representation incorporates one of possibly many selections
of an object’s attributes. All data that is not included is potentially interesting

technique 51

Table 5.1: Key terms and definitions for the construction of Time Curves as
given by Bach et al. (2016), and our own notation for state-space representa-
tions and dimensionality reduction.

Notation Explanation

𝑡𝑖 ∈ ℝ Timestamp
𝕊 Snapshot domain (state space)
𝑠𝑖 ∈ 𝕊 Data snapshot (state)
𝑝𝑖 = (𝑡𝑖, 𝑠𝑖) Time point
𝑃 = {𝑝1, … , 𝑝𝑛} Temporal dataset
𝑑∶ 𝕊2 → ℝ+ Distance metric
𝐷 = [𝑑𝑖𝑗] = [𝑑(𝑝𝑖, 𝑝𝑗)] Distance matrix
𝑃𝐷 = {𝑃, 𝐷} Temporal similarity dataset

𝑟∶ ℛ → 𝕊 State-space representation
𝑓∶ 𝕊 → ℝ2 or 𝑓∶ 𝕊𝑛 → (ℝ2)𝑛 Embedding∗

∗ Domain and codomain of the embedding function depend on the dimensionality
reduction technique chosen.

metadata, which is not used directly to calculate the trajectories’ support
points, but can be encoded additionally (e.g., by coloring trajectories or points
categorically depending on the associated metadata). Thus, the actual value
of the timestamp 𝑡𝑖 of a time point (𝑡𝑖, 𝑠𝑖) can also be treated as metadata.

As a guiding example throughout this section, we apply our visualization
approach to data from two well-known sorting algorithms: bubble sort and
quicksort. We first create all possible permutations of the list (1, … , 𝑛) for a
given length 𝑛. We apply each of the two algorithms to each permutation
and record all intermediate steps. For visualizing the progression of the algo-
rithms, we first need to convert the list objects from ℛ to a suitably chosen
state space 𝕊 by means of the state-space representation 𝑟. We decide that
we want to compare lists in terms of “how shuffled” they are. This similarity
can be measured using an edit distance. There are now two approaches for
obtaining meaningful distances:

• We can directly use the symmetric group of all permutations of lists with
length 𝑛 as our state space: 𝕊 = 𝔖𝑛. This allows us to simply use an edit
distance of our choice as metric 𝑑, such as the Hamming distance or the
Damerau–Levenshtein distance.

• Alternatively, we can use a representation of lists in which a distance of our
choice (e.g., the squared euclidean distance) corresponds to an edit distance.
In the case of our permuted lists, such a representation can be constructed
with a one-hot encoding: enc((𝑥1, … , 𝑥𝑛)) = flat((sp𝑛(𝑥1), … , sp𝑛(𝑥𝑛))).
Here, flat(𝑀) flattens amatrix𝑀 to a vector. The vector sp𝑛(𝑖) = (𝛿1𝑖, … , 𝛿𝑛𝑖)
is a vector of length 𝑛 in which only the 𝑖th entry is set to 1 and all other
entries are set to 0. In the formula for sp𝑛(𝑖), 𝛿 represents the Kronecker
delta. The resulting vectors have a length of 𝑛2, and the state space is
𝕊 = {0, 1}(𝑛

2). In this state space, 𝑑(𝑎, 𝑏) = Euclidean(𝑎, 𝑏)2/2 is exactly
equivalent to the Hamming distance.

52 projection path explorer

Since most dimensionality reduction techniques accept distance matrices
as input, or can be readily adapted to accept non-numeric data, the first
approach is usually preferable. However, the second approach can help
to construct meaningful distances via intermediate encodings, when the
“true” distance is computationally infeasible. This will become evident in the
discussion of the distance metric we used to compare states of a Rubik’s cube
in Section 5.4.1.

5.2.2 Dimensionality Reduction

In this work, we focus on visualizingmultiple trajectories conjointly. This also
affects the calculation of the embedding used for dimensionality reduction.
In order to embed all trajectories in the same space, the individual states of
all sequences must be projected in conjunction. This means that identical
elements in the high-dimensional state space are more likely to occur multiple
times. This is especially the case when the visualized real-world process is
constrained to always start from the same initial state, always ends in the
same final state, or has fixed intermediate states that must be traversed (see
also the discussion of patterns in Section 5.2.3). In our guiding example, each
application of either of the two sorting algorithms terminates in the same
state, namely the sorted array (1, … , 𝑛). This state will be present in our
dataset a total of 𝑚 times, where 𝑚 is the number of different initial states
multiplied by the number of sorting algorithms used.

In our experience, most implementations of t-SNE exhibit the following
behavior: when an input set 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}, with some identical high-
dimensional points 𝑥𝑖 = 𝑥𝑗, is embedded, 𝑦𝑖 = 𝑦𝑗 is not guaranteed to hold for
the resulting embedding 𝑓 (𝑋) = {𝑦1, 𝑦2, … , 𝑦𝑛}. Since the objective function
of t-SNE is optimized for all points simultaneously, identical embedding
coordinates for identical input values cannot be guaranteed—although the
embedding coordinates will typically be very close together. Depending on
the projection technique, keeping duplicates in the input set can thus offset,
and thereby highlight, points that are visited more often than others. If exact
identity is required, duplicates must be removed beforehand.

Figure 5.2 presents the sorting trajectories of all permutations of the list
(1, 2, 3, 4, 5, 6) for bubble sort and quicksort. It shows results for projecting
the states by means of t-SNE, UMAP, and Isomap.

To ensure comparability between the sorting algorithms, the results of
bubble sort and quicksort were projected together into a shared embedding
space by using one of the three dimensionality reduction techniques. We
optimized the hyperparameters of each technique to obtain visually appealing
results. Regardless of the embedding routine, the visualizations for bubble
sort (Figure 5.2 (a–c)) exhibit long and winding trajectory bundles. Many
different sorting trajectories must go through the same few states before
finally ending up in the sorted end state. For quicksort (Figure 5.2 (d–f)), the
paths from the initial states to the sorted state are generally shorter and do
not overlap as much as in the case of bubble sort. This reflects the fact that,
on average, quicksort passes only 3.5 intermediate states from start to finish,

technique 53

(a) Bubble sort (t-SNE) (b) Bubble sort (UMAP) (c) Bubble sort (Isomap)

(d) Quicksort (t-SNE) (e) Quicksort (UMAP) (f) Quicksort (Isomap)

Figure 5.2: Sorting trajectories for
bubble sort (a–c) and quicksort (d–
f), applied to all permutations of a
list of length 6 with unique entries.
Three different dimensionality reduc-
tion techniques are shown: (a, d) t-
SNE with a perplexity of 100 and an
exaggeration factor of 2 during the
main optimization; (b, e) UMAP with
25 nearest neighbors and a minimum
distance of 0.1; and (c, f) Isomap with
75 nearest neighbors. For each pro-
jection technique, data for quicksort
and bubble sort was combined, to ob-
tain a shared embedding space. Du-
plicates were not removed prior to
the embedding. For t-SNE and UMAP,
the duplicate sorted arrays form a pro-
nounced cluster, and the shared in-
termediate points are more salient.
All plots were rotated such that the
sorted end states are located to the
right.

while bubble sort takes 7.5 steps for the given lists of length 6. Furthermore,
bubble sort is limited to simple swapping actions, which forces many sorting
trajectories to take similar paths through the state space.

For all three embedding techniques, we did not remove duplicates prior
to the embedding. For Isomap, duplicates in the input list make no dif-
ference, as duplicate high-dimensional points are mapped to to the same
two-dimensional point. For t-SNE and UMAP, however, high-dimensional
duplicates are embedded as clusters in two dimensions. This behavior of
t-SNE and UMAP is especially relevant to the cluster of sorted end states
near the right-hand side of the plots in Figure 5.2 (a), (b), (d), and (e). The
clusters make the trajectory bundles thicker and more easily traceable.

One insight from the comparison in Figure 5.2 is that, with the right
parameter choice, t-SNE and UMAP can yield very similar plots. This is
the case when the chosen perplexity parameter of t-SNE is high enough for
some global structure to be preserved. A typical argument in favor of UMAP
is that t-SNE becomes inefficient for high perplexity values. However, this
depends strongly on the size of the projected dataset, and on the chosen
hyperparameters. In our guiding example, we projected sorting trajectories
for 720 different initial states, which resulted in a total of 8,640 non-unique
states (i.e., including duplicates). With the implementations we used (see
Section 5.3.2), t-SNE with perplexity 100 was in fact slightly faster than
UMAP with 25 nearest neighbors. However, for larger datasets, higher
dimensionality, or different hyperparameters, UMAP may perform better by
up to two orders of magnitude, as reported by Espadoto et al. (2019).

Note that the state space in the guiding example of sorting algorithms
for lists of length 6 is small enough for all possible initial states to be tested
easily, and the state space can thus be projected as a whole. For more complex
problems, such as those described in Section 5.4, the state spaces are much

54 projection path explorer

Single states per curve Multiple states per curve

P1
dense starting

points

P2
dense inter-

mediate points

P3
dense end

points

P7
bundle

P8
bundle with dif-
ferent directions

P4
sparse starting

points

P5
sparse inter-

mediate points

P6
sparse end

points

P9
bundle with dif-
ferent velocities

P10
similar shapes

Figure 5.3: Possible patterns emerg-
ing from multiple trajectories. The
different kinds of points—starting,
intermediate, or end points–of
several trajectories can be either
sparsely distributed over large
regions of the embedding space, or
more densely packed. This results
in six patterns: dense starting
points (p1), dense intermediate
points (p2), dense end points (p3),
sparse starting points (p4), sparse
intermediate points (p5), and sparse
end points (p6). Several consecutive
intermediate point clusters (possibly
together with starting and/or end
point clusters) lead to trajectory
bundles (p7). Trajectory bundles
can differ in terms of direction (p8),
and/or state-space velocity (p9). The
trajectories can also have similar
shapes while populating entirely
different regions of the embedding
space (p10).

larger, rendering it impossible to project them as a whole. In these cases,
only the subspace of actually visited states is projected.

5.2.3 Patterns in Multiple Trajectories

As can be seen in the guiding example in Figure 5.2, when multiple tra-
jectories are constructed together, several different patterns can emerge.
Figure 5.3 (a–f) shows the patterns we identified for start, intermediate, or
end points, depending on whether they are sparsely distributed over large
regions of the embedding space or form a dense cluster.

Obviously, tightly packed starting points (p1) can be observed when the
visualized processes are constrained to start from the same or from very
similar states. This would be the case, for instance, in games that always
start from a fixed initial configuration. Likewise, many processes converge
to the same or to similar end states, which results in a dense cluster of end
points (p3). Examples of these processes are list sorting (see Figure 5.2),
optimization routines that reach global optima, and solution paths of puzzles
such as the Rubik’s cube. As explained above, in most cases we chose not to
remove duplicate entries in the state lists prior to the embedding, which—in
the case of t-SNE or UMAP—leads to a tightly packed cluster rather than a
single point in the embedding space even for exactly identical states.

Sparse clouds of starting points (p4) in the embedding space typically arise
from randomly distributed initial states. Certain optimization algorithms, for
instance, start with randomly initialized states. In high-dimensional space,
the Euclidean distances between any two random states tend to be similar,
with a variance limit of only 7/120 (Henry [https://math.stackexchange.

https://math.stackexchange.com/users/6460/henry
https://math.stackexchange.com/users/6460/henry

technique 55

com / users / 6460 / henry], 2017). Most nonlinear dimensionality reduction
techniques based on distances in high-dimensional space tend to spread out
many similarly spaced high-dimensional points onto a disk in the embedding
space. Thus, also sparse clouds of end points can emerge if the visualized
processes can terminate at many different, but similarly distant, end states.
The list-sorting example from Figure 5.2 is difficult to categorize in terms of
patterns of starting points, since—due to the small state space—all possible
states were used as starting points.

Perhaps the most interesting pattern among those described in Figure 5.3
(p1–p6) is the densely packed cluster of intermediate points (p2) of multiple
trajectories through the embedding space. This pattern gives rise to trajectory
bundles (p7)—groups of trajectories that share multiple consecutive clusters
of intermediate points. Trajectory bundles also play an important role in the
guiding example in Figure 5.2, as the two sorting algorithms differ mainly
in whether or not distinct bundles are present. In trajectory data mining,
such bundles and similar structures have been described as flocks, convoys,
swarms, or gatherings (Zheng, 2015).

Figure 5.3 (p7) shows how a trajectory bundle results from consecutive
clusters of intermediate states (possibly also involving clusters of start and/or
end states). It also shows that the trajectories within a bundle can differ
in terms of direction (p8) and/or velocity (p9). However, interpreting the
velocity is not straightforward. As explained in Section 5.2.1, the timestamps
(if present) are used only for joining points to form trajectories and not for
the projection of states. This means that two points close to each other
in the embedding space do not necessarily need to be close in a temporal
sense. A direct connection between two points means that the states they
represent were visited consecutively, but the viewer might still not know
about the “sampling rate”, that is, the actual time between two states. In our
applications, we deal with indexed states that often do not have a timestamp
at all.

State-space velocity can thus be interpreted as the number of state changes
undergone between two non-consecutive points. Consider two trajectories,
𝑎 = {𝑎1, … , 𝑎𝑛} and 𝑏 = {𝑏1, … , 𝑏𝑚}, that have two shared intermediate point
clusters 𝑋 and 𝑌. Consider further that some 𝑎𝑖 ∈ 𝑋 and 𝑎𝑖+1 ∈ 𝑌, which means
that 𝑎 progresses directly from𝑋 to 𝑌. If now some 𝑏𝑗 ∈ 𝑋 and 𝑏𝑗+2 ∈ 𝑌, but 𝑏𝑗+1
lies somewhere between 𝑋 and 𝑌, then 𝑏 has a lower state-space velocity near
state 𝑗 than 𝑎 has at 𝑖, because 𝑏 needs more intermediate steps to traverse
from 𝑋 to 𝑌. Such a scenario is shown in Figure 5.3 (p9). A meaningful
comparison of state-space velocities is only possible when two trajectories
share at least two intermediate point clusters.

Another pattern that can emerge from plotting multiple trajectories to-
gether is shown in Figure 5.3 (p10). Two or more trajectories can have similar
overall shapes, but lie in completely different regions of the embedding space.
In the case of nonlinear embedding techniques, such as t-SNE and UMAP,
such patterns must be interpreted with care. The actual transformation from
high-dimensional to low-dimensional manifold may differ considerably for
two separate state-space regions. The only true insight gained from such

https://math.stackexchange.com/users/6460/henry
https://math.stackexchange.com/users/6460/henry
https://math.stackexchange.com/users/6460/henry

56 projection path explorer

patterns is that none of the states are similar across different trajectories.
When the shapes of many, well-separated trajectories are very similar (as is
the case in the neural network application discussed in Section 5.4.3), then
a certain similarity between the paths in the high-dimensional space—and
thus between behaviors of the real-world processes—can be assumed.

5.3 interactive visualization prototype

To explore the possible patterns described in Section 5.2.3, we implemented
an interactive visualization prototype. In this section, we describe the choices
for the visual encoding and the implementation details. In order to adapt
this prototype to new application domains, only minimal changes to one
particular part of the encoding are necessary. While the general visualization
principle will be discussed here, the domain-specific changes will be covered
with each application scenario in Section 5.4.

5.3.1 Visual Encoding and Interaction

Projection Path Explorer is an interactive visualization prototype for explor-
ing patterns in collections of projected decision making paths. The Projection
Path Explorer user interface (see Figure 5.1) consists of two parts: a side
panel with several controls and an interactive plot showing the projected
trajectories along with two inset detail views.

In the Projection Path Explorer visualization, all states are represented
by plot markers whose positions correspond to the results of some dimen-
sionality reduction technique. A marker can be used to encode additional
metadata: Its shape can encode categorical metadata, and its size and color
can encode categorical or quantitative metadata.

Similar to Bach et al. (2016), we use Bézier interpolation for connecting
projected states to form trajectories. The improved readability compared to
straight lines is especially important, as Projection Path Explorer typically
displays many trajectories in a shared embedding space. The color of the con-
necting lines of the trajectories can be used to encode additional categorical
metadata for each path.

To allow full flexibility and rapid adaptation to new application domains,
Projection Path Explorer can visualize data from CSV files with minimal
requirements: only the coordinates of the projected states, the trajectory
indices, and the relative ordering of states along trajectories must be given.
Projection Path Explorer supports an unlimited number of additional meta-
data attributes (i.e., additional columns in the CSV files). Users can choose
interactively how these metadata attributes are to be encoded in the different
visual channels. Groups of paths and/or states can be filtered by categorical
attributes, and, additionally, paths can be filtered by path length.

Users can hover over state markers to see detailed information in an inset
(“Hover State” in Figure 5.1). Multiple states can be selected by drawing a
lasso around them. A second detail view shows a fingerprint of the selected
set of states. This fingerprint view is typically an adapted version of the
detail view for single states, often based on a similarity or difference encod-

applications 57

ing. These two insets—the detail view for single states and the fingerprint
view for sets of states—are the only parts of the Projection Path Explorer
visualization prototype that must be adapted to each application scenario.
We discuss possible similarity encodings for each application scenario sepa-
rately in Section 5.4, and we reflect on the design space of these encodings in
Section 5.5.5.

Additionally, Projection Path Explorer allows interactive dimensionality
reduction using t-SNE or UMAP. This feature is helpful if no precomputed
projection has been supplied in the CSV, or if users want to explore different
hyperparameters of the embedding techniques. Users can select which data
attributes they want to consider when calculating the embedding. Since both
t-SNE and UMAP are computationally expensive, the results are shown in a
progressively updated animation, which can be terminated at any time.

5.3.2 Implementation

The Projection Path Explorer visualization prototype is implemented as a
web application written in TypeScript. We used the three.js framework¹ for ¹ https://threejs.org

WebGL rendering of the trajectory plot. The user interface was implemented
using the React library.² For the interactive dimensionality reduction we ² https://reactjs.org/

used JavaScript implementations of t-SNE (tsnejs³) and UMAP (umap-js⁴). ³ https://github.com/karpathy
/tsnejs

⁴ https://github.com/PAIR-code/umap
-js

Automatic cluster detection requires a local Python backend and uses the
hdbscan⁵ package. The Projection Path Explorer prototype can be accessed

⁵ https://github.com/scikit-learn
-contrib/hdbscan

at https://jku-vds-lab.at/projection-path-explorer/.
While we used the Projection Path Explorer for exploring our datasets,

the static visualizations in Section 5.4 were created in Python, based on
openTSNE results (Poličar et al., 2019). For the examples in Figure 5.2 we
used openTSNE, the scikit-learn (Pedregosa et al., 2011) implementation of
Isomap, and the Python implementation of UMAP by McInnes et al. (2018).

5.4 applications

To analyze the usefulness of the patterns described in Section 5.2.3, we ap-
plied the Projection Path Explorer visualization prototype (introduced in
Section 5.3) to high-dimensional processes from four different application
domains: Rubik’s cube, chess games, neural network training, and user in-
teraction data. For each application scenario, we first introduce the most
important domain-specific concepts, then we describe the state-space repre-
sentation (cf. Section 5.2.1), and finally we discuss how the different patterns
relate to the real-world processes.

5.4.1 Rubik’s Cube Solution Algorithms

Rubik’s cube is a famous puzzle toy devised in 1974 by the Hungarian inventor
and professor of architecture Ernő Rubik. The classic Rubik’s cube has six
faces, with each face being made up by a 3 × 3 grid of colored facets. These
facets are the faces of smaller cubes, the so-called cubies. The cube consists
of 26 such cubies: 8 corner cubies with three facets each, 12 edge cubies

https://threejs.org
https://reactjs.org/
https://github.com/karpathy/tsnejs
https://github.com/karpathy/tsnejs
https://github.com/PAIR-code/umap-js
https://github.com/PAIR-code/umap-js
https://github.com/scikit-learn-contrib/hdbscan
https://github.com/scikit-learn-contrib/hdbscan
https://jku-vds-lab.at/projection-path-explorer/

58 projection path explorer

with two facets each, and 6 center cubies with one facet each. The cube is
considered solved when each of its faces shows only one color.

Rubik’s cube is commonly known to be almost impossible to solve if
no specific solution strategy or algorithm is applied. The closer a cube is
to being solved and the more cubies are in the correct position, the more
likely it is that any rotation made with the intention of solving another
part of the cube will scramble already correctly placed cubies. Therefore,
precisely considered sequences of rotations must be applied which ensure
that only specific cubies are moved to their intended destinations. Many
solution strategies for Rubik’s cube have been developed. They differ in
complexity and speed, depending on the number of special patterns and
conditions that are detected and utilized in the solving process. Generally,
the faster a solution algorithm is and the fewer rotations are needed, the more
sub-algorithms must be learned and applied under the correct conditions.
The classic beginners’ method is highly inefficient, but has only a few sub-
algorithms to be memorized. More advanced methods, such as Fridrich’s
CFOP method (Fridrich, 1997) and the Petrus method (Petrus, 1997), are
harder to learn, but usually require significantly fewer moves. Generally,
solution algorithms often use checkpoints: special points in the state space
of the cube (e.g., having a yellow cross on the yellow side). This state space
in which the solution algorithms act is high-dimensional and encompasses
more than 4.3 × 1019 unique states.

State-space Representation The first step of visualizing the solution
pathways is to transform the cube states into numerical representations.
We based the encoding of the cube state on the data structure underlying a
Python Rubik’s cube API Liberacki and Brannan (2015), which we also used
for calculating the solutions. Each face of the cube is represented by a 3 × 3
matrix with one entry for each facet. For the entries representing the facet
colors, we chose a one-hot encoding (i.e., (0,0,0,0,0,1) for red, (0,0,0,0,1,0) for
green, etc.). This encoding facilitates the definition of meaningful distance
metrics for the dimensionality reduction. Flattening the resulting 6×(3×3)×6
tensor yielded a feature vector of length 324 for a single state.

Similarity in the original feature space is defined via a distance metric. We
tried different metrics and ultimately chose the Euclidean distance. Euclidean
distance in the high-dimensional state space does not take into account the
number of operations (i.e., rotations of cube slices) necessary to go from one
state to the next. Instead, we argue that applying the Euclidean distance to
our choice of feature vectors yields a representation that is more in line with
the intuitive judgment of how scrambled the cube is. In fact, for this one-hot
encoding, the Euclidean distance is equal to the square root of the Hamming
distance. The Euclidean distance thus corresponds to a “naive edit distance”,
that gives a measure of the number of cube facets with the wrong color, but
not the number of moves required to fix them.

Implementation & Visualization Details The solutionswere calcu-
lated from random initial states. Using a Python Rubik’s cube API (Liberacki

applications 59

& Brannan, 2015), the initial states were generated by performing a set of
random rotations on an initially solved cube. This ensured that only phys-
ically possible cube states were used. We added a new solution algorithm
and options for data export to the API. For each state, we exported (i) the
high-dimensional encoding and (ii) whether that state is a checkpoint of the
algorithm used. Finally, we projected the high-dimensional cube states using
t-SNE. For the 200 solution trajectories we used a learning rate of 100 and a
perplexity of 50. For the plots with only 2 trajectories we used a perplexity
of 20.

The trajectories for different solution algorithms are visually encoded by
hue. The marker shape encodes whether a state is an initial state, a final
state, or a checkpoint of the algorithm. Disk markers for intermediate states
between checkpoints can be displayed on demand. The markers’ brightness
encodes the progression through the solution trajectory, with bright colors
corresponding to early states.

The single-state detail view (see Section 5.3) shows the colored facets of an
unfolded cube. In the fingerprint view for multiple selected states, only those
cube facets that have the same colors across all selected states are shown
as full-sized, colored squares. For each remaining, non-constant facet, the
color values are counted across all selected states. Each facet is given the
color with the highest number of counts, that is, the most prevalent color
for that facet. The non-constant facets are additionally shrunk and made
transparent, with both the facet area and the alpha value being proportional
to the count of the most prevalent color. This encoding ensures that constant
facets across multiple states can be quickly identified, while information
about the non-constant facets is preserved. An example of this similarity
encoding can be seen in Figure 5.6.

A deployed version of our prototype implementation with pre-selected Ru-
bik’s cube solution data can be accessed at https://jku-vds-lab.at/projection
-path-explorer/?set=rubik.

Figure 5.4: Projected solution path-
ways for 100 random Rubik’s cubes
solved with the beginner’s method
(left), and with Fridrich’s method
(right), respectively. Data for both al-
gorithms was combined for the cal-
culation of the t-SNE projection, but
is shown in two individual visualiza-
tions for easier interpretation. The
random initial states form a broad
cluster (p 4) near the center of the pro-
jected state space (1). Both solution
algorithms take similar intermediate
paths (2), and later checkpoints clus-
ter densely (p2) near the final solu-
tion (3). Notably, Fridrich’s algorithm
avoids lengthy sequences of rotations
to transform an almost solved cube
into a solved cube (4).

https://jku-vds-lab.at/projection-path-explorer/?set=rubik
https://jku-vds-lab.at/projection-path-explorer/?set=rubik

60 projection path explorer

Figure 5.5: Projected solution tra-
jectories of the same initial state (1)
solved with the beginner’s method
and Fridrich’s method, respectively.
The algorithms share the same path
up to the second checkpoint (2), at
which two layers of the cube are
already fully solved. Near the end,
the beginner’s method requires
additional rotations, while Fridrich’s
method approaches the solution
much faster.

Results Figure 5.4 shows the projected solution trajectories for 100 ran-
domly chosen initial cube states, both for the beginner’s method and the
more advanced Fridrich’s method. Clearly, projecting the cube states with
t-SNE leads to the formation of different clusters. Most prominently, later
checkpoints form dense clusters close to the final solution (see (3) in Fig-
ure 5.4). Earlier checkpoints with fewer correctly positioned cube facets are
much more spread out. These checkpoints share a wide, sparse region with
the randomly selected initial states (1). For the checkpoints, we thus observe
a correlation between the timestamp 𝑡𝑖 (see Table 5.1) and the type of pattern:
small 𝑡𝑖 correspond to p5, while larger 𝑡𝑖 correspond to p2. In later stages along
the solution paths, intermediate states also tend to form dense clusters (p2),
which leads to bundles of parallel trajectories (p7) between checkpoints (2).

Figure 5.5 shows solution trajectories for the beginner’s method and
Fridrich’s method applied to the same initial state (1). Our choice of color-
mixing and the use of opacity reveal that the solution trajectories overlap
completely up to the second checkpoint (2). This almost perfect overlap—a
special case of the bundle pattern (p7)—shows that even without removing
duplicates, t-SNE does not always introduce significant spacing between
identical points for certain hyperparameter choices (in this case perplexity
20).

As, upon user demand, the visualization provides detailed views of un-
folded cubes for all intermediate states, it can be seen that two layers of
the cube are already fully solved at the second checkpoint. We found this
behavior to be general, that is, independent of the initial state. Afterwards,
the more optimized Fridrich method uses a large number of different sub-
algorithms. This avoids additional lengthy sequences of rotations close to
the final solution. For the beginner’s method, these rotations show up as
characteristic coils (3).

applications 61

When more cube solutions are projected, the differences between the
strategies due to the use of sub-algorithms become even more apparent (see
Figure 5.4). Our visualization shows large bundles of trajectories (p7) as a
result of clusters of similar intermediate points (p2). Up to a certain point,
these bundles appear similar for the two different techniques (2).

Inspection of multiple states by means of a lasso selection can help to
understand the origin of state clusters and trajectory bundles. As an example,
we look at one state cluster along the trajectory bundle on the upper right-
hand side of Figure 5.4. The similarity encoding for the cluster is shown in
Figure 5.6 (b), along with the standard detail view for an individual state
in the cluster (a). The similarity encoding reveals that about 70 % of the
facets have the same color across the states in the cluster. This particular
cluster of intermediate points (p2) has a clearly defined sub-cluster, with four
more white facets shared across all its states, as seen in Figure 5.6 (c). This
more fine-grained analysis is made possible by the similarity encoding in the
fingerprint view.

(a) Single state (b) Cluster (c) Sub-cluster

Figure 5.6: Analysis of clusters and
sub-clusters along trajectory bundles.
Selecting a single point of a state in a
cluster of intermediate points reveals
the corresponding cube in the stan-
dard detail view (a). Selecting the
whole cluster via brushing updates
the similarity detail view (b). About
70 % of the cube facets are the same
across the whole cluster. Selecting
only the small sub-cluster shows that
four more facets are the same (white)
inside this sub-cluster (c).

Further along the solution paths, the beginner’s method’s inefficient ap-
proach to correctly positioning the final cubies gives rise to a large cluster of
many “avoidable” intermediate steps (p5, see (4) in the left part of Figure 5.4).
In the case of Fridrich’s method, many fewer steps are required during the
final stages of solving the cube, leading to a much smaller and less populated
cluster of intermediate points (see (4) in the right part of Figure 5.4).

Thus, the scalability of our visualization approach to hundreds of cubes
allows us to reliably detect differences between the beginner’s method and
Fridrich’s method. These differences are most apparent in the different pat-
terns of types p2 and p5. Furthermore, the detail views for single and multiple
state selections help users understand the structure of the embedding space.
Thereby, these views clarify how the different patterns in the embedding
space relate to the real-world cubes.

To tighten this connection between patterns and real-world actions, we
built an interactive physical Rubik’s cube demonstrator. This demonstrator
combines our visualization approach with a Bluetooth Rubik’s cube and a
Lego Mindstorms robot and is described in Appendix b.

5.4.2 Chess Games

The game of chess has a compact set of rules. For each piece—king, queen,
rook, bishop, knight, and pawn—only a limited set of movements is allowed.
Nevertheless, chess is extremely rich in tactics and strategy. Players need
to continuously evaluate the positions of the pieces on the board and adapt

62 projection path explorer

Table 5.2: State-space representations for board states before and after various kinds of moves on a simplified 2×2 chessboard
with two different pieces. The pieces are encoded as� = (0, 1, 0) and△ = (0, 0, 1), and empty fields as (0, 0, 0). For simplicity
of the representation, castling and promotion are performed across colors. The listed distances are Euclidean distances with
respect to the initial state given in the first row.

Movement Board Tensor Vector Distance

None (initial) (
(0, 0, 0) (0, 0, 1)
(0, 1, 0) (0, 0, 0)

) (0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0) 0

Simple (
(0, 1, 0) (0, 0, 1)
(0, 0, 0) (0, 0, 0)

) (0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0) √2

Capture (
(0, 0, 0) (0, 1, 0)
(0, 0, 0) (0, 0, 0)

) (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0) √3

Castling (
(0, 0, 0) (0, 1, 0)
(0, 0, 1) (0, 0, 0)

) (0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0) 2

Promotion (
(0, 0, 1) (0, 0, 1)
(0, 0, 0) (0, 0, 0)

) (0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0) √2

their future moves accordingly. To strengthen their skills, players typically
study records of games, often with annotations from experts.

A game of chess can be roughly divided into the three stages of opening,
middlegame, and endgame. In the opening phase, players aim to develop
their pieces (i.e., move them to strategically relevant positions), take control
of the center of the board, ensure safety of their king, and structure their
pawns. The middlegame depends mostly on the openings chosen by the
two players. It is typically the phase in which most captures occur, often as
results from so-called combinations. Finally, the endgame is the phase of the
game in which only few pieces remain on the board. Important goals in this
stage are promotion of pawns, strategic positioning of the king, and forcing
the opponent to make certain moves—a situation called zugzwang. Players
win either by checkmate or resignation of their opponents. A game can also
end in a draw for a number of reasons, including agreement or a stalemate.

Classic tools for computer-aided studying of chess games, such as Fritz 16
(Friedel, 2017), typically feature a simple chessboard visualization of one
game state at a time. Instead of focusing on single snapshots of the game,
Lu et al. (2014) visualize the evolution of entire games. They introduced
the evolution graph: a decision-tree visualization that combines the actual
moves performed by the players with alternative moves calculated by an AI.
However, this approach remains limited to a single game.

Using our visualization approach, we explore possible similarities between
many games, and analyze how the games proceed through the different
phases. We apply our visualization approach to chess by viewing the chess-
board as a state space, with each configuration of pieces(i.e., each so-called
position) corresponding to one possible state. Each of the players’ moves
causes the game to proceed from one state to the next. The number of

applications 63

reachable positions has been estimated to lie between 2 × 1043 and 1.8 × 1046

(Chinchalkar, 1996).

State-space Representation In order to represent the possible con-
figurations of pieces numerically, we started by viewing the chessboard as
an 8 × 8 matrix. Each field can be empty or populated by one of 12 different
pieces (six different pieces each for black and white). We thus represented the
state of one field by a one-hot code of length 13, which resulted in a 8 × 8 × 13
tensor encoding the full board state. Flattening this tensor yielded a vector
of length 832. As in the case of the Rubik’s cube visualization, we chose to
use the Euclidean distance. The results of this choice for the different kinds
of moves are detailed in Table 5.2.

Using this encoding and the Euclidean distance has the consequence that
moving a bishop diagonally by 1 or 4 fields, for instance, does not result in
different state-space distances (as long as no captures occur). Both resulting
states have a distance of √2 to the previous state, and the same is true for
all simple movements and promotions (see first and last row of Table 5.2).
The states resulting from castling, however, have distance 2 to the previous
state, and captures result in a state-space distance of √3. The type of move
(capture, castling, promotion, etc.) leading to each state can additionally be
regarded as metadata.

Implementation & Visualization Details The chess game records
used for the visualizations in this section are freely available at KingBase
(Havard, 2019) in the Portable Game Notation (PGN) format. We parsed
the PGN files using the chess module of the pgn2gif Python package (Deniz
[https://github.com/dn1z], 2018). The resulting sequences of chessboard
states were encoded as described above.

The trajectories for different opening moves are visually encoded by hue.
Each intermediate state is represented by a marker. We visualize the initial
state (standard chess setup) as crosses, and the final states of the games as
stars. The detail view for a single state selection is simply the chessboard. The
fingerprint for multiple selected states uses a similarity encoding comparable
to that used in the Rubik’s cube application. Fields with varying chess pieces
across the selected states show only the most prevalent piece. The piece is
made transparent, with an alpha value proportional to the counts for the
most prevalent piece on that field across all selected states.

A deployed version of our prototype implementation with pre-selected
chess game data can be accessed at https://jku-vds-lab.at/projection-path
-explorer/?set=chess.

Results Figure 5.7 shows decision trajectories for 200 randomly selected
chess games between players with Elo scores greater than 2,000. The games
are colored depending on the first move by white, which was either the
Queen’s Pawn Game (d4) or the Zukertort Opening (Nf3). Together with
the King’s Pawn Game, these two moves are among the three most common
openings.

https://github.com/dn1z
https://jku-vds-lab.at/projection-path-explorer/?set=chess
https://jku-vds-lab.at/projection-path-explorer/?set=chess

64 projection path explorer

Figure 5.7: Visualization of 200 chess
game trajectories for two different
openings, Queen’s Pawn Game (d4)
and Zukertort Opening (Nf3), respec-
tively. Several trajectory bundles (p7)
emerge from the cluster of identical
initial states (a). Two smaller clus-
ters of intermediate game states (p2)
are visible near the center of the plot.
Both clusters consist of game states
resulting from earlier castling moves.
The lower cluster (b) has black pawns
placed on c6 and d5. The upper clus-
ter (c) has black pawns placed on c7
and d6, respectively. Game states re-
sulting from a certain kind of pawn
defense cluster towards the upper
right side of the plot (d). Finally,
endgames with only few pieces re-
maining form a more densely packed
cluster (e), while other endgames are
spread out evenly across the embed-
ding space (p6).

Since each game starts from the same board state, a dense cluster of
initial states (p1) is visible in Figure 5.7 (a). From this cluster, two trajectory
bundles (p7) emerge—one for each of the two openings. Subsequently, the
bundle resulting from the Queen’s Pawn Game splits up into one narrow
bundle going down and one wide bundle going up. These bundles reflect the
first move performed by black (f5 and e6, respectively). A similar splitting
can be observed for the games starting with the Zukertort opening. Even
several states later, only a few trajectory bundles are visible in the lower right
and right parts of Figure 5.7. For early timestamps, no sparse intermediate
point patterns (p5) are visible. This makes sense, as for each ope ning there
are only a few established reactions.

The later intermediate states, roughly between the opening phases and
the middlegames, form three particular structures that are of type p2, but
do not give rise to path bundles. Two clusters, seen in Figure 5.7 (b) and (c),
are collections of game states resulting from earlier castling moves. The
transparency encoding in the interactive detail view revealed that the main
difference between these two clusters is the position of two black pawns. In
the lower cluster (b), two of the black pawns are placed on c6 and d5. In the
upper cluster (c), they are instead placed on c7 and d6. Interestingly, games
for the two different openings are not represented equally in each cluster.
The Queen’s Pawn Game seems to be overrepresented in the cluster related
to black pawn positions c6 and d5, while the Zukertort Opening is slightly
overrepresented among games in the cluster related to black pawn positions
c7 and d6.

applications 65

Finally, at some point the trajectories tend to make large jumps to a
distinct region in the state space where each game culminates in a sequence
of densely threaded intermediate states. These dense sequences (p2) before
the endstates are representations of endgames. Endgames in which only
few pieces remain converge in a similar region of the state space, as seen
in Figure 5.7 (e). The final states of all other games are sparsely distributed
across large regions of the embedding space (p6).

Considering the simple encoding of the chessboard we chose as our state-
space representation, it is surprising to see actual gameplay patterns emerge
from the embedded trajectories. These patterns are only possible when many
trajectories are constructed together. Furthermore, the application of decision
trajectories to chess games showed that interactive exploration is vital for
relating visual patterns to the real-world meaning. As part of future work,
we plan to cooperate with a professional chess player to explore how exactly
the patterns correlate with strategic decisions made by players.

5.4.3 Neural Network Training

Deep neural networks are a class of powerful, nonlinear models that can learn
complex representations of data. They have greatly improved the state of
the art in a diverse range of application domains, including computer vision,
speech recognition, drug discovery, and genomics (LeCun et al., 2015). How-
ever, the learning behavior of deep neural networks is difficult to interpret.
It is usually not clear, how a certain choice of hyperparameters or a certain
train/test split affect the final performance of the model. With the growing
impact of deep learning on real-world decision-making, these difficulties
have led to an increased demand for explainable or interpretable models. As
outlined earlier, one possible way of analyzing, understanding, and commu-
nicating the processes during deep learning is visualization (Hohman et al.,
2018).

The behavior of deep neural networks depends on many different aspects:
training and test data, the network architecture, choice of optimization tech-
nique and hyperparameters, the actual learned weights, and the resulting
activations for each input. Most of these aspects can be visualized, and almost
all of them—even architecture and training data—may change over the course
of the training. As such, the training of neural networks can be viewed as
sequential steps through a high-dimensional state space. Furthermore, de-
veloping well-functioning deep models is a highly incremental and iterative
process, that requires model builders as well as model users to compare the
behavior for many different experimental configurations. This combination
of “temporality” and the need for comparative analysis makes training of neu-
ral networks a perfect candidate for a visualization using multiple embedded
trajectories.

While dimensionality reduction has been applied to visualize the repre-
sentations learned by different network architecture (Aubry & Russell, 2015;
Donahue et al., 2014; Hamel & Eck, 2010; Mnih et al., 2015; Mohamed et al.,
2012), in most cases only the projections for one time step are shown—usually

66 projection path explorer

Figure 5.8: Learning processes of neu-
ral networks trained with different
learning rates using a dimensionality
reduced (PCA) version of the MNIST
images as training data. The initial-
ization was the same for all networks.
Trajectories projected by t-SNE from
two different state-space represen-
tations are shown: (a) based on the
weight matrices of the hidden layer;
and (b) on the confusion matrices for
the test dataset. Both representa-
tions resulted in groups of trajecto-
ries with similar patterns (p1, p7, p9).
The state space of the confusion ma-
trix representation can be made inter-
pretable by augmenting it with the
confusion matrix of perfect classifica-
tion, denoted by diag(x1, … , xk).

(a) Distances between weight matrices of hidden layer

(b) Distances between confusion matrices

for the final network state after termination of the training. Only few works
combine dimensionality reduction techniques with the temporal progression
of the training process. Rauber et al. (2017) visualized the inter-epoch evolu-
tion of neuron activations as trajectories in an embedding space. Even more
closely related to our work is a visualization used by Erhan et al. (2010) in their
study about pretraining neural networks. They show learning trajectories
through function space, which is one particular state-space representation.
We will show results for two other choices of representations, one of which
also motivates why Erhan et al. chose their function space representation.

State-space Representation We chose two different state-space rep-
resentations: a representation of the weight space and a representation of
the confusion matrix.

The weight representation corresponds directly to the weights learned by
the network. For a given layer, we flatten the associated weight matrix to
a single vector. After each training epoch, the weights are updated and a
new weight vector can be obtained. The length of the vectors, and thus the
dimensionality of the state space for this representation, depends on the
network architecture. It is equal to the number of units in that layer, times
the number of units in the previous layer. We use the Euclidean distance as a
metric for comparing weight vectors.

The confusion matrix representation is more closely connected to network
performance. At each epoch, we let the network classify all test instances,
and construct the resulting confusion matrix. Each cell (𝑖, 𝑗) in the confusion
matrix lists the number of instances with ground truth class label 𝑖 and
predicted class label 𝑗. This state-space representation is only suitable for
supervised classification problems. The length of the flat confusion vector is
𝑘2, where 𝑘 is the number of different classes. We experimented with using

applications 67

the Euclidean distance as well as the cosine distance for comparing confusion
states, but found that the resulting plots look very similar for both metrics.
Here, we only show trajectories constructed using the Euclidean distance.

Implementation & Visualization Details We used PyTorch (https
://pytorch.org/) to train a simple neural network to classify MNIST (LeCun,
2005) images. We decided to use a preliminary dimensionality reduction from
the number of weights down to 50 components by means of PCA. Accord-
ing to van der Maaten and Hinton (2008), this preliminary dimensionality
reduction can reduce noise and speed up the computation of the subsequent
embedding. We found that this preprocessing step reduces the computation
time significantly, while affecting the plots only negligibly. We also chose 50
as the number of units in the hidden layer, resulting in 2,500 weights between
the input and hidden layers. We used ReLU as activation function, stochastic
gradient descent for optimization, and cross entropy loss. We tried different
learning rates between 0.01 and 1. In most of our experiments, we trained
the networks for 20 epochs, and used the standard MNIST train/test split.

For our experiments with different learning rates, we colored the trajecto-
ries categorically by learning rate. The detail view for single state selection
is a visualization of the confusion matrix of the network at this state. The
confusion matrices were evaluated for the MNIST test sets. Since all networks
learned relatively fast, a naive visualization of the confusion matrix would
look similar to a diagonal matrix already after the first epoch. To instead
direct the users’ attention to the errors (i.e., the off-diagonal values) we left
the diagonal blank and adjusted the color scale accordingly. This approach is
similar to what we used in ConfusionFlow (Hinterreiter, Ruch, et al., 2022).

A deployed version of our prototype implementation with pre-selected
learning trajectories can be accessed at https://jku-vds-lab.at/projection
-path-explorer/?set=neural.

Results For our first experiments, we wanted to see whether the notion
of “learning speed” is conserved in the embedded trajectories for neural
network training. To this end, we used several different learning rates, and
initialized all networks with the same (randomly chosen) initial weights. The
corresponding trajectories are shown in Figure 5.8, where the top plot (a)
shows trajectories constructed from the weight space representation, while
the bottom plot (b) shows trajectories constructed from the confusion matrix
representation. Different learning rates are encoded by hue, and the values
are listed in colored insets.

In both plots, the equal initial states are represented by a cluster of dense
states (p1). It can be seen that the dimensionality reduction technique—in
this case t-SNE with perplexity 40—does not always behave in the same way
with regards to clustering equal states, even with equal hyperparameters. In
the weight space representation, the initial states are slightly spread apart,
while in the confusion embedding space, they are extremely tightly packed.
The overall trend, however, is the same for both representations.

Lower learning rates lead to smaller changes in the networks’ weights, as

https://pytorch.org/
https://pytorch.org/
https://jku-vds-lab.at/projection-path-explorer/?set=neural
https://jku-vds-lab.at/projection-path-explorer/?set=neural

68 projection path explorer

(a) Distances between weight matrices of hidden layer (b) Distances between confusion matrices

Figure 5.9: Learning processes of neu-
ral networks trained with equal learn-
ing rates but different random ini-
tialization, using a dimensionality-
reduced version (PCA) of the MNIST
images as training data. Trajecto-
ries embedded using t-SNE, based on
two different state-space representa-
tions, are shown: (a) based on the
weight matrices of the hidden layer;
and (b) on the confusion matrices for
the test dataset. For the confusion ma-
trix representation, the state space is
augmented with the confusion matrix
of perfect classification (STAR).

well as in their classification behavior. This slow progression through the
state space is reflected in the trajectories by a high density of intermediate
states, i.e., the learning rate is directly reflected in the different state-space
velocities in the path bundle (p9). This is also the case near the end of the
training, when the optimization starts to converge.

Figure 5.8 (a) shows that, in the weight space, the trajectories for learning
rates between 0.01, 0.2 all move in the same direction. The trajectories for
0.5 and 1 move into a different region of the embedded state space. However,
from the weight space representation, no insight about performance can
be gained. Even from the confusion embedding, without any additional
tricks, only insight about similarity of performances can be gained. Absolute
performance, i.e., overall accuracy, cannot readily be determined from the
embedding. To fix this shortcoming, we added additional structure to the
confusion embedding space, by augmenting it with the projected confusion
matrix for perfect classification. This single state was added to all other
confusion matrices before performing the dimensionality reduction. It is
shown as a gray star in Figure 5.8 (b), and denoted by diag(𝑥1, … , 𝑥𝑘), since
it is a diagonal matrix with the class distribution along its main diagonal.
In this augmented state space it is possible to interpret intermediate state
in terms of network performance, by assessing the distance to the added
diagonal matrix. Calculating the classification accuracy for all learning rates
after 20 epochs gives slightly lower values for 0.5 and 1. A learning rate of
0.2 yielded the best classifier in terms of accuracy, as would be expected from
the embedded trajectories.

From Figure 5.8, onemight draw the conclusion that the two representations—
based on weights or confusion—carry mostly the same information. However,
this is generally not the case! Figure 5.9 shows 30 networks trained onMNIST
data, all with the same learning rate (chosen as 0.2 based on the insight from
the previous example) and the same architecture. The only difference be-
tween the 30 networks is the random initialization of the weights. Starting
from a dense cluster of initial states (p1) in the weight space embedding, all
networks quickly move towards their own region, where they converge in a
chain of densely packed intermediate states (p2). Near the end of this chain,
almost all trajectories exhibit a similar, bulge-like shape (p10). This pattern

applications 69

corresponds to the final convergence, when the differences between states
become so small that their embedded representations start to form a ball
rather than a chain.

The reason for the appearance of similarly shaped trajectories (p10) in dif-
ferent parts of the embedding space—rather than parallel path bundles (p7)—in
Figure 5.9 (a) is a phenomenon known as weight space symmetries. Many
different weight configurations can result in the exact same mapping function
from inputs to outputs.

To address this issue, Erhan et al. (2010) chose their function space repre-
sentation.

We chose a confusion matrix representation, which—as detailed above—
in addition to revealing differences in the mapping functions also can be
interpreted in terms of classification accuracy. In this embedding, shown
in Figure 5.9 (b), it becomes clear that the networks are indeed much more
similar with respect to their classification and learning behavior as one would
expect from the weight space embedding. Especially in the early learning
phases, distinct path bundles form (p7). However, regardless of whether the
function or the weight space representation is chosen, care must be taken in
interpreting the distances in the trajectory visualizations. In Figure 5.9 (b),
absolute distances between final confusion matrices for differently initialized
weights are artificially “blown up” by the projection technique trying to
conserve relative distances within the chains of very similar matrices near
the end of each trajectory. Nevertheless, this example demonstrates the
power of using different state-space representations for showing different
aspects of high-dimensional processes with embedded trajectories.

5.4.4 User Interaction Data

As outlined in Section 1.1, visual analytics tools promote users from mere
observers to active agents in the data analysis process. The history of individ-
ual steps that users take in this iterative process is called analytic provenance
(Ragan et al., 2016). Researchers have argued that recording and analyz-
ing interaction provenance can yield insights about the users’ sensemaking
processes (Brown et al., 2014; Dou et al., 2009; Nguyen et al., 2016; Pohl
et al., 2012; Setlur et al., 2016). This section summarizes our work on Provec-
tories (Walchshofer et al., 2021), a meta-analysis approach for interaction
provenance that makes use of the Projection Path Explorer.

State-space Representation We applied Provectories to two datasets
from real user interactions. In one user study, we asked participants to
interact with a version of the Gapminder visualization (Rosling & Zhang,
2011) that was extended with provenance tracking (Stitz et al., 2019). Each
state of the Gapminder visualization can be fully captured with a small
number of variables of different types. The variables include the selected
year (numeric), axes attributes (categorical), and countries (set attribute).
We vectorized each non-numeric attribute independently, using one-hot
encodings for the categorical attributes and a simple list of binary values

70 projection path explorer

for the country selection. We then constructed a compound distance metric
similar to Gower’s distance (Gower, 1971).

In our second use case, we applied Provectories to data from a previous
study by Gadhave et al. (2021). Here, users interacted with a scatterplot
and received AI suggestions for point selections based on predicted tasks.
Interaction provenance was recorded with the Trrack library (Cutler et al.,
2020), and each application state consisted of the user’s point selection in the
scatterplot. Here, in contrast to the Gapminder example, we constructed a
more semantic representation space (Walchshofer et al., 2021). We divided the
original scatterplot into a 10 by 10 grid and counted the number of selected
points in each cell. We then used a flattened list of these counts as the vector
representation, and compared these vectors using the cosine distance. This
way, we made sure that it was not important that users selected exactly the
same points in the plot for state-space representations to be similar. Instead,
it was enough when users selected points in a similar region.

GDP
Child Mortality

Fertility
Life Expectancy

Population

Continent
Religion

20151800

Fingerprint (6)

Year

Countries

Figure 5.10: Fingerprint visualization
used for the Gapminder interaction
dataset (Walchshofer et al., 2021).

Implementation & Visualization Details We analyzed the data
from both user studies in the Projection Path Explorer, using both t-SNE and
UMAP embeddings. We compared these attribute-driven layouts with a topol-
ogy-driven layout, where points are placed only based on direct connections
in the sequences (see Walchshofer et al. (2021) for a detailed description).
We used categorical user and task labels as metadata for color and shape
encodings. We also introduced two specialized fingerprint visualizations. For
the Gapminder data, we opted for a tabular view of the categorical attributes
(see Figure 5.10). We used a size encoding to indicate the frequency of the set-
tings within the selection. For countries, we listed the flags and indicated the
frequencies with opacity. For the data from the study by Gadhave et al. (2021),
we simply showed the scatterplots of the selected points corresponding to
each state, with an opacity encoding to indicate frequency.

Results Before analyzing the results from the Gapminder user study, we
produced artificial interaction data to understand how certain sequences of
interactions would appear in the Provectories visualizations. For example, we
created artificial interaction sequences in which only the year was changed
incrementally. We then identified similar patterns to the ones from the artifi-
cial user data in the visualizations of the real user interactions. Furthermore,
we found strong visual differences between the tasks that the users had to
perform in the study. In particular, easy identification and lookup tasks could
be readily distinguished from more challenging exploration tasks.

This observation was also true for the second study based on interactions
with scatterplots. Figure 5.11 shows the Provectories visualizations for an
easy and a difficult cluster selection task, as defined by Gadhave et al. (2021).
For this dataset, the summary visualizations of the scatterplots also helped
us to reveal that users tended to select points in outlier tasks in the typical
Western reading direction (left-to-right, top-to-bottom).

For a more detailed discussion of all insights gained with Provectories, see
Walchshofer et al. (2021). There, we also summarize the relative strengths

discussion 71

(a) Easy cluster selection task (b) Difficult cluster selection task

Figure 5.11: Provectories visualiza-
tions for an easy and a hard cluster
identification task from the user in-
tent study by Gadhave et al. (2021).
The ground truth is indicated as +.
Plots taken from Walchshofer et al.
(2021).

and weaknesses of the different layout approaches.

5.5 discussion

In this section, we first summarize the validity and usefulness of the different
patterns introduced in Section 5.2.3. We then discuss several challenges re-
lated to hyperparameters of embeddings, the drawing of trajectories, distance
metrics, and the design of the fingerprint visualization. Finally, we discuss
recent developments of the Projection Path Explorer and give an outlook on
future work.

5.5.1 Patterns in the Embedding Space

Based on the results described in Section 5.4 and our experience with ad-
ditional data from Go games and user interactions, we are confident that
finding patterns (p1–p10, as described in Section 5.2.3)—in combination with
interactive exploration of the detail and fingerprint views—can provide inter-
esting insights. However, we want to stress the importance of verifying that
the patterns found are “real” and not just the side effects of the dimensionality
reduction technique.

In general, patterns which are stable across multiple different embeddings
are most useful (here, embeddings can differ in terms of technique or hyper-
parameters). In the case of Rubik’s cube, for instance, we found the shared
trajectory bundles (p7) of both solution strategies to be stable. Likewise, the
additional “coils” for lengthy rotation sequences appeared across multiple t-
SNE and UMAP runs (see also Figure 5.1, which shows a different embedding
than Figure 5.4).

Generally speaking, we found the dense point-cluster patterns (p1–p3)
and the resulting path bundle-patterns (p7) to be most reliable across all
application scenarios. Sparse patterns (p4–p6) are harder to relate to the
real-world processes, as they cover many, often considerably different, high-
dimensional states. Only when the association with the real-world process
is straightforward (e.g., with random initialization of algorithms), have we
found these patterns to be useful anchor points in the analysis.

In the case of the pattern p9 in the neural network example (Figure 5.8 in
Section 5.4.3), we were surprised how well the state-space velocity correlated

72 projection path explorer

with the “true” velocity (i.e., the learning rate). We think that this pattern has
considerable potential in exploring processes that converge with different
speeds.

Finally, the hypothetical pattern p8, which would arise from trajectory
bundles with different directions, could not be found in any of the examples
presented. However, we are currently investigating user-interaction data
and expect to find such patterns when users backtrack to revisit earlier parts
of their analysis.

5.5.2 Dimensionality Reduction

Clearly, when high-dimensional states are represented in a two-dimensional
embedding space, it is impossible to preserve all original distance informa-
tion. Additionally, hyperparameters of the projection techniques must be set
appropriately. Depending on the dimensionality reduction technique, several
challenges arise.

The most obvious challenge when using t-SNE is to set the perplexity.
Figure 5.12 shows the same data as Figure 5.7, but embedded with perplexity
values of (a) 5, and (b) 3000. Two types of patterns are stable across all
perplexity values: the presence of path bundles at the early games stages and
the chains of states towards the ends. However, in the case of perplexity 5
the path bundles appear more “messy”, and regions of more densely packed
intermediate states (as in Figure 5.7 (b–e)) cannot be made out. Both of these
differences are a result of using a perplexity value that was too low to preserve
global structure.

While van der Maaten (2020) stated that “typical values for the perplexity
range between 5 and 50”, we generally found higher perplexity values to
be more useful for our purposes. Oskolkov (2019) suggested a square-root
law, that is, choosing a perplexity of √𝑁 for a dataset with 𝑁 points. We
suggest experimenting with even higher perplexity values. Plots often remain
relatively stable in a wide perplexity range above √𝑁. Higher perplexity
values work around the fact that the objective function of t-SNE, as compared
to that of UMAP, does not strictly penalize for two points with large high-
dimensional distance to be embedded close together.

Another challenge related to t-SNE is that the result heavily depends on
the initialization. In the t-SNE implementation that we used (Poličar et al.,
2019), random initialization of low-dimensional positions can be replaced
by initialization with PCA results. In our experience, this PCA initialization
greatly improves comparability of multiple embeddings, even across different
perplexity values.

Occasionally, we experienced some unexpected behavior with t-SNE: We
noticed significant “jumps” between similar states. While t-SNE is known
for sometimes putting points of high-dimensionally large distance close
to each other in the embedding space (see above), it should not put high-
dimensionally close points very far apart in the embedding. In experiments
with user interaction-data, we noticed that UMAP did not produce these
jumps as often. However, UMAP introduces other challenges related to

discussion 73

setting the minimal-distance parameter such that interesting patterns related
to dense clusters are not hidden.

(a) t-SNE, perplexity 5 (b) t-SNE, perplexity 300

Figure 5.12: Embeddings (t-SNE) of
chess games from Figure 5.7, re-run
with different perplexity values.

5.5.3 State-space Representations and Distance Metrics

Choosing a meaningful combination of state-space representation and dis-
tance metric for constructing decision trajectories can be challenging. As
already hinted at in Section 5.4.1 about Rubik’s cube solution strategies, it
might not always be possible to find a state-space representation that can
accurately preserve the real-world notion of distances between states. For
the Rubik’s cube example, a combination of representation and metric would
be ideal if it put two cube states at a distance of 1 if one state could be
reached from the other in a single quarter-turn of a cube face. Even if such
a representation existed, it would have to be based on finding the shortest
path between two cube states in terms of rotations. An algorithm capable of
solving Rubik’s cube with the shortest possible sequence of moves has been
termed God’s Algorithm, and proving the lower bound of necessary moves
alone took 35 CPU-years in 2010 (Rokicki et al., 2010). To the best of our
knowledge, there is still no efficient implementation for finding the shortest
path between two arbitrary states. Therefore, the Rubik’s cube visualization
shows that sometimes a simpler state-space representation must be used in
the hope that the representation and metric preserve interesting features of
the real-world processes.

Furthermore, for many applications certain symmetries could be exploited
in the state space. In the case of the Rubik’s cube, many cubes are equivalent
with regards to solutions involving, for instance, the yellow or green cross as
a first checkpoint. Likewise, chessboard states could be seen as equivalent
if the white and black pieces are swapped. For chess, it could be argued
that this symmetry is broken by the rule of white always performing the
first move. Nonetheless, reflection-symmetrical states could be regarded as
equivalent. In case of Rubik’s cube, we broke the symmetries consciously
by forcing each cube to pass the same checkpoint (yellow cross)—essentially
disregarding more efficient solutions involving different checkpoints.

For both the chess and the Rubik’s cube visualizations, disregarding the

74 projection path explorer

symmetry still led to interpretable trajectory patterns. However, many appli-
cations could benefit from a state-space representation and/or distance metric
that takes symmetries into account. In recent experiments with Go game data,
we found that only symmetry-preserving distance metrics based on wavelet
or Fourier transforms of the Go boards led to interpretable visualizations.

5.5.4 Construction of Trajectories

In order to keep visualizations with hundreds of trajectories readable, inter-
polation between points is extremely important. However, each interpolation
technique may introduce artifacts, such as overshooting splines. An example
of such artifacts can be seen close to the final chain of points for each game
in Figure 5.7.

Additionally, not all interpolation techniques are equally suited for adding
points to trajectories on the fly, which is necessary when our visualization
technique is used for streaming data. Newly added points may change the
shapes of trajectories through many of the previous points considerably. For
our interactive physical Rubik’s cube demonstrator (see Appendix b), we
used cubic cardinal splines to make this addition as unobtrusive as possible.
This spline interpolation technique makes sure that adding a point alters
only the trajectory through the last three intermediate points.

Even with a suitably chosen interpolation technique, trajectories through
the embedded state space may cause visual clutter. We plan to experiment
with edge-bundling techniques to address this issue in future versions of our
applications of decision trajectories. In addition to path bundling, smoothing
of trajectories (e.g., by 1D Laplacian filtering) could help to reduce this clutter.

5.5.5 Hierarchical Structures in Embeddings

In a recent follow-up publication to this work (Eckelt et al., 2022), we in-
troduced several extensions for the Projection Path Explorer. In particular,
we focused on the analysis of different types of structures in embeddings
by means of layout enrichment (Nonato & Aupetit, 2019). The different
structures we considered were:

• individual points (i.e., “plain” scatterplots);

• item-to-item relationships, such as trajectories;

• item-to-group and group-to-item relationships;

• sequential group-to-group relationships; and

Figure 5.13: Visual encodings intro-
duced to extend the Projection Path
Explorer for analyzing different types
of relationships in embeddings (Eck-
elt et al., 2022).

(a) Item to item (b) Item to groups (c) Group to items (d) Groups to groups (e) Groups within group (f) Reprojection

conclusion 75

• hierarchical group-to-group relationships.

Here, groups can be defined in a variety of ways; they can be clusters based
on high- or low-dimensional distances, via metadata or by user selections.
We introduced different visual encodings and interactions to facilitate the
exploration of the different relationships. Among the new encodings are
centroid and density encodings for groups, star-shaped plots for group-to-
item links, and tree-like visualizations for more complex hierarchies (see
Figure 5.13a–e).

In addition to these new encodings for relationships, we also improved the
functionality to explore different types of embeddings on the fly, addressing
some of the challenges discussed above. New embeddings can be calculated
either from scratch or using the previous positions as seeds. During the
calculation of the embedding, the scatterplot is continually updated, and
centroid traces (Figure 5.13f) are shown to help users keep track of where
groups of interest are moving.

Because these new visual encodings generalize the Projection Path Ex-
plorer even further, we renamed the tool to Projection Space Explorer. We
also constructed a default summary visualization for items and groups, that
works with any combination of attributes. For a single point, all attributes
are simply listed. For a group of points, histograms show the subset’s value
distributions compared to the whole set (similar to Stahnke et al., 2016). In
the publication (Eckelt et al., 2022), we discuss design considerations for
domain-specific summary and comparison visualizations, including one de-
veloped for a recent adaptation of the Projection Space Explorer for chemical
datasets (Humer, Heberle, et al., 2022).

5.5.6 Future Work

As stated in Section 5.4.2, we plan to examine the correlation between players’
strategies and patterns in trajectories of chess games in more detail. To this
end, we are currently collaborating with an expert chess player. We have
started to apply our visualization technique to games played by modern chess
engines (see, e.g., Silver et al., 2018). For these embeddings, we switched
from the simple state-space representation introduced in Section 5.4.2 to
one based on the engine’s internal representation (i.e., a neural network’s
latent space representation). Based on the expert’s feedback, we are also
paying special attention to the openings, where trajectory bundles (p7) are
particularly important for the analysis. More general ideas for future work
are discussed in Section 8.1.

5.6 conclusion

In this chapter, we explored visual patterns in projected problem-solution
paths. This was made possible by viewing the decisions—whether made by
humans or resulting from the rules of an algorithm—as transitions between
states in a high-dimensional representation space. To reveal and explore the
patterns, we projected multiple paths through the high-dimensional state

76 projection path explorer

space as trajectories in a shared, low-dimensional embedding space. We
found this approach sufficiently general to be applied in various application
domains: Rubik’s cube solution algorithms, Chess games, neural network
training, and meta-analysis of user interactions.

In all our applications, we used our interactive visualization prototype,
Projection Path Explorer, to analyze the embedded trajectories. This general
prototype can be adapted easily to new domains by defining new encodings
for the detail view and the fingerprint encoding for state clusters. We hope
that our work will inspire further studies of projected decision trajectories in
a variety of interesting application domains.

P R O J E C T I V E L A T E N T I N T E R V E N T I O N S

66.1 introduction

The interpretation of classification models is often difficult due to a high
number of parameters and high-dimensional latent spaces. Dimensionality
reduction techniques are commonly used to visualize and explain latent
representations via low-dimensional embeddings. These embeddings are
useful to identify problematic classes, to visualize the impact of architectural
changes, and to compare new approaches to previous work. However, there
is a lot of debate about how well such mappings represent the actual decision
boundaries and the resulting model performance.

In this work, we aim to change the paradigm of passive observation of
mappings to active interventions during the training process. We argue that
such interventions can be useful to mentally connect the embedded latent
space with the classification properties of a classifier. We show that in some
situations, such as class-imbalanced problems, the manual interventions can
also be used for fine-tuning and targeted performance gains. This means that
practitioners can prioritize the decision boundary for certain classes over the
others simply by manipulating the embedded latent space. The overall idea of
our work is outlined in Figure 6.1. We use a neural-network-based parametric
implementation of 𝑡-distributed stochastic neighborhood embeddings (𝑡-SNE)
(Min et al., 2010; van der Maaten, 2009; van der Maaten & Hinton, 2008) to
inform the training process by back-propagating the manual manipulations
of the embedded latent space through the classification network.

6.2 context & contribution

Low-dimensional representations of high-dimensional data have been subject
to scientific research for many decades (McInnes et al., 2018; Mead, 1992;
Tenenbaum, 2000; van der Maaten & Hinton, 2008; Wold et al., 1987). When
used to visualize latent spaces of artificial neural networks, these methods
are commonly treated as independent modules and applied to a selected part
of the representation (e.g., the penultimate layer of a discriminator network).
However, these embeddings are often spatially inconsistent during training

Vanilla classifier Desired embedding New classification model

Manual intervention
Loss

Figure 6.1: PLIs define a desired em-
bedding, which is subsequently used
to inform the training or fine-tuning
process of a classification model in an
end-to-end way.

77

78 projective latent interventions

from epoch to epoch and cannot inform the training process through back-
propagation. (Min et al., 2010; van der Maaten, 2009) proposed to learn
mappings through a neural network. This approach has the advantage that it
can be directly integrated into an existing network architecture enabling end-
to-end forward and backward updates. While unsupervised dimensionality
reduction techniques have been used as part of deep learning workflows
(Chen et al., 2018; Lee et al., 2015; Rusu et al., 2018; Tomar & Rose, 2014)
and for visualizing latent spaces (Erhan et al., 2010; Rauber et al., 2017), we
are not aware of any previous work that exploited parametric embeddings
for a direct manipulation of learned representations. This shaping of the
latent space relates our approach to metric learning (Bellet et al., 2013; Kulis,
2012). Metric learning makes use of specific loss functions to automatically
constrain the latent space, but does not allow manual interventions. PLIs are
general enough to be combined with concepts of metric learning.

We introduce Projective Latent Interventions (PLIs), a technique for (a) un-
derstanding the relationship between a classifier and its learned latent rep-
resentation, and (b) facilitating targeted performance gains by improving
latent space clustering. We discuss an application of PLIs in the context of
anatomical standard plane classification during fetal ultrasound imaging.

6.3 method

Projective Latent Interventions (PLIs) can be applied to any neural network
classifier. Consider a dataset 𝑋 = {𝑥1, … , 𝑥𝑁} with 𝑁 instances belonging to
𝐾 classes. A neural network 𝐶 was trained to predict the ground truth labels
𝑔𝑖 of 𝑥𝑖, where 𝑔𝑖 ∈ {𝛾1, … , 𝛾𝐾}. Let 𝐶𝑙(𝑥𝑖) be the activations of the network’s
𝑙th layer, and let the network have 𝐿 layers in total.

Given 𝐶, PLIs consist of three steps: (1) training of a secondary network
�̃� that approximates a given non-linear embedding 𝐸 = {𝑦1, … , 𝑦𝑁} for the
outputs 𝐶𝑙(𝑥𝑖) of layer 𝑙; (2) modifying the positions 𝑦𝑖 of embedded points,
yielding new positions 𝑦 ′𝑖 ; and (3) retraining 𝐶, such that �̃�(𝐶𝑙(𝑥𝑖)) ≈ 𝑦 ′𝑖 . In
the following sections, we will discuss these three steps in detail.

6.3.1 Parametric Embeddings

The embeddings used for PLIs are parametric approximations of 𝑡-SNE. For
𝑡-SNE, distances between high-dimensional points 𝑧𝑖 and 𝑧𝑗 are converted to
probabilities of neighborhood 𝑝𝑖𝑗 via Gaussian kernels. The variance of each
kernel is adjusted such that the perplexity of each distribution matches a
given value. This perplexity value is a smooth measure for how many nearest
neighbors are covered by the high-dimensional distributions. Then, a set of
low-dimensional points is initialized and likewise converted to probabilities
𝑞𝑖𝑗, this time via heavy-tailed 𝑡-distributions. The low-dimensional positions
are then adjusted by minimizing the Kullback–Leibler divergence KL(𝑝𝑖𝑗||𝑞𝑖𝑗)
between the two probability distributions.

Given a set of 𝑑-dimensional points 𝑧𝑖 ∈ ℝ𝑑, 𝑡-SNE yields a set of 𝑑′-
dimensional points 𝑧′ ∈ ℝ𝑑

′
. However, it does not yield a general function

𝐸 ∶ ℝ𝑑 → ℝ𝑑
′
defined for all 𝑧 ∈ ℝ𝑑. It is thus impossible to add new points

method 79

to existing 𝑡-SNEs or to back-propagate gradients through the embeddings.
In order to allow out-of-sample extension, van der Maaten (2009) intro-

duced the idea of approximating 𝑡-SNE with neural networks. We adapt van
der Maaten’s approach and introduce two important extensions, based on
recent advancements related to 𝑡-SNE (Poličar et al., 2019): (1) PCA initial-
ization to improve reproducibility across multiple runs and preserve global
structure; and (2) approximate nearest neighbors (Dong et al., 2011) for a more
efficient calculation of the distance matrix without noticeable effects on the
embedding quality.

Our approach is an unsupervised learning workflow resulting in a neural
network that approximates 𝑡-SNE for a set of input vectors {𝑧1, … , 𝑧𝑁} given a
perplexity value Perp. We only take into account the 𝑘 approximate nearest
neighbors, where 𝑘 = min(3 × Perp, 𝑁 − 1). In contrast to the simple binary
search used by van der Maaten (2009), we use Brent’s method (Brent, 2002)
for finding correct variances of the kernels. Optionally, we pretrain the
network such that its 2D output matches the first two principal components
of 𝑧𝑖. In the actual training phase, we calculate low-dimensional pairwise
probabilities 𝑞𝑖𝑗 for each input batch, and use the KL-divergence KL(𝑝𝑖𝑗||𝑞𝑖𝑗)
as a loss function.

While van der Maaten (2009) used a network architecture with three hid-
den layers of sizes 500, 500, and 2000, we found that much smaller networks
(e.g., two hidden layers of sizes 300 and 100) are more efficient and yield more
reliable results. The 𝑡-SNE-approximating network can be connected to any
complex neural network, such as a convolutional neural network (CNN) for
medical image classification.

6.3.2 Projective Latent Constraints

Once the network �̃� has been trained to approximate the 𝑡-SNE, new con-
straints on the embedded latent space can be defined. This is most easily
done by visualizing the embedded points, 𝑦𝑖 = 𝐸(𝐶𝑙(𝑥𝑖)), in a scatter plot
with points colored categorically by their ground truth labels 𝑔𝑖. For our
applications, we chose only simple modifications of the embedding space:
shifting of entire class clusters¹, and contraction of class clusters towards ¹ The class cluster for class 𝛾𝑗 is sim-

ply the set of points 𝑦𝑖 = 𝐸(𝐶𝑙(𝑥𝑖)) for
which 𝑔𝑖 = 𝛾𝑗.

their centers of mass. The modified embedding positions 𝑦 ′𝑖 are used as target
values for the subsequent regression learning task.

In this work, we focus on class-level interventions because their effect
can be directly measured via class-level performance metrics and they do
not require domain-specific interactive tools that would lead to additional
cognitive load. In principle, arbitrary alterations of the embedded latent
space are possible within our technique.

6.3.3 Retraining the Classifier

In the final step, the original classifier is retrained with an adapted loss
function ℒPLIs based on the modified embedding:

ℒPLIs(𝑥𝑖, 𝑔𝑖, 𝑦 ′𝑖) = (1 − 𝜆) ℒclass(𝐶𝐿(𝑥𝑖), 𝑔𝑖) + 𝜆 ℒemb(�̃�(𝐶𝑙(𝑥𝑖)), 𝑦 ′𝑖). (6.1)

80 projective latent interventions

Figure 6.2: Detail views of the embed-
ded latent space before (left), during
(center) and after (right) Projective
Latent Interventions for classification
of CIFAR-10 images, focusing on the
classes Truck and Auto.

Auto Truck

Baseline Manipulated embedding A�er retraining

The new loss function combines the original classification loss functionℒclass,
typically a cross-entropy term, with an additional term ℒemb. Minimization
of ℒemb causes the classifier to learn new activations that yield embedded
points similar to 𝑦 ′ (using the given embedding function �̃�). As �̃� is simply
a neural network, back-propagation of the loss is straightforward. In our
experiments, we use the squared euclidean distance for ℒemb and test dif-
ferent values for the weighting coefficient 𝜆. We also experiment with only
counting the embedding loss for instances of classes that were altered in the
embedding.

6.4 experiments

6.4.1 MNIST and CIFAR

As a proof of concept, we applied PLIs to simple image classifiers: a small
multilayer perceptron for MNIST (LeCun, 2005) images and a simple CNN
for CIFAR-10 (Krizhevsky, 2009) images. For MNIST, the embedded latent
space after retraining generally preserved the manipulations well, when class
clusters were contracted and/or translated. The classification accuracy only
changed insignificantly (within a few percent over wide ranges of 𝜆). Typical
results for the CIFAR-10 classifier are shown in Figure 6.2, where the goal
of the Projective Latent Interventions was to reduce the model’s confusion
between the classes Truck andAuto, by separating the respective class clusters.
When comparing a classifier trained for 5+4 epochs withℒclass to one trained
for 5 epochs ℒclass + 4 epochs ℒPLIs, the latter showed a relative increase
of target-class-specific 𝐹1-scores by around 5%, with the overall accuracy
improving or staying the same. The embeddings after retraining, as seen
in Figure 6.2, reflected the manual interventions well, but not as closely as
in the case of MNIST. We also found that, in the case of CNNs, using the
activations of the final dense layer (𝑙 = 𝐿) yielded the best results.

6.4.2 Standard Plane Detection in Ultrasound Images

We tested our approach on a challenging diagnostic view plane classification
task in fetal ultrasound screening. The dataset consists of about 12,000
2D fetal ultrasound images sampled from 2,694 patient examinations with
gestational ages between 18 and 22 weeks. Eight different ultrasound systems
of identical make and model (GE Voluson E8) were used for the acquisitions
to eliminate as many unknown image acquisition parameters as possible.
Anatomical standard plane image frameswere labeled by expert sonographers
as defined in the UK FASP handbook (NHS, 2015). We selected a subset of
images that tend to be confused by established models (Baumgartner et al.,

experiments 81

2017): Four Chamber View (4CH), Abdominal, Femur, Spine, Left Ventricular
Outflow Tract (LVOT), and Right Ventricular Outflow Tract (RVOT) and
Three Vessel View (3VV). RVOT and 3VV were combined into a single class
after clinical radiologists confirmed that they are identical. We split the
resulting dataset into 4,777 training and 1,024 test images.

Embedding (test) a�er
5 ep. Lclass + 7 ep. LPLSD

Embedding (train)
a�er 5 ep. Lclass

Altered embedding

Embedding (test) a�er
5 ep. Lclass + 7 ep. Lclass

A

C

B

B
C

A

B CA

Spine

Abdominal
Femur

RVOT / 3VV

4 Chamber
LVOT

Ca
rd

ia
c

Lclass Lclass + LPLSD GT Lclass Lclass + LPLSD GT Lclass Lclass + LPLSD GT

Figure 6.3: Projective Latent Interven-
tions for standard plane classification
in fetal ultrasound images. Top left:
embedding of the baseline network’s
output (train) after 5 epochs of clas-
sification training (ℒ = ℒclass).
Top right: altered output embed-
ding (train) with manually separated
cardiac classes. Center left: Out-
put embedding (test) after resum-
ing standard classification training for
7 epochs (ℒ = ℒclass), starting from
the baseline classifier (top left). Cen-
ter right: embedding (test) after re-
suming training with an updated loss
function (ℒ = ℒPLIs = 0.9ℒclass +
0.1 ℒemb), starting again from the
baseline classifier (top left). For easier
comparability, class-specific contour
lines at a density threshold of1/𝑁are
shown, where𝑁 is the total number of
train or test images, respectively. Per-
formance measures for the classifiers
are given in Table 6.1. Bottom: Three
example images that were success-
fully classified after applying PLSD.
For each image, the positions in both
embeddings are indicated.

The architecture of our baseline classifier is SonoNet-64 (Baumgartner
et al., 2017). The network was trained for 5 epochs with pure classification
loss, i.e., ℒ = ℒclass. We used Kaiming initialization, a batch size of 100, a
learning rate of 0.1, and 0.9 Nesterov momentum. During these first five train-
ing epochs, we used random affine transformations for data augmentation
(±15∘ rotation, ±0.1 shift, 0.7 to 1.3 zoom).

The 6-dimensional final-layer logits for the non-transformed training
images were used as inputs for the training of the parametric 𝑡-SNE network.
We used a fully connected network with two hidden layers of sizes 300 and
100. The 𝑡-SNE network was trained for 10 epochs with a learning rate of
0.01, a batch size of 500 and a perplexity of 50. We pretrained the network
for 5 epochs to approximate a PCA initialization.

The ultrasound dataset is imbalanced, with 1,866 images in the three

82 projective latent interventions

Table 6.1: Global and class-specific performance measures for standard plane classification
in fetal ultrasound images with and without PLIs, evaluated on the test set. The last two
columns are weighted averages of the values for the three cardiac and the three non-cardiac
classes, respectively.

RVOT∗4CH LVOT Abd. Femur Spine Cardiac Other

Precision Class. only 0.82 0.82 0.42 0.93 0.98 0.97 0.77 0.96
PLIs 0.78 0.85 0.61 0.91 0.97 0.96 0.80 0.95

Recall Class. only 0.38 0.94 0.46 0.96 0.97 0.94 0.76 0.96
PLIs 0.73 0.94 0.28 0.96 0.97 0.94 0.81 0.96

F₁-score Class. only 0.56 0.88 0.44 0.95 0.97 0.95 0.75 0.96
PLIs 0.76 0.89 0.41 0.94 0.97 0.95 0.80 0.95

∗ The class labeled as RVOT also includes 3VV.

cardiac classes, and 2,911 images in the three non-cardiac classes. There are
about twice as many 4CH images as RVOT/3VV, and three times as many
4CH images as LVOT. As a result, after five epochs of classification learning,
our vanilla classifier could not properly distinguish between the three cardiac
classes. This is apparent in the baseline embedding shown in Figure 6.3 (top
left).

We experimented with PLIs to improve the performance for the cardiac
classes, in particular for RVOT/3VV and LVOT. Figure 6.3 (top right) shows
the case of contracting and shifting the class clusters of RVOT/3VV and
LVOT.

After the latent interventions, training was resumed for 7 epochs with the
mixed loss function defined in Equation 6.1. We experimented with different
values for 𝜆; all results given in this section are for 𝜆 = 0.1, whichwas found to
be a suitable value in this application scenario. For a fair comparison, training
of the baseline network was also resumed for 7 epochs with pure classification
loss. In both cases, the remaining training epochs were performed without
data augmentation, but with all other hyperparameters kept the same as for
the vanilla classifier.

The outputs were then embedded with the parametric 𝑡-SNE learned on
the baseline outputs (see Figure 6.3, center). By resuming the training with
included embedding loss, the clusters for the three cardiac classes assume
relative positions that are closer to those in the altered embedding. The
contraction constraint also led to more convex clusters for the test outputs.
Figure 6.3 (bottom) shows three exemplary images that were misclassified
in case of the pure classification loss model, but correctly classified after
applying PLIs. Further inspection showed that most of the images that were
correctly classified after PLIs (but not before) had originally been embedded
close to decision boundaries.

Table 6.1 lists the class-specific precision, recall, and 𝐹1-scores for the two
different networks. By applying PLIs, the average quality for the cardiac
classes could be improved without negatively affecting the performance for
the remaining classes. In some experiments, we observed much larger quality
improvements for individual classes. For example, in one case the 𝐹1-score

discussion 83

for LVOT improved by a factor of two. In these extreme cases, however, local
improvements were often accompanied by significant performance drops for
other classes.

6.5 discussion

The insights gained from PLIs about the relationship between a classifier and
its latent space are based on an assessment of the model’s response to the
interventions. This response can be evaluated on two axes: the embedding
response and the performance response.

Simple classifications tasks, for which the baseline classifier already works
well (e.g., MNIST) often show a considerable embedding response with only
a minor performance response. This means that the desired alterations of
the latent space are well reflected after retraining without strong effects
on the classification performance. Such classifiers are flexible enough to
accommodate the latent manipulations, likely because they are overparame-
terized. In more complex cases, such as CIFAR, the embedding response is
weaker, but often accompanied by a more pronounced class-specific perfor-
mance increase. For these cases, the learned representation seems to be more
rigidly connected with the classification performance. Finally, the standard
plane detection experiments showed that sometimes a minimal change in the
embedding is accompanied by a considerable performance increase for the
targeted classes. Here, the overall structure of the embedding seems to be
fixed, but the classification accuracy can be redistributed between classes by
injecting additional domain knowledge while allowing non-targeted classes
to move freely.

In general, we found that too severe alterations of the latent space cannot
be preserved well since the embeddings are based on local information. Fur-
thermore, seemingly obvious changes made in the embedding may contradict
the original classification task due to the non-linearity of the embedding.
The strength of PLIs is that a co-evaluation of the two components of the loss
function can reveal these discrepancies. As a result, even when PLIs cannot
be used for improving a classifier’s performance, it can still lead to a better
understanding of the flexibility of the model and/or the trustworthiness of
the embedding.

In future work, we would like to experiment with parametric versions of
different dimensionality reduction techniques and explore the potential of
instance-level manipulations controlled via an interactive visualization.

6.6 conclusion

We introduced Projective Latent Interventions, a promising technique to
inject additional information into neural network classifiers by means of
constraints derived from manual interventions in the embedded latent space.
PLIs can help to get a better understanding of the relationship between the
latent space and a classifier’s performance. We applied PLIs successfully to
obtain a targeted improvement in standard plane classification for ultrasound
images without negatively affecting the overall performance.

P A R A D I M E

7Dimensionality reduction (DR) is one of the standard strategies for visualizing
high-dimensional data. The general concepts of DR have been known and
applied for over a century (Abdi & Williams, 2010) in the form of linear
techniques such as principal component analysis (PCA). In the last decades,
however, nonlinear DR techniques gained popularity. The most prominent
modern techniques are t-distributed stochastic neighborhood embedding (t-
SNE) (van der Maaten & Hinton, 2008) and uniform manifold approximation
and projection (UMAP) (McInnes et al., 2018). Both t-SNE and UMAP rely on
pairwise inter-item relationship information from high-dimensional data to
construct embeddings in a low-dimensional space, with the goal of preserving
key “structures” of the original data.

One shortcoming of such relationship-based DR techniques is that new
items cannot readily be added to existing embeddings without having to re-
compute all pairwise relationships. To address this shortcoming, researchers
have developed parametric DR techniques. In parametric DR, embeddings are
created by parameterized functions (e.g., neural networks) that are trained on
the high-dimensional data. While several implementations of parametric DR
exist, they are usually tailor-made variations of existing techniques, and they
are often difficult to customize or extend. This “scattered” nature of existing
parametric DR techniques is surprising considering the strong conceptual
similarities between various nonlinear DR approaches (Böhm et al., 2022).

We believe that the potential of parametric DR is underexplored, and that
both, the visualization and machine learning communities could benefit from
a framework that makes it easy to experiment with such techniques. To fill
this gap, we introduce ParaDime, a unifying framework for parametric DR.
Our contribution with ParaDime is threefold:

• We introduce a generalizing grammar, which formalizes all the steps and
building blocks necessary to specify a parametric DR routine.

• We show how this grammar can be used not only to reproduce existing

Figure 7.1: ParaDime is a framework
for parametric dimensionality reduc-
tion. Left: Data flow in a single
training phase of a ParaDime routine.
Right: Parametric t-SNE trained on
a subset of 5000 images from the
MNIST dataset (LeCun, 2005) and ap-
plied to the whole dataset.

85

86 paradime

parametric DR techniques, but also to experiment with new ideas.

• We present an implementation of the grammar with a focus on usability
and customization.

This chapter is structured as follows: in Section 7.1 we summarize related
work on generalizing and constraining DR techniques; in Section 7.2 we ex-
plain how similarities observed in these techniques give rise to a grammar of
parametric DR, and how ParaDime implements this grammar; we then show
how ParaDime can be used to reproduce existing techniques (Section 7.3) and
how it facilitates experimentation with new ideas (Section 7.4); in Section 7.5
we discuss design and implementation choices, non-parametric embeddings,
limitations, and future work.

7.1 related work on generalizing and constraining dr

An overview of various dimensionality reduction techniques is given in
Section 2.2. In addition to these techniques, Minimum distortion embed-
dings (MDEs) (Agrawal et al., 2021) are most closely related to our ParaDime
approach. MDEs and ParaDime are related in two ways: (i) conceptually
both aim to unify several existing techniques in a common framework; and
(ii) both use PyTorch’s autograd functionality Paszke et al., 2017; Paszke et al.,
2019 for the optimization. MDEs, however, are non-parametric and support
out-of-sample-extension only via a combination of anchoring constraints
and solving a new MDE sub-problem. In addition, MDE’s strong focus on
formalized distortions and penalty functions makes it challenging to map
them to other techniques (see, e.g., the comparison of t-SNE and UMAP by
Sainburg et al. (2021) vs. how Agrawal et al. (2021) relate penalties to UMAP).
ParaDime instead focuses on (potentially transformed) pairwise relations
between data items, which allows several existing techniques to be directly
“translated” into its common framework. Furthermore, ParaDime uses neu-
ral networks to compute embeddings and additional well-established loss
functions from other tasks, such as classification and reconstruction, can be
readily included in ParaDime DR routines. This relates ParaDime to other
techniques that add constraints to dimensionality reduction (Vu et al., 2022).
In summary, ParaDime combines ideas from unifying nonlinear DR in general
(Agrawal et al., 2021; Böhm et al., 2022) with parametric DR (Sainburg et al.,
2021; van der Maaten, 2009), and it allows flexibility to include alternative
learning paradigms.

7.2 the paradime grammar of parametric dr

The similarities between the different neighbor- and distance-based DR tech-
niques outlined above inspired us to develop a unifying interface for speci-
fying parametric dimensionality reduction routines. In ParaDime, routines
are complete data processing pipelines that include all the specifications
necessary to arrive from a given dataset at a trained parametric DR model.
In this section, we describe how routines can be specified with the ParaDime

the paradime grammar of parametric dr 87

grammar of parametric DR. This approach follows the tradition of gram-
mars and grammar-like structures in the visualization community, such as
Vega (Satyanarayan et al., 2016), Vega-Lite (Satyanarayan et al., 2017) and
Encodable (Wongsuphasawat, 2020) for general visualizations, Atom (Park
et al., 2018) for unit visualizations, Gosling (L’Yi et al., 2022) for genome
visualizations, and Neo (Görtler et al., 2022) for confusion matrices).

7.2.1 Overview

ParaDime generalizes parametric DR by breaking it down into several steps,
outlined in the data flow graph in Figure 7.1. First, relations between all
items in a given dataset are computed. Then, a batch of data is sampled in a
training loop. The data batch is processed with a machine learning model,
and new relations between all items in the processed batch are computed.
The batch-wise relations are compared with an appropriate subset of the
overall relations to compute an embedding loss. Additional losses may be
added to the embedding loss. Finally, the losses are used to optimize the
machine learning model via backpropagation.

The ParaDime grammar defines how the necessary building blocks for
each of these steps are specified. We use YAML for these specifications
due to its focus on readability (döt Net et al., 2021). A ParaDime specifi-
cation requires the five base-level entries model, dataset, relations, losses,
and training phases. In the following subsections, we explain each of these
entries in detail.

7.2.2 Model

In parametric DR techniques, the embedding is performed by a machine
learning model. During the training, the model is updated in such a way that
a given objective function is minimized. In the ParaDime grammar, model
specifications closely follow the idea behind PyTorch modules:

model :
modules :

- type : < module type >
options : { ... }
s u b m o d u l e s : [< modules >]

- ...
methods : [< method name > , ...]

PyTorch modules can contain other modules, allowing tree-like structures.
Individual layers of neural networks are examples of leaf modules, where
the module type would be linear or conv2D, with options specifying the layer
dimensions. More important than the model structure, however, is a list of
model methods that the model implements. These methods are later used by
ParaDime to process data batches inside the training loops.

7.2.3 Dataset

The dataset in a ParaDime specification defines the training data for the
routine. A dataset consists of any number of regular or derived entries.

88 paradime

Regular entries are simple, named data tensors. Derived entries are populated
later, based on other data entries or data from relation computations. Details
are as specified with data func and keys. This gives rise to the following
general specification:

dataset :
regular entry
- name : < attr name >

data : < data array >
derived entry
- name : < attr name >

data func : < data function >
keys :

data : [< data attr name > , ...]
rels : [< rel name > , ...]

- ...

Our rephrasing of parametric UMAP in terms of ParaDime in Section 7.3.3
shows how derived entries can be used to set up complex initialization
schemes. All entries in the dataset are named to allow them to be ref-
erenced later in the routine. Typical entries in a dataset are the original
high-dimensional data or labels in supervised applications.

7.2.4 Relations

The relations entry of a ParaDime specification lists “recipes” for computing
mutual relations between data items. Each relation recipe is specified either
globally or on a batch level. As explained above, ParaDime computes global

relations between all items in the dataset before any training begins; these
are typically relations between the original, high-dimensional data points.
In contrast, the computation of batch-wise relations is deferred to the actual
training loops. The batch-wise relations are computed between items in
a batch of data that has been processed by the model. A relation’s type

specifies how relations are computed; supported types are, for instance,
exact pairwise distances (pdist) or approximate neighbor-based distances
(neighbor). A relation’s attr entry specifies which attribute of the dataset to
use for computing relations. Possible options for relations are the distance
function to be used (e.g., metric: euclidean) or algorithm-specific settings
such as the number of nearest neighbors for neighbor-based relations. Finally,
a list of transforms can be applied to the relations. Transforms can be used, for
instance, to convert pairwise distances into perplexity-based probabilities of
neighborhood as in t-SNE (van der Maaten&Hinton, 2008) (see Section 7.3.2).
In total, the relations specification has the following structure:

the paradime grammar of parametric dr 89

relations :
- name : < rel name >

level : global | batch
type : < rel type >
options : { ... }
attr : < data attr name >
t r a n s f o r m s :

- type : < transform type >
options : { ... }

- ...
- ...

Note that a routine can have any number of global or batch-wise relations.
Like the dataset entries, they are named so that they can be referenced by
the losses or in derived dataset entries.

7.2.5 Losses

Once ParaDime knows how to compute relations betwen data items, these
relations can be used inside losses to construct objective functions that govern
the training process. A ParaDime specification of a routine’s losses has the
following structure:

losses :
- name : < loss name >

type : < loss type >
func : < loss function >
keys :

data : [< data attr name > , ...]
rels : [< rel name > , ...]
methods : [< model method > , ...]

- ...

Each loss has a type, which defines how it behaves during training. A
loss of type relation compares a subset of precomputed global relations to
relations computed from a processed batch of data. Other types of losses
are classification, which compares the model output for a data batch to
given labels, or reconstruction, which compares the original input batch to
an encoded and decoded version of the batch. To retain flexibility, each loss
includes a specification of the keys that should be used to access the relevant
model methods, attributes of the data, and/or the relations. Losses can be
combined in the training by forming weighted compound losses, as explained
in following subsection.

7.2.6 Training Phases

In ParaDime, the training of a routine is organized into training phases. Each
training phase consists of sampling and optimizer specifications, a number of
epochs, and a loss specification:

90 paradime

training phases :
- epochs : < number of epochs >

sampling :
type : item | edge
options : { ... }

optimizer :
type : < optim type >
options : { ... }

loss :
c o m p o n e n t s : [< loss name > , ...]
weights : [< weight > , ...]

- ...

The sampling type can be either item (simple sampling of batches of items)
or edge (sampling of items based on relations between them). The edge-
based sampling option allows ParaDime specifications of techniques based
on negative edge-sampling (McInnes et al., 2018; Mikolov et al., 2013; Tang
et al., 2016) or triplets (Chechik et al., 2010) (see example in Section 7.4.2).
As already mentioned above, the loss in each training phase is a weighted
compound loss, whose components are specified with the names of the losses

defined earlier. Finally, the optimizer entry specifies which optimization
technique to use (e.g., sgd (Bottou, 2010) and adam (Kingma& Ba, 2017)), along
with options such as the learning rate or the momentum (Sutskever et al.,
2013).

A ParaDime routine can have any number of training phases. Organizing
the training into phases allows simple concepts, such as pretraining models
to initialize embeddings, but also complex, multi-stage training schemes like
in the example in Section 7.4.4.

7.2.7 Implementation of the Grammar

We implemented ParaDime in Python, choosing PyTorch (Paszke et al., 2019)
as the machine learning framework. We discuss this choice briefly in Sec-
tion 7.5.2. Each high-level component introduced in this section is realized
as a class. ParaDime parses the specifications and sets up the corresponding
Python objects. We provide a detailed documentation with examples and
a less technical introduction of the building blocks of ParaDime routines
online.¹ Paradime is pip-installable and the code is available on GitHub.²¹ ParaDime documentation: https://

paradime.readthedocs.io/en/latest/

² ParaDime code: https://github.com
/einbandi/paradime 7.3 framing existing techniques in terms of paradime

In this section, we show how (parametric extensions of) existing techniques
can be specified in terms of the ParaDime grammar. To highlight the relevant
parts of the specifications, we omit irrelevant ones for the model and dataset.
Any model can be specified for all routines. If no dataset is specified, we
assume that the dataset only contains a single high-dimensional data tensor
that is accessed implicitly by the other specifications. Furthermore, we omit
the weights list, since all examples in this section use only a single loss per
training phase.

https://paradime.readthedocs.io/en/latest/
https://paradime.readthedocs.io/en/latest/
https://github.com/einbandi/paradime
https://github.com/einbandi/paradime

framing existing techniques in terms of paradime 91

7.3.1 Metric MDS

Metric multidimensional scaling aims to find a configuration of points in
low-dimensional space such that the pairwise distances match those of the
high-dimensional data (Cunningham & Ghahramani, 2015). This can be
specified with ParaDime through Euclidean pairwise distance relations and
a mean square error loss between the two relations:

relations :
- name : dists hd

level : global
type : pairwise
options :

metric : euclidean
- name : dists ld

level : batch
type : pairwise
options :

metric : euclidean

losses :
- name : mds

type : relation
func : mse
keys :

rels :
- dists hd
- dists ld

training phases :
- loss :

c o m p o n e n t s : mds
weights : 1

0.055 0.060 0.065 0.070 0.075 0.080
Normalized loss

Linear (10, 2)

Non-linear (10, 2)

Non-linear (10, 5, 2)

Direct

SMACOF

Batch size
10
50
100
221
442

Figure 7.2: Normalized stress (Es-
padoto et al., 2019) for parametric
versions of metric MDS compared
with the non-parametric SMACOF
implementation of scikit-learn (Pe-
dregosa et al., 2011). All models were
trained on the ten-dimensional dia-
betes dataset with 442 items (Efron
et al., 2004).

Figure 7.2 shows the normalized stresses (Espadoto et al., 2019) for several
ParaDime routines with different models and the above specification trained
on a ten-dimensional diabetes dataset (Efron et al., 2004). The linear model
was a simple matrix multiplication to map the ten-dimensional vectors to a
two-dimensional embeddings space. The nonlinear models had an additional
bias and used softplus as the activation function. The routine labeled “direct”
is a non-parametric routine implemented with ParaDime (see discussion in
Section 7.5.3). All ParaDime routines used the same optimizer (Adam; Kingma
and Ba, 2017), learning rate (0.01) and number of epochs (500). The losses of
the ParaDime routines are compared with that of the non-parametric scikit-
learn implementation using the SMACOF algorithm (Kruskal, 1964). Note
how the routines with linear and nonlinear models of size 10 × 2 performed
almost identically. Adding another hidden layer of dimension five reduced
the loss substantially, especially for smaller batch sizes. The average loss for
batch size ten was less than 12 % above the average of the SMACOF baseline,
despite the simplicity of the model and the fact that no hyperparameter
tuning was performed. Interestingly, for the two models of size 10×2, smaller

92 paradime

batch sizes led to higher losses. The non-parametric implementation had
losses similar to the SMACOF baseline.

7.3.2 t-SNE

The ParaDime specification for parametric t-SNE is as follows:

dataset :
- name : main

data : [...]
- name : pca

data func : pca
keys :

data : [main]
relations :

- name : p
level : global
type : neighbor
options :

metric : euclidean
t r a n s f o r m s :

- type : p e r p l e x i t y
options :

p e r p l e x i t y : <p >
- type : s y m m e t r i z e
- type : normalize

- name : q
level : batch
type : pairwise
options :

metric : euclidean
t r a n s f o r m s :

- type : t - dist

option s :
alpha : 1 .

- type : normalize
losses :

- name : init
type : position
func : mse
keys :

data : [main , pca]
- name : emb

type : relation
func : kl div
keys :

rels : [p , q]
training phases :

pca i n i t i a l i z a t i o n
- loss :

c o m p o n e n t s : [init]
sampling :

type : item
main embedding
- loss :

c o m p o n e n t s : [emb]
sampling :

type : item

The t-SNE algorithm begins with calculating pairwise distances that
are transformed into normalized and symmetrized probabilities of high-
dimensional neighborhood based on a perplexity hyperparameter (van der
Maaten & Hinton, 2008). In low-dimensional space, probabilities of neigh-
borhood are calculated by transforming Euclidean distances with a Student’s
t-distribution (van der Maaten & Hinton, 2008). It is straightforward to de-
fine these two relations in ParaDime by making use of transforms. Note that
the global relation specification contains neighbor rather than pdist as type,
which tells ParaDime to use approximate nearest-neighbor-based distances.
The two probability matrices are compared using the KL divergence. Before
this step, modern implementations perform an initialization of the embed-
ding with PCA coordinates (Poličar et al., 2019). However, the embedding
coordinates cannot be initialized directly in a parametric DR routine. Instead,
the model is pretrained to output coordinates that match the initialization,
based on a position-type loss with a mean squared error loss function. The
PCA coordinates can be supplied with a deferred dataset entry.

An example of a parametric t-SNE routine implemented with ParaDime is
shown in the right part of Figure 7.1. It was trained on a subset of 5000 images
of the MNIST dataset of handwritten digits (LeCun, 2005) with a perplexity
of 100 and a learning rate of 0.01. The model had hidden layer dimensions

framing existing techniques in terms of paradime 93

of 100 and 50 and used softplus for all activation functions. Figure 7.1 also
shows the result of applying the trained model to the whole dataset.

7.3.3 UMAP

As discussed in Section 7.1, UMAP has several conceptual similarities to
TSNE. As a consequence, its ParaDime specification looks relatively similar
to that of TSNE:

dataset :
- ...
- name : spectral

data func : spectral
keys :

rels : [p]
r elations :

- ...
t r a n s f o r m s :

- type : connect
options :

neighbors : <n >
- type : s y m m e t r i z e

options :
sub prod : true

- type : normalize
- ...

t r a n s f o r m s :
- type : cauchy

options :
spread : <s >
min dist : < md >

losses :
- name : init

type : position
func : mse
keys :

data :
- main
- spectral

- name : emb
type : relation
func : cross entropy
keys :

rels : [p , q]
training phases :

spectral init
- ...
main embedding
- loss :

c o m p o n e n t s : [emb]
sampling :

type : edge

Here, we omitted entries that are the same as in the ParaDime specification
for parametric t-SNE. The main differences for UMAP are (see, e.g., Sainburg
et al., 2021):

• a spectral embedding based on the global relations is used for initialization;

• a connectivity-based transform is used instead of the perplexity-based one
for t-SNE;

• batch-wise relations are transformed with a modified Cauchy distribution
rather than a Student’s t-distribution;

• cross entropy replaces the KL divergence; and

• negative-edge sampling is used instead of regular item-based sampling.

7.3.4 Additional Neighbor-based Techniques

ParaDime includes implementations of all relations, transforms, and data

func methods specified in the examples above. With these methods, it is also
possible to specify LargeVis (Tang et al., 2016), which basically combines
t-SNE’s high-dimensional relations with negative-edge sampling. LargeVis is
not restricted to a specific transform for the low-dimensional (i.e., batch-wise)
relations; instead, the authors state that “many probabilistic functions can

94 paradime

Figure 7.3: Embeddings of hybrid
embedding/classification routines for
the MNIST dataset (LeCun, 2005) cre-
ated with ParaDime. The relative
weight of the embedding loss compo-
nent is indicated by 𝑤𝑟 ,emb, and the
weight of the classification compo-
nent was 1 − 𝑤𝑟 ,emb. All embedding-
related specification were the same
as those of the ParaDime paramet-
ric UMAP routine. The routines were
trained on a subset of 5000 randomly
sampled MNIST images. The test ac-
curacy was calculated on a different
subset of 5000 images. Trustworthi-
ness was calculated based on ten near-
est neighbors.

be used” (Tang et al., 2016, p. 290). This aligns well with ParaDime’s flexible
concept of transforms.

Isomap is another neighbor-based technique, but it uses geodesic distances
instead of probabilities of neighborhood (Tenenbaum, 2000). To specify
Isomap with ParaDime, it suffices to implement either a new type of relations
or a transform that converts Euclidean distances to geodesic distances.

7.3.5 Classifiers & Autoencoders

In addition to the relation-type loss used in all DR techniques discussed so far,
ParaDime also provides losses for typical machine-learning tasks that are not
limited to DR. In particular, the classification loss makes it straightforward
to implement classification models if one of the dataset entries contains class
labels:

dataset :
- name : main

data : [...]
- name : labels

data : [...]

losses :
- type : c l a s s i f i c a t i o n

func : cross entropy
keys :

data :
- main
- labels

Similarly, autoencoders can be concisely specified using the predefined
reconstruction loss.

7.4 experimenting with combined techniques

In this section, we present several application ideas for ParaDime. These
example are supposed to show the versatility of the ParaDime specifications,
and they should encourage experimentation with new ideas emerging from
combinations of different losses.

experimenting with combined techniques 95

7.4.1 Hybrid UMAP for Embedding and Classification

In Sections 7.3.3 and 7.3.5 we showed how to use ParaDime to specify a
parametric version of UMAP and a simple classification model, respectively.
In this section, we combine the two to create a hybrid embedding and classifi-
cation routine, which uses a shared latent space for both tasks. We apply our
multitask routine to the MNIST dataset of handwritten digits (LeCun, 2005).

As a model, we use a fully connected network with hidden-layer dimen-
sions 100 and 50. The model has two output layers: one of dimension ten
yielding the logits used for classification, and one of dimension two for the
embedding. Both output layers are connected to the second hidden layer.

As explained above, UMAP uses edge-based sampling. When edge-based
sampling is in ParaDime, each batch not only contains the pairs of vertices
between the sampled edges, but also a simple list of unique data items suitable
for other tasks such as classification. Therefore, losses that require item-based
sampling can be readily added to routines that use negative-edge sampling.
Below is the specification of our hybrid classification and embedding model,
in which we omitted the losses and relations that were already defined earlier.

dataset :
- < main data >
- < labels >

relations :
< UMAP rels >

losses :
- < UMAP loss >
- < c l a s s i f i c a t i o n loss >

training phases :
- loss :

c o m p o n e n t s :
- umap
- class

weights : <w >

Thanks to ParaDime’s specification interface, the losses from above can
simply be reused as components in a compound loss. Figure 7.3 shows nine
embeddings created with different weights for the loss components. All
routines were trained on the same subset of 5000 images from MNIST for
100 epochs and without any pretraining. Figure 7.3 also includes plots of the
classification accuracy and the embedding trustworthiness (Espadoto et al.,
2019; Venna & Kaski, 2001) as functions of the weight. Note that already a
small weight on the embedding loss leads to a substantial class separation in
the scatterplots. At the same time, the classification accuracy is not affected
by the additional embedding task. The accuracy only suffers when the weight
on the classification approaches zero. In particular weighting the embedding
with values in the wide range of 0.5 to 0.95 produces visually “sensible”
embeddings with relatively high trustworthiness and practically the same
classification accuracy as the pure classifier. In fact, some of our experiments
showed that the additional embedding loss can improve generalization of the
classifier slightly. This observation is in line with the original motivation for
multitask learning (Caruana, 1997).

Such a hybrid embedding and classification model could be the basis of a
visualization tool in which users can add new points to existing embeddings.
The predicted class labels could be used to visually encode the new data
points and/or to inform users whether a new point lies in a region of the
embedding where also other points of the same class are located.

96 paradime

Aspen

R = 10

Cottonwood/willow

Douglas-fir

Krummholz

Lodgepole pine

Ponderosa pine

Spruce/fir

R = 20 R = 50 R = 100 R = 200

R = 500 R = 1000 R = 2000 Parametric t-SNE (ParaDime) t-SNE (scikit-learn)

R = w(t-SNE) / w(Triplet)

Figure 7.4: Supervised embeddings
of a subset of the forest covertype
dataset (Chechik et al., 2010). All
embeddings labeled with 𝑅 are su-
pervised version of parametric t-SNE,
where the supervision was included
by means of a triplet loss based on
the ground truth labels. 𝑅 is the ratio
of the weights of the t-SNE loss and
the triplet loss. For comparison, em-
beddings created with scikit-learn’s
non-parametric t-SNE implementa-
tion and with a plain ParaDime t-SNE
version (using item-based sampling
and no triplet loss) are shown. The
perplexity was 200 in all cases, and a
class-balanced subset of 7000 items
was used.

7.4.2 Supervised t-SNE with Triplet Loss

In this example we combine a parametric version of t-SNE (see Section 7.3.2)
with a triplet loss (Chechik et al., 2010) to learn several supervised embeddings
for the forest covertype dataset (Blackard & Dean, 1999). This is an example
of a instance-level constraint as categorized by Vu et al. (2022).

The forest covertype dataset consists of 581 012 records with 54 attributes
each. Each item corresponds to a 30m × 30m cell of a US region, and the
attributes describes cartographic variables, such as elevation, slope, and
distance to the next roadway. Each item is labeled with the ground truth
value for the type of trees covering the cell (e.g., aspen, krummholz, and
spruce/fir). The dataset is strongly imbalanced, with the prevalent being
more than 100 times more frequent than the least. In this example, we use
the first ten numerical attributes and sample an almost balanced subset of
7000 items.

Supervising t-SNEwith an additional term based on triplets can be achieved
easily thanks to the ParaDime interface. First, we use negative-edge sampling
to construct triplets. In negative-edge sampling, batches of edges between
items are sampled during training, rather than batches of individual items.
In other applications of this sampling strategy (for example UMAP (McInnes
et al., 2018)), a positive edge is sampled according to the probabilities of
neighborhood of the two points (i.e., vertices). Then, a specified number of
random negative edges for one of the two vertices are added. Negative edges
are edges between two vertices for which the probability of neighborhood is
zero. In this example, we instead create a probability matrix 𝑟𝑖𝑗 with:

𝑟𝑖𝑗 = {
1 𝑔𝑖 = 𝑔𝑗
0 𝑔𝑖 ≠ 𝑔𝑗

, (7.1)

where 𝑔𝑖 are the ground truth labels of the data. If we use this probability
matrix for negative-edge sampling with a negative sampling rate of one,

experimenting with combined techniques 97

we essentially sample one pair of vertices (𝑎, 𝑏) with equal labels, and an-
other pair (𝑎, 𝑐) with different labels. The set of vertices 𝑎, 𝑏, 𝑐 constitutes a
triplet (Balntas et al., 2016; Chechik et al., 2010). We can then simply add an
additional triplet loss.

This results in the following ParaDime specification, where pairwise equal

stands for the global relation as defined by 𝑟𝑖𝑗 (we abridged the parts of the
specification that match the t-SNE one from Section 7.3.2):

dataset :
- name : main data

data : [...]
- name : labels

data : [...]
- < PCA >

relations :
- < global t - SNE rel >
- < batch t - SNE rel >
- name : r

level : global
type : pairwise equal

losses :
- < PCA init loss >
- <t - SNE loss >
- name : triplet

type : triplet
func : margin
keys :

data : [main data]
training phases :

- < PCA init >
- loss :

c o m p o n e n t s :
- tsne
- triplet

weights : <w >
sampling :

type : edge
options :

rels : r
rate : 1

Here, margin is the name of the following loss function that is applied to
the triplets (Balntas et al., 2016; J. Wang et al., 2014):

𝐿triplet(𝑎, 𝑏, 𝑐) = max(𝑑(𝑎, 𝑏) − 𝑑(𝑎, 𝑐) + 𝑚, 0), (7.2)

where 𝑚 is the margin hyperparameter.
Figure 7.4 shows eight version of embeddings specified this way, with

different values for the loss weights. In all cases, the model was a fully
connected neural network with hidden layer dimensions 100 and 50. Each
embedding was initialized with a PCA-based pretraining for ten epochs
with item sampling and a batch size of 500. As explained above, the main
embedding phases used negative edge sampling, with 300 triplets being
sampled in each batch. For comparison, Figure 7.4 includes a parametric
t-SNE without the extra triplet loss and with regular item sampling. We also
show the result of scikit-learn’s non-parametric t-SNE. For all embeddings
the perplexity value was set to 200.

For the triplet loss as defined above to be minimal, the distance along
negative edges (i.e., between a pair of items with different labels) must be
substantially larger than the distances along a positive edge. This pulls
together items from the same class. If too much weight is put onto the triplet
loss, this causes all items to condense on a single line, along which they are
more or less ordered by their class label. As the weight of the triplet loss is
reduced, the structure of the “pure” t-SNE is preserved increasingly, while
classes are well separated (see, e.g., the embeddings for t-SNE/triplet loss
weight ratios of 1000 in Figure 7.4). With vanishing weight on the triplet
loss, the embedding still differs noticeably from the one that used item-based
sampling; here the triplet sampling strategy might be disadvantageous, as it
favors certain batch configurations over others.

98 paradime

Figure 7.5: Attribute-guided embed-
dings of a subset of the forest cover-
type dataset (Chechik et al., 2010).
Attribute guiding was implemented
by combining t-SNE with a correla-
tion loss which orders the data points
along the 𝑥-axis by the value of the
eighth feature (hillshade at noon).
The weights for the embeddings
shown are (𝑤t-SNE, 𝑤corr) = (1, 0),
(5000, 1), (1000, 1), and (100, 1), re-
spectively. The bar chart on the right
shows the feature importances for the
learned embeddings, based on inte-
grated gradients. Note the high im-
portance of the eighth feature for the
𝑥-axis in the guided embedding.

One potential application idea for such supervised embeddings is an
interactive visual interface for dataset exploration, where users can switch
between a purely attribute-driven visualization (e.g., pure t-SNE) and the
supervised one with more pronounced class separation. In the first mode,
users could explore similarities and difference between all data points as usual,
while the second mode would enable class-specific exploration without losing
track of the overall structure.

7.4.3 Attribute-guided Embeddings

In this example, we again look at embeddings of the covertype dataset dis-
cussed in the previous section. This time, however, our primary interested is
not in the class distribution, but in using specific attributes to guide the en-
codings. In particular, we use ParaDime to construct an embedding in which
a specified direction correlates with one of the high-dimensional attributes.
To this end, we define a new type of loss:

𝐿corr(𝑎, 𝑏; 𝑖, 𝑗) = 1 − (
cov(𝑎𝑖, 𝑏𝑗)
𝜎𝑎𝑖𝜎𝑏𝑗

)
2
. (7.3)

Here, 𝑎 and 𝑏 are two data matrices with the same number of rows, and 𝑎𝑖
and 𝑏𝑗 refer to columns 𝑖 and 𝑗, respectively; cov is the covariance, and 𝜎 is
the standard deviation. This loss is equivalent to one minus the squared
Pearson’s correlation coefficient for the 𝑖th column of 𝑎 and the 𝑗th column of
𝑏. During the training of our routine, 𝑎 will be a batch of high-dimensional
data and 𝑏 the processed (i.e., embedded) two-dimensional batch.

Once a loss corr has been defined which uses the above function 𝐿corr
and applies it to the unprocessed and embedded versions of the input batch,
we can simply construct a compound loss in a way equivalent to the other
previous examples in this section. The loss components (t-SNE loss and
correlation loss) can be weighted, and the dimensions that should correlate
can be specified as options to the loss.

Figure 7.5 shows four examples of such attribute-guided embeddings with
different weights. In all examples, 𝑖was set to eight and 𝑗 to one, which means
that the Hillshade (noon) attribute of the covertype dataset was constrained
to correlate with the 𝑥-direction of the embedding. In the embeddings in
Figure 7.5, the points are colored by the specified high-dimensional attribute

experimenting with combined techniques 99

value. With increasing weight on the correlation loss, the embedding is
distorted in such a way that the values decrease from left to right, while
the remaining structure is preserved to some extent. Within a certain range
of weights, the transition from unguided to strongly guided embeddings
appears to be smooth, with the points “folding over” continuously to satisfy
the constraints.

Because ParaDime models are neural networks, we can apply any existing
explanation techniques to them. In this example, we want to verify that the
importance of our specified attribute (feature eight, Hillshade (noon) for the
resulting 𝑥 value was actually increased. To this end, we applied a “vanilla”
version of integrated gradients (Molnar, 2022) to our model. The resulting
feature importance score are shown in the bar chart in Figure 7.5. Note that
feature eight is indeed the most important for the 𝑥 result by some margin,
and that it does not contribute to 𝑦 at all for the strongly attribute-guided
embedding.

Attribute-guided embeddings are not only a showcase of how easily new
techniques can be constructed with ParaDime. They might be useful in cases
where users want to transition from purely unsupervised embeddings to ones
were a specified attribute is of particular interest in the analysis.

7.4.4 Shaping Latent Spaces through Embeddings

We previously introduced Projective Latent Interventions (PLIs) (Chapter 6;
Hinterreiter et al., 2020) as a way to influence the latent space of classification
models through modifications in parametric embeddings. In PLIs, users are
presented with a scatterplot of the low-dimensionally embedded activations
of a classification network. They can then move points and/or clusters in
the embedding to make the visualization of the latent space better match
their idea of how the classifier should “see” the data. For example, users
might separate class clusters from each other or make them more compact.
The classifier is then retrained in such a way, that the embedded activa-
tions preserve these modifications. The backpropagation of the user-defined
constraints was achieved through parametric embeddings. We showed that
this technique can be used to improve the generalization of the classifier
and we argued that it can also lead to a better understanding of how the
model’s latent representation relates to the user’s mental model (Hinterreiter
et al., 2020). In this section, we briefly show how ParaDime facilitates such
constrained, multi-step classification routines.

PLIs can use any neural network as the classification model. This model
is augmented with a second part that embeds the high-dimensional latent
representation (similar to the example in Section 7.3). Thanks to ParaDime
organization of the training into phases, the PLI process can be easily re-
produced. In a first training phase, only the classification part of the model
is trained with a classification loss. In a second training phase, only the
embedding part is trained with a relation loss (leaving the classification part
untouched). Now users view the resulting embedding and specify the desired
modifications. The resulting modified dataset can be used in a third training

100 paradime

phase inside a position loss, which is paired with the original classification
loss. This completes the PLI workflow.

We expect that ParaDime can be used in a similar fashion to reimplement
existing multi-step techniques, while improving their customizability.

7.5 discussion

In this section we discuss some of the design choices related to the structure
of the ParaDime grammar and its implementation. We also outline how
ParaDime can be used for non-parametric embeddings. Finally, we reflect on
limitations and future work.

7.5.1 Structure of the Grammar

The structure of the ParaDime grammar cannot be uniquely derived from
the necessary building-blocks (dataset, relations, etc.), but depends on a
number of choices. For example, in an earlier version of the specifications,
losses were defined entirely within the training phases and their specification
included a weight. However, this strongly limited the reusabilty of losses
across phases. We thus opted for loss specifications at the base level, which
required the introduction of the components and weights entry, and the use
of loss names that could be referenced. Furthermore, we initially planned
different base-level entries for lists of global and batch-wise relations. From a
computational view, they are typically used at different times in the routines,
and only the batch-wise relations must be differentiable. Nevertheless, we
finally chose a flat list of relations with individual level entries to highlight
the conceptual similarities between the global and batch-wise relations.

7.5.2 Implementation Choices

We considered PyTorch (Paszke et al., 2019), TensorFlow (Abadi et al., 2016),
and JAXX (Frostig et al., 2018) as machine learning frameworks for ParaDime.
Ultimately, we settled on PyTorch, because it has become the most popular
framework for research purposes (O’Connor, 2021).

While we used YAML (döt Net et al., 2021) for the specifications in this
work due to its focus on readability, ParaDime is also capable of parsing JSON
specifications with the same structure. In addition to the specifications, which
facilitate sharing and reproducibility, ParaDime also allows an object-oriented
construction of routines. This way of specifying routines is particularly
suitable for adapting existing routines or changing properties of routines
dynamically.

7.5.3 Non-parametric Routines

We realize that—except for the model entry—each ParaDime specification
could also be valid for a non-parametric DR routine. Still, each ParaDime
routine currently requires a PyTorch module as model, because parametric
routines were our main focus. The losses access the model’s methods to
compute the processed data batches. With some modifications, however, it

conclusion 101

is possible to use a simple tensor of low-dimensional coordinates instead
of the model. In this case, the coordinates are directly optimized in a non-
parametric way. As shown in Section 7.3.1, this can lead to lower losses, but
new points cannot be added to the resulting embeddings afterwards. We plan
to improve this functionality in future work.

7.5.4 Limitations & Future Work

One major limitation when moving from traditional DR techniques to para-
metric embeddings is the increased number of hyperparameters. Users must
select a suitable model architecture and set batch sizes, optimizers and learn-
ing rates in a way that the loss is properly minimized. For the predefined
ParaDime routines, we provide defaults based on our own experiments. With
new routines, however, finding suitable choices for hyperparameters can be
challenging. The same is true for weights in compound losses. Different
losses can differ by orders of magnitude, and weighing them equally may
lead to vanishing effects of some of the losses. As a result, non-obvious
weight ratios have to be tried out, as seen in some of the examples discussed
in Section 7.4. However, due to ParaDime’s focus on reusability and ease of
specification, experiments with different weights should be straightforward.
We also supply plotting utilities with ParaDime, so that users can rapidly
check the embeddings with little to no boilerplate code.

A second limitation related to batch-wise training is that certain global
constraints are difficult to implement. For example, global density-based mea-
sures such as the one used in densMAP (Narayan et al., 2021) are challenging
to reproduce from small batches. In principle, the batch size in ParaDime can
be set to the number of items in the dataset to allow computation of global
measures during training. However, this might lead to problems with gradi-
ents for other losses. We plan to experiment with such globally constrained
techniques in future work to provide ways of incorporating them.

Finally, we plan to include export utilities for the trained models, so that
they can readily be used elsewhere. It would be particularly desirable to
export models in a format that can be used directly within browsers. This
way, visualizations implemented as web-apps could make use of pretrained
ParaDime routines without the need for a backend.

7.6 conclusion

In this chapter we introduced ParaDime, a framework for parametric di-
mensionality reduction. The ParaDime grammar allows users to specify DR
routines in a declarative way. We showed how this approach enables para-
metric extensions of existing techniques. We also illustrated how ParaDime
facilitates experimentation with new ideas. We hope that through our focus
on flexibility and customization, ParaDime inspires further research about
the potential of parametric dimensionality reduction.

S U M M A R Y & O U T L O O K

8Visualization and machine learning are both driven by the goal of acquiring
insights from data. However, the means to achieve this goal differ substan-
tially between the two fields. While visualization typically focuses on the
human in the loop, machine learning often prioritizes automation. With
the increasing popularity of machine learning, interest has sparked in both
communities to combine the complementary strengths of vis and ML. In this
thesis, I have presented several works in which the two fields come together
in various ways. Through this combination, these works provide users with
a better understanding of high-dimensional, temporal processes.

ConfusionFlow (Chapter 3; Hinterreiter, Ruch, et al., 2022) and Instance-
Flow (Chapter 4; Pühringer et al., 2020) are two visualizations that allow ma-
chine learning experts to analyze temporal information from the training pro-
cess of classification models. They are both examples of the model-analysis
branch of Vis4ML. The Projection Path Explorer (Chapter 5; Hinterreiter et al.,
2021) is a more general visualization tool for high-dimensional sequences,
based on unsupervised machine learning algorithms for dimensionality re-
duction. We applied the Projection Path Explorer to visualize similarities and
differences in the convergence of neural networks during training. We also
applied it to provenance data to better understand how users interact with
AI-assisted visualization tools (Walchshofer et al., 2021). With Projective
Latent Interventions (Chapter 6; Hinterreiter et al., 2020) we explored how
low-dimensional embeddings can serve as an interface to give users control
over the latent space of classification models. Finally, ParaDime (Chapter 7;
Hinterreiter, Humer, et al., 2022) is a framework for neural-network-based
dimensionality reduction, which allows machine learning and visualization
researchers to experiment with novel embedding techniques. ParaDime is
an example from the data-processing branch of ML4Vis.

ConfusionFlow

InstanceFlow

Projection Path Explorer

Vanilla classifier Desired embedding New classification model

Manual intervention
Loss

Projective Latent Interventions

ParaDime

Figure 8.1: Visual summary of the con-
tributions of this thesis.

These works are part of the wide spectrum of research about the synergies
between ML and vis. However, as this field is still rapidly evolving, there
remain several challenges that offer potential for future work.

8.1 automation & guidance

One of the main motivations of using visualization in the context of ma-
chine learning is to improve the interpretability of complex, opaque models
(Hohman et al., 2018). However, visualizations themselves can be difficult
to interpret in an objective and reproducible way. This is particularly the
case for non-linear dimensionality reduction, where distortions can hide
interesting patterns or lead to “fake” patterns (Espadoto et al., 2019; Nonato
& Aupetit, 2019). In our work, we have tackled this issue with various in-
teraction and layout enrichment techniques that let users find and verify
patterns (Eckelt et al., 2022; Hinterreiter et al., 2021). Still, this search for

103

104 summary & outlook

interesting patterns remains a manual process that often requires a good
understanding of the dataset and/or the dimensionality reduction technique
used. Therefore, guidance might play an important role in the exploration of
dimensionality-reduced data in future work.

Guidance has been defined as a “mixed-initiative process” that “comprises
(1) the assistance a system gives to a user, and (2) [...] the feedback the user
provides to the system in order to steer the analysis process” (Ceneda et al.,
2019, p. 862). In the context of low-dimensional embeddings, this could be
realized by scanning both the low- and the high-dimensional data for patterns
such as clusters. A selection of these patterns could then be presented to the
user, potentially ranked by conservation or distortion metrics. In the case
of trajectory visualizations such as the Projection Path Explorer, temporal
information can additionally be taken into account, for example to extract
clusters that lie along path bundles. In this context, pattern-driven navigation
with insets (Lekschas et al., 2020) might be a promising approach. In this
technique, visual summaries of patterns are dynamically placed within the
visualization. They adapt to the zooming level and can be used to navigate
the visualization.

Most forms of guidance require algorithms for detecting patterns of in-
terest. This may add another level of opaque data-processing to an already
challenging visualization. Even when patterns can be automatically extracted
from the data, it might be difficult for users to understand why these patterns
have been identified and what makes them interesting. Future work will
have to address the challenge of how guidance can be used with embeddings
in an intuitive way that does not disrupt established analysis workflows.

8.2 the tooling landscape

Many visualization systems in the context of machine learning are developed
as standalone tools (e.g., web applications). With ConfusionFlow (Hinterre-
iter, Ruch, et al., 2022) and InstanceFlow (Pühringer et al., 2020) we opted
for browser-based applications ourselves. One advantage of deployed web
apps is that they can be tried out with minimal setup. However, it can
be challenging to include them efficiently in traditional machine learning
workflows.

Machine learning researchers typically use Jupyter notebooks and Python
scripts for developing and running their models. Analyzing these models
in separate, browser-based tools disrupts this workflow. Data has to be
transferred between systems, and the visualization part is often not easily
accessible and/or customizable for data scientists. In addition, visualization
tools may require different data formats, and it is often not clear how to
move from one tool to another in a multi-step analysis while preserving the
insights already gained.

A tighter integration of cutting-edge visualizations—especially within
computational notebooks—could lead to a more widespread adoption of vis
in ML. An integration of interactive visualization in notebooks is already
possible with Altair’s (VanderPlas et al., 2018) Python bindings for Vega-Lite

societal impact & outreach 105

(Satyanarayan et al., 2017) or with other widget-based plotting packages
such as bqplot (Cherukuri et al., 2022). We have recently adapted one of our
standalone visualizations, an extension of Grad-CAM for image segmentation
(Humer, Elharty, et al., 2022), to be usable directly within Jupyter notebooks.

However, even when visualizations are embedded in notebooks, another
challenge remains with respect to reaching the whole machine learning com-
munity: the division based on different frameworks. TensorFlow (Abadi et al.,
2016) and PyTorch (Paszke et al., 2019) are the two most popular frameworks
for deep learning. While PyTorch has surpassed TensorFlow in terms of
popularity in the research community, TensorFlow remains the industry
favorite (O’Connor, 2021). A third framework, JAX (Frostig et al., 2018), has
recently gained traction in the research community. When visualization and
machine learning experts work together, the framework is often locked in at
the beginning of a project. Since the frameworks are not compatible with
each other, this means that only a subset of the community is ever reached.
Future efforts are necessary to harmonize the tooling landscape and make
visualizations easily accessible and customizable for more developers.

8.3 societal impact & outreach

In their interrogative survey on visual analytics for deep learning, Hohman
et al. (2018) identified three target audiences: model developers, model users,
and non-experts. The vast majority of surveyed works was aimed at model de-
velopers. As machine learning models are used more frequently in everyday
applications, AI literacy among laypersons becomes an increasingly impor-
tant issue. Long and Magerko defined AI literacy as the “set of competencies
that enables individuals to critically evaluate AI technologies; communicate
and collaborate effectively with AI; and use AI as a tool online, at home, and
in the workplace” (Long & Magerko, 2020, p. 2). In order to understand how
visualizations can be used to boost these competencies, future collaborations
will not only have to include machine learning researchers, but also experts
from other fields such as psychology or human–computer interaction.

During my time as a PhD student, I was fortunate to participate in such a
collaboration with colleagues from the Robopsychology Lab at the Johannes
Kepler University, Linz. Together, we studied how visual explanations affect
the user performance in an AI-assisted, high-risk decision making task. In
several experiments, we asked participants to go on a virtual mushroom hunt
with the help of a fictitious mushroom identification app. Participants were
presented with images of mushrooms together with AI predictions of the
mushrooms’ species. They then had to decide for each mushroom whether it
was edible or not andwhether to pick it or leave it (i.e., participants could trust
the AI or overrule it). While one group only received the AI’s predictions,
a second group was given additional visual explanations. The group that
received the explanations outperformed the group that did not in the task of
correctly identifying whether a mushroom was edible or not (Leichtmann et
al., 2023). However, we also found that some effects were difficult to measure
and interpret due to the many possible moderating variables, such as the AI’s

106 summary & outlook

Figure 8.2: Impression from the AI For-
est installation in which visitors went
on a virtual, AI-assisted mushroom
hunt (Leichtmann et al., 2022). Im-
age by vog.photo/Ars Electronica, li-
censed under CC BY-NC-ND 2.0.

accuracy and the complexity of visual explanations. Therefore, future studies
are vital to better understand how visualization and machine learning can be
combined in applications targeted at laypersons.

In addition to scientific studies, it will be important to raise awareness
about potential issues related to the interpretability and application of ma-
chine learning models. We conducted a replication study of the experiment
mentioned above in an environment that let us engage with participants more
directly. We created an artificial forest environment at an art festival and
let visitors go on a virtual mushroom hunt in this immersive environment
(Leichtmann et al., 2022). Figure 8.2 gives an impression of our installation.
It was highly interesting to see how people from diverse demographics in-
teracted with the AI and the visualizations and to talk to them about the
implications of our work. It also reminded me how far a lot of the research
work is detached from the actual technological impacts on society. I believe
it is in the responsibility of us researchers, who study and develop visual-
izations and machine learning algorithms, to not forget about the societal
contributions of our work. Only then will the combination of visualization
and machine learning reach its full potential.

https://creativecommons.org/licenses/by-nc-nd/2.0/

R E F E R E N C E S

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I.,
Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur,
M., … Zheng, X. (2016). TensorFlow: Large-scale machine learning on
heterogeneous distributed systems. arXiv: 1603.04467 [cs]. Retrieved
June 1, 2018, from http://arxiv.org/abs/1603.04467 (cit. on pp. 18–20,
100, 105)

Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Inter-
disciplinary Reviews: Computational Statistics, 2(4), 433–459. https:
//doi.org/10.1002/wics.101 (cit. on pp. 10, 85)

Agrawal, A., Ali, A., & Boyd, S. (2021). Minimum-distortion embedding.
Foundations and Trends in Machine Learning, 14(3), 211–378. https:
//doi.org/10.1561/2200000090 (cit. on pp. 11, 86)

Aigner, W., Miksch, S., Schumann, H., & Tominski, C. (2011). Visualization of
time-oriented data. Springer. (Cit. on pp. 9, 16).

Alsallakh, B., Hanbury, A., Hauser, H., Miksch, S., & Rauber, A. (2014). Visual
methods for analyzing probabilistic classification data. IEEE Trans-
actions on Visualization and Computer Graphics, 20(12), 1703–1712.
https://doi.org/10.1109/TVCG.2014.2346660 (cit. on pp. 20, 21)

Alsallakh, B., Jourabloo, A., Ye, M., Liu, X., & Ren, L. (2018). Do convolutional
neural networks learn class hierarchy? IEEE Transactions on Visual-
ization and Computer Graphics, 24(1), 152–162. https://doi.org/10.
1109/TVCG.2017.2744683 (cit. on pp. 19, 20, 35, 38)

Andrienko, N., & Andrienko, G. (2006). Exploratory analysis of spatial and
temporal data. Springer. (Cit. on p. 9).

Andrienko, N., & Andrienko, G. (2013). Visual analytics of movement: An
overview of methods, tools and procedures. Information Visualization,
12(1), 3–24. https://doi.org/10.1177/1473871612457601 (cit. on p. 9)

Aubry,M.,&Russell, B. C. (2015). Understanding deep featureswith computer-
generated imagery. 2015 IEEE International Conference on Computer
Vision (ICCV), 2875–2883. https://doi.org/10.1109/ICCV.2015.329
(cit. on p. 65)

Bach, B., Shi, C., Heulot, N., Madhyastha, T., Grabowski, T., & Dragicevic, P.
(2016). Time curves: Folding time to visualize patterns of temporal
evolution in data. IEEE Transactions on Visualization and Computer
Graphics (InfoVis ’15), 22(1), 559–568 (cit. on pp. 5, 10, 47, 49–51, 56).

Balntas, V., Riba, E., Ponsa, D.,&Mikolajczyk, K. (2016). Learning local feature
descriptors with triplets and shallow convolutional neural networks.
Procedings of the British Machine Vision Conference 2016, 119.1–119.11.
https://doi.org/10.5244/C.30.119 (cit. on p. 97)

107

http://arxiv.org/abs/1603.04467
https://doi.org/10.1002/wics.101
https://doi.org/10.1002/wics.101
https://doi.org/10.1561/2200000090
https://doi.org/10.1561/2200000090
https://doi.org/10.1109/TVCG.2014.2346660
https://doi.org/10.1109/TVCG.2017.2744683
https://doi.org/10.1109/TVCG.2017.2744683
https://doi.org/10.1177/1473871612457601
https://doi.org/10.1109/ICCV.2015.329
https://doi.org/10.5244/C.30.119

108 references

Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Bar-
bado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila,
R., & Herrera, F. (2020). Explainable artificial intelligence (XAI): Con-
cepts, taxonomies, opportunities and challenges toward responsible
AI. Information Fusion, 58, 82–115. https://doi.org/10.1016/j.inffus.
2019.12.012 (cit. on p. 37)

Baumgartner, C. F., Kamnitsas, K., Matthew, J., Fletcher, T. P., Smith, S., Koch,
L. M., Kainz, B., & Rueckert, D. (2017). SonoNet: Real-time detection
and localisation of fetal standard scan planes in freehand ultrasound.
IEEE Transactions on Medical Imaging, 36(11), 2204–2215. https://
doi.org/10.1109/TMI.2017.2712367 (cit. on pp. 80, 81)

Becht, E., McInnes, L., Healy, J., Dutertre, C.-A., Kwok, I. W. H., Ng, L. G.,
Ginhoux, F., & Newell, E. W. (2019). Dimensionality reduction for
visualizing single-cell data using UMAP. Nature Biotechnology, 37 (1),
38–44. https://doi.org/10.1038/nbt.4314 (cit. on p. 11)

Bellet, A., Habrard, A., & Sebban, M. (2013). A survey on metric learning for
feature vectors and structured data. arXiv: 1306.6709 [cs.LG]. https:
//doi.org/10.48550/ARXIV.1306.6709 (cit. on pp. 11, 78)

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A
review and new perspectives. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 35(8), 1798–1828. https://doi.org/10.1109/
TPAMI.2013.50 (cit. on p. 11)

Bengio, Y., Delalleau, O., Roux, N. L., Paiement, J.-F., Vincent, P.,& Ouimet, M.
(2004). Learning eigenfunctions links spectral embedding and kernel
PCA. Neural Computation, 16(10), 2197–2219. https://doi.org/10.
1162/0899766041732396 (cit. on p. 11)

Bernard, J., Hutter, M., Zeppelzauer, M., Fellner, D., & Sedlmair, M. (2018).
Comparing visual-interactive labeling with active learning: An ex-
perimental study. IEEE Transactions on Visualization and Computer
Graphics, 24(1), 298–308. https://doi.org/10.1109/TVCG.2017.2744818
(cit. on p. 27)

Bernard, J. (2015). Exploratory search in time-oriented primary data (Doctoral
dissertation). Technische Universität Darmstadt. https://tuprints.
ulb.tu-darmstadt.de/5173/. (Cit. on p. 9)

Bernard, J., Hutter, M., Reinemuth, H., Pfeifer, H., Bors, C., & Kohlhammer, J.
(2019). Visual‐interactive preprocessing of multivariate time series
data. Computer Graphics Forum, 38(3), 401–412. https://doi.org/10.
1111/cgf.13698 (cit. on p. 22)

Bernard, J., Wilhelm, N., & Scherer, M. (2012). TimeSeriesPaths: Projection-
based explorative analysis of multivariate time series data. Journal
of WSCG, 20(2), 97–106 (cit. on p. 49).

Bernard, J., Zeppelzauer, M., Lehmann, M., Müller, M., & Sedlmair, M. (2018).
Towards user-centered active learning algorithms. Computer Graph-
ics Forum, 37 (3), 121–132. https://doi.org/10.1111/cgf.13406 (cit. on
p. 27)

Bernard, J., Zeppelzauer, M., Sedlmair, M., & Aigner, W. (2018). VIAL: A
unified process for visual interactive labeling. The Visual Computer,

https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1109/TMI.2017.2712367
https://doi.org/10.1109/TMI.2017.2712367
https://doi.org/10.1038/nbt.4314
https://doi.org/10.48550/ARXIV.1306.6709
https://doi.org/10.48550/ARXIV.1306.6709
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1162/0899766041732396
https://doi.org/10.1162/0899766041732396
https://doi.org/10.1109/TVCG.2017.2744818
https://tuprints.ulb.tu-darmstadt.de/5173/
https://tuprints.ulb.tu-darmstadt.de/5173/
https://doi.org/10.1111/cgf.13698
https://doi.org/10.1111/cgf.13698
https://doi.org/10.1111/cgf.13406

references 109

34(9), 1189–1207. https://doi.org/10.1007/s00371-018-1500-3 (cit. on
p. 27)

Blackard, J. A.,&Dean, D. J. (1999). Comparative accuracies of artificial neural
networks and discriminant analysis in predicting forest cover types
from cartographic variables. Computers and Electronics in Agriculture,
24(3), 131–151. https://doi.org/10.1016/S0168-1699(99)00046-0
(cit. on p. 96)

Blázquez-García, A., Conde, A., Mori, U., & Lozano, J. A. (2022). A review
on outlier/anomaly detection in time series data. ACM Computing
Surveys, 54(3), 1–33. https://doi.org/10.1145/3444690 (cit. on p. 9)

Böhm, J. N., Berens, P., & Kobak, D. (2022). Attraction-repulsion spectrum
in neighbor embeddings. Journal of Machine Learning Research, 23,
1–32. https://jmlr.org/papers/v23/21-0055.html (cit. on pp. 11, 85,
86)

Bostock, M., Ogievetsky, V., & Heer, J. (2011). D3: Data-driven documents.
IEEE Transactions on Visualization and Computer Graphics (InfoVis
’11), 17 (12), 2301–2309. https://doi.org/10.1109/TVCG.2011.185
(cit. on p. 26)

Bottou, L. (2010). Large-scale machine learning with stochastic gradient
descent. In Y. Lechevallier & G. Saporta (Eds.), Proceedings of COMP-
STAT’2010 (pp. 177–186). Physica-Verlag HD. https://doi.org/10.
1007/978-3-7908-2604-3_16. (Cit. on p. 90)

Boz, H. A. (2019). A visual multivariate dynamic EgoCentric network explo-
ration tool (Master’s Thesis). Sabanci University. Istanbul, Turkey.
(Cit. on p. 49).

Brent, R. P. (2002). Algorithms for minimization without derivatives. Dover
Publications. (Cit. on p. 79).

Brown, E. T., Ottley, A., Zhao, H., Lin, Q., Souvenir, R., Endert, A., & Chang, R.
(2014). Finding waldo: Learning about users from their interactions.
IEEE Transactions on Visualization and Computer Graphics, 20(12),
1663–1672. https://doi.org/10.1109/TVCG.2014.2346575 (cit. on p. 69)

Brown, E. T., Yarlagadda, S., Cook, K. A., Endert, A., & Chang, R. (2018).
ModelSpace: Visualizing the trails of data models in visual analytics
systems. MLUI 2018: Machine Learning from User Interactions for
Visualization and Analytics, 11 (cit. on p. 49).

Bruckner, D. (2014). ML-o-scope: A diagnostic visualization system for deep
machine learning pipelines. Defense Technical Information Center.
Fort Belvoir, VA. https://doi.org/10.21236/ADA605112. (Cit. on pp. 19,
20, 38)

Cakmak, E., Seebacher, D., Buchmuller, J., & Keim, D. A. (2018). Time series
projection to highlight trends and outliers. 2018 IEEE Conference
on Visual Analytics Science and Technology (VAST), 104–105. https:
//doi.org/10.1109/VAST.2018.8802502 (cit. on p. 49)

Caruana, R. (1997). Multitask learning. Machine Learning, 28(1), 41–75. https:
//doi.org/10.1023/A:1007379606734 (cit. on p. 95)

Ceneda, D., Gschwandtner, T., & Miksch, S. (2019). A review of guidance ap-
proaches in visual data analysis: A multifocal perspective. Computer

https://doi.org/10.1007/s00371-018-1500-3
https://doi.org/10.1016/S0168-1699(99)00046-0
https://doi.org/10.1145/3444690
https://jmlr.org/papers/v23/21-0055.html
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1007/978-3-7908-2604-3_16
https://doi.org/10.1007/978-3-7908-2604-3_16
https://doi.org/10.1109/TVCG.2014.2346575
https://doi.org/10.21236/ADA605112
https://doi.org/10.1109/VAST.2018.8802502
https://doi.org/10.1109/VAST.2018.8802502
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1023/A:1007379606734

110 references

Graphics Forum, 38(3), 861–879. https://doi.org/10.1111/cgf.13730
(cit. on p. 104)

Chae, J., Gao, S., Ramanthan, A., Steed, C., & Tourassi, G. D. (2017). Visualiza-
tion for classi�cation in deep neural networks. Workshop on Visual
Analytics for Deep Learning at IEEE VIS, 6 (cit. on pp. 19, 20, 38).

Chatzimparmpas, A., Martins, R. M., Jusufi, I.,& Kerren, A. (2020). A survey of
surveys on the use of visualization for interpreting machine learning
models. Information Visualization, 19(3), 207–233. https://doi.org/
10.1177/1473871620904671 (cit. on pp. 2, 17, 37)

Chechik, G., Sharma, V., Shalit, U., & Bengio, S. (2010). Large scale online
learning of image similarity through ranking. Journal of Machine
Learning Research, 11(36), 1109–1135. https://www.jmlr.org/papers/
v11/chechik10a.html (cit. on pp. 90, 96–98)

Chen, X., Weng, J., Lu, W., Xu, J., & Weng, J. (2018). Deep manifold learning
combined with convolutional neural networks for action recognition.
IEEE Transactions on Neural Networks and Learning Systems, 29(9),
3938–3952. https://doi.org/10.1109/TNNLS.2017.2740318 (cit. on
p. 78)

Cherukuri, C., Dafna, I., Grout, J., Mabille, J., Young, K., Breddels, M., Renou,
M., & Corlay, S. (2022). bqplot – plotting library for ipython/jupyter
notebooks. Retrieved September 26, 2022, from https://github.com/

bqplot/bqplot. (Cit. on p. 105)
Chinchalkar, S. (1996). An upper bound for the number of reachable positions.

ICGA Journal, 19(3), 181–183. https://doi.org/10.3233/ICG-1996-
19305 (cit. on p. 63)

Chung, S., Suh, S., & Park, C. (2016). ReVACNN: Real-time visual analytics for
convolutional neural network. ACM SIGKDD Workshop on Interactive
Data Exploration and Analytics (IDEA), 7 (cit. on pp. 19, 20, 38).

Cox, M. A. A., & Cox, T. F. (2008). Multidimensional scaling. In Handbook of
data visualization (pp. 315–347). Springer Berlin Heidelberg. https:
//doi.org/10.1007/978-3-540-33037-0_14. (Cit. on p. 10)

Cunningham, J. P.,& Ghahramani, Z. (2015). Linear dimensionality reduction:
Survey, insights, and generalizations. Journal of Machine Learning
Research, 16(1), 2859–2900 (cit. on pp. 10, 91).

Cutler, Z. T., Gadhave, K., & Lex, A. (2020). Trrack: A library for provenance
tracking in web-based visualizations. IEEE Visualization Conference
(VIS), 116–120. https://doi.org/10.1109/VIS47514.2020.00030 (cit. on
p. 70)

Damrich, S., Böhm, J. N., Hamprecht, F. A., & Kobak, D. (2022). Contrastive
learning unifies t-SNE and UMAP. https://doi.org/10.48550/
ARXIV.2206.01816 (cit. on p. 11)

Damrich, S., & Hamprecht, F. A. (2021). On UMAP’s true loss function. Ad-
vances in Neural Information Processing Systems, 34, 5798–5809 (cit.
on p. 11).

de Bodt, C., Mulders, D., Verleysen, M., & Lee, J. A. (2019). Nonlinear di-
mensionality reduction with missing data using parametric multiple
imputations. IEEE Transactions on Neural Networks and Learning Sys-

https://doi.org/10.1111/cgf.13730
https://doi.org/10.1177/1473871620904671
https://doi.org/10.1177/1473871620904671
https://www.jmlr.org/papers/v11/chechik10a.html
https://www.jmlr.org/papers/v11/chechik10a.html
https://doi.org/10.1109/TNNLS.2017.2740318
https://github.com/bqplot/bqplot
https://github.com/bqplot/bqplot
https://doi.org/10.3233/ICG-1996-19305
https://doi.org/10.3233/ICG-1996-19305
https://doi.org/10.1007/978-3-540-33037-0_14
https://doi.org/10.1007/978-3-540-33037-0_14
https://doi.org/10.1109/VIS47514.2020.00030
https://doi.org/10.48550/ARXIV.2206.01816
https://doi.org/10.48550/ARXIV.2206.01816

references 111

tems, 30(4), 1166–1179. https://doi.org/10.1109/TNNLS.2018.2861891
(cit. on p. 11)

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). ImageNet:
A large-scale hierarchical image database. 2009 IEEE Conference on
Computer Vision and Pattern Recognition, 248–255. https://doi.org/
10.1109/CVPR.2009.5206848 (cit. on p. 29)

Deniz. (2018). Pgn2gif. Retrieved July 11, 2019, from https://github.com/

dn1z/pgn2gif. (Cit. on p. 63)
Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., & Darrell, T.

(2014). DeCAF: A deep convolutional activation feature for generic
visual recognition. Proceedings of Machine Learning Research, 32, 647–
655. Retrieved November 12, 2019, from http://arxiv.org/abs/1310.

1531 (cit. on p. 65)
Dong, W., Moses, C., & Li, K. (2011). Efficient k-nearest neighbor graph

construction for generic similarity measures. Proceedings of the 20th
international conference on World wide web - WWW ’11, 577. https:
//doi.org/10.1145/1963405.1963487 (cit. on p. 79)

döt Net, I., Müller, T., Pantelis, A., Aro, E., Smith, T., Ben-Kiki, O.,& Evans, C. C.
(2021). YAML ain’t markup language (YAML™) version 1.2 (Revision
1.2.2). YAML Language Development Team. https://yaml.org/spec/
1.2.2. (Cit. on pp. 87, 100)

Dou, W., Jeong, D. H., Stukes, F., Ribarsky, W., Lipford, H. R., & Chang, R.
(2009). Recovering reasoning process from user interactions. IEEE
Computer Graphics & Applications, 29(3), 52–61 (cit. on p. 69).

Du, F., Cao, N., Zhao, J., & Lin, Y.-R. (2015). Trajectory bundling for animated
transitions. Proceedings of the 33rd Annual ACMConference on Human
Factors in Computing Systems, 289–298 (cit. on p. 9).

Eckelt, K., Hinterreiter, A., Adelberger, P., Walchshofer, C., Dhanoa, V., Humer,
C., Heckmann, M., Steinparz, C. A., & Streit, M. (2022). Visual explo-
ration of relationships and structure in low-dimensional embeddings.
IEEE Transactions on Visualization and Computer Graphics (Early Ac-
cess). https://doi.org/10.1109/TVCG.2022.3156760 (cit. on pp. 7, 8, 74,
75, 103)

Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle re-
gression. The Annals of Statistics, 32(2). https://doi.org/10.1214/
009053604000000067 (cit. on p. 91)

Endert, A., Ribarsky, W., Turkay, C., Wong, B. W., Nabney, I., Blanco, I. D., &
Rossi, F. (2017). The state of the art in integrating machine learning
into visual analytics: Integrating machine learning into visual ana-
lytics. Computer Graphics Forum. https://doi.org/10.1111/cgf.13092
(cit. on pp. 2, 3)

Engel, D., Hüttenberger, L., & Hamann, B. (2012). A survey of dimension
reduction methods for high-dimensional data analysis and visualiza-
tion. Visualization of Large and Unstructured Data Sets: Applications
in Geospatial Planning, Modeling and Engineering – Proceedings of
IRTG 1131 Workshop 2011, 27, 135–149. https://doi.org/10.4230/
oasics.vluds.2011.135 (cit. on p. 10)

https://doi.org/10.1109/TNNLS.2018.2861891
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://github.com/dn1z/pgn2gif
https://github.com/dn1z/pgn2gif
http://arxiv.org/abs/1310.1531
http://arxiv.org/abs/1310.1531
https://doi.org/10.1145/1963405.1963487
https://doi.org/10.1145/1963405.1963487
https://yaml.org/spec/1.2.2
https://yaml.org/spec/1.2.2
https://doi.org/10.1109/TVCG.2022.3156760
https://doi.org/10.1214/009053604000000067
https://doi.org/10.1214/009053604000000067
https://doi.org/10.1111/cgf.13092
https://doi.org/10.4230/oasics.vluds.2011.135
https://doi.org/10.4230/oasics.vluds.2011.135

112 references

Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., & Bengio,
S. (2010). Why does unsupervised pre-training help deep learning?
Journal of Machine Learning Research, 11, 625–660 (cit. on pp. 66, 69,
78).

Ersoy, O., Hurter, C., Paulovich, F., Cantareiro, G.,& Telea, A. (2011). Skeleton-
based edge bundling for graph visualization. IEEE Transactions on
Visualization and Computer Graphics, 17 (12), 2364–2373. https://doi.
org/10.1109/TVCG.2011.233 (cit. on p. 9)

Espadoto, M., Martins, R. M., Kerren, A., Hirata, N. S. T., & Telea, A. C. (2019).
Towards a quantitative survey of dimension reduction techniques.
IEEE Transactions on Visualization and Computer Graphics, 1–1. https:
//doi.org/10.1109/TVCG.2019.2944182 (cit. on pp. 10, 53, 91, 95, 103)

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to
knowledge discovery in databases. AI Magazine, 17 (3), 37. https:
//doi.org/10.1609/aimag.v17i3.1230 (cit. on p. 9)

Ferri, C., Hernández-Orallo, J.,&Modroiu, R. (2009). An experimental compar-
ison of performance measures for classification. Pattern Recognition
Letters, 30(1), 27–38. https://doi.org/10.1016/j.patrec.2008.08.010
(cit. on p. 37)

Frankle, J., & Carbin, M. (2018). The lottery ticket hypothesis: Finding sparse,
trainable neural networks. arXiv: 1803.03635 [cs]. Retrieved March 18,
2019, from http://arxiv.org/abs/1803.03635 (cit. on p. 32)

Fridrich, J. (1997). My system for solving Rubik’s cube. Retrieved February 25,
2019, from http://www.ws.binghamton.edu/fridrich/system.html.
(Cit. on p. 58)

Friedel, F. (2017). Fritz 16 – freund und trainer. Retrieved November 4, 2019,
from https://de.chessbase.com/post/fritz-16-freund-und-trainer.
(Cit. on p. 62)

Friendly, M. (2008). A brief history of data visualization. In C.-h. Chen, W.
Härdle,&A. Unwin (Eds.), Handbook of data visualization (pp. 15–56).
Springer. (Cit. on p. 1).

Frostig, R., Johnson, M. J., & Leary, C. (2018). Compiling machine learning
programs via high-level tracing. SysML Conference, 3. https://mlsys.
org/Conferences/2019/doc/2018/146.pdf (cit. on pp. 100, 105)

Fu, T.-c. (2011). A review on time series data mining. Engineering Applications
of Artificial Intelligence, 24(1), 164–181. https://doi.org/10.1016/j.
engappai.2010.09.007 (cit. on p. 9)

Furmanova, K., Gratzl, S., Stitz, H., Zichner, T., Jaresova, M., Lex, A., & Streit,
M. (2020). Taggle: Combining overview and details in tabular data
visualizations. Information Visualization, 19(2), 114–136. https://doi.
org/10.1177/1473871619878085 (cit. on p. 39)

Gadhave, K., Görtler, J., Cutler, Z., Nobre, C., Deussen, O., Meyer, M., Phillips,
J. M., & Lex, A. (2021). Predicting intent behind selections in scatter-
plot visualizations. Information Visualization, 20(4), 207–228. https:
//doi.org/10.1177/14738716211038604 (cit. on pp. 70, 71)

https://doi.org/10.1109/TVCG.2011.233
https://doi.org/10.1109/TVCG.2011.233
https://doi.org/10.1109/TVCG.2019.2944182
https://doi.org/10.1109/TVCG.2019.2944182
https://doi.org/10.1609/aimag.v17i3.1230
https://doi.org/10.1609/aimag.v17i3.1230
https://doi.org/10.1016/j.patrec.2008.08.010
http://arxiv.org/abs/1803.03635
http://www.ws.binghamton.edu/fridrich/system.html
https://de.chessbase.com/post/fritz-16-freund-und-trainer
https://mlsys.org/Conferences/2019/doc/2018/146.pdf
https://mlsys.org/Conferences/2019/doc/2018/146.pdf
https://doi.org/10.1016/j.engappai.2010.09.007
https://doi.org/10.1016/j.engappai.2010.09.007
https://doi.org/10.1177/1473871619878085
https://doi.org/10.1177/1473871619878085
https://doi.org/10.1177/14738716211038604
https://doi.org/10.1177/14738716211038604

references 113

Gilday, D. (2019). How to build MindCub3r for Lego Mindstroms EV3. Re-
trieved November 28, 2019, from https://www.mindcuber.com/mindcub

3r/mindcub3r.html. (Cit. on p. 133)
Gisbrecht, A., Mokbel, B., & Hammer, B. (2012). Linear basis-function t-SNE

for fast nonlinear dimensionality reduction. The 2012 International
Joint Conference on Neural Networks (IJCNN), 1–8. https://doi.org/
10.1109/IJCNN.2012.6252809 (cit. on p. 11)

Gisbrecht, A., Schulz, A., & Hammer, B. (2015). Parametric nonlinear dimen-
sionality reduction using kernel t-SNE. Neurocomputing, 147, 71–82.
https://doi.org/10.1016/j.neucom.2013.11.045 (cit. on pp. 11, 133)

Gleicher, M., Albers, D., Walker, R., Jusufi, I., Hansen, C. D., & Roberts,
J. C. (2011). Visual comparison for information visualization. Infor-
mation Visualization, 10(4), 289–309. https : / / doi . org / 10 . 1177 /
1473871611416549 (cit. on pp. 18, 23)

Glorot, X., Bordes, A., & Bengio, Y. (2011). Domain adaptation for large-scale
sentiment classification: A deep learning approach. Proceedings of the
28th International Conference on Machine Learning, 8 (cit. on p. 13).

Gogolou, A., Tsandilas, T., Palpanas, T., & Bezerianos, A. (2019). Comparing
similarity perception in time series visualizations. IEEE Transactions
on Visualization and Computer Graphics (InfoVis ’18), 25(1), 523–533.
https://doi.org/10.1109/TVCG.2018.2865077 (cit. on pp. 10, 22)

Görtler, J., Hohman, F., Moritz, D., Wongsuphasawat, K., Ren, D., Nair, R.,
Kirchner, M., & Patel, K. (2022). Neo: Generalizing confusion matrix
visualization to hierarchical and multi-output labels. CHI Conference
on Human Factors in Computing Systems, 1–13. https://doi.org/10.
1145/3491102.3501823 (cit. on p. 87)

Gower, J. C. (1971). A general coefficient of similarity and some of its proper-
ties. Biometrics, 27 (4), 857. https://doi.org/10.2307/2528823 (cit. on
p. 70)

Gratzl, S., Lex, A., Gehlenborg, N., Pfister, H., & Streit, M. (2013). LineUp:
Visual analysis of multi-attribute rankings. IEEE Transactions on
Visualization and Computer Graphics (InfoVis ’13), 19(12), 2277–2286.
https://doi.org/10.1109/TVCG.2013.173 (cit. on pp. 39, 41)

Griffin, G., Holub, A., & Perona, P. (2007). Caltech-256 object category dataset
(No. 7694). Caltech. http://authors.library.caltech.edu/7694. (Cit.
on p. 29)

Hamel, P., & Eck, D. (2010). Learning features from music audio with deep
belief networks. Proceedings of the 11th International Society for Music
Information Retrieval Conference, 339–344 (cit. on p. 65).

Han, S., Pool, J., Tran, J., & Dally, W. J. (2015). Learning both weights and
connections for efficient neural networks. Advances in Neural In-
formation Processing Systems, 28. https://proceedings.neurips.cc/
paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html

(cit. on p. 32)
Havard, P. (2019). Kingbase – a free chess games database, updated monthly.

Retrieved July 11, 2019, from https://www.kingbase-chess.net/. (Cit.
on p. 63)

https://www.mindcuber.com/mindcub3r/mindcub3r.html
https://www.mindcuber.com/mindcub3r/mindcub3r.html
https://doi.org/10.1109/IJCNN.2012.6252809
https://doi.org/10.1109/IJCNN.2012.6252809
https://doi.org/10.1016/j.neucom.2013.11.045
https://doi.org/10.1177/1473871611416549
https://doi.org/10.1177/1473871611416549
https://doi.org/10.1109/TVCG.2018.2865077
https://doi.org/10.1145/3491102.3501823
https://doi.org/10.1145/3491102.3501823
https://doi.org/10.2307/2528823
https://doi.org/10.1109/TVCG.2013.173
http://authors.library.caltech.edu/7694
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
https://www.kingbase-chess.net/

114 references

He, J., & Chen, C. (2017). Visualizing temporal patterns in representation
data. VADL 2017: Workshop on Visual Analytics for Deep Learning, 4
(cit. on p. 49).

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image
recognition. 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 770–778. https://doi.org/10.1109/CVPR.2016.90
(cit. on p. 13)

Henry. (2017). How is the distance of two random points in a unit hypercube
distributed? [https://math.stackexchange.com/q/1985698]. (Cit. on
p. 54).

Hinterreiter, A., Humer, C., Kainz, B., & Streit, M. (2022). ParaDime: A frame-
work for parametric dimensionality reduction. arXiv: 2210.04582.
https://doi.org/10.48550/arXiv.2210.04582. To be submitted to
EuroVis ’23 (cit. on pp. 6, 8, 103)

Hinterreiter, A., Ruch, P., Stitz, P., Ennemoser, M., Bernard, J., Strobelt, H.,
& Streit, M. (2022). ConfusionFlow: A model-agnostic visualization
for temporal analysis of classifier confusion. IEEE Transactions on
Visualization and Computer Graphics, 28(2), 1222–1236. https://doi.
org/10.1109/TVCG.2020.3012063 (cit. on pp. 3, 4, 8, 37, 38, 45, 67, 103,
104)

Hinterreiter, A., Steinparz, C. A., Schöfl, M., Stitz, H., & Streit, M. (2021). Pro-
jection Path Explorer: Exploring visual patterns in projected decision-
making paths. ACM Transactions on Interactive Intelligent Systems,
11(3–4), Article 22. https://doi.org/10.1145/3387165 (cit. on pp. 5, 8,
103)

Hinterreiter, A., Streit, M., & Kainz, B. (2020). Projective Latent Interven-
tions for understanding and fine-tuning classifiers. In J. Cardoso
et al. (Eds.), Interpretable and annotation-efficient learning for medical
image computing. Proceedings of the 3rd workshop on interpretability
of machine intelligence in medical image computing (iMIMIC 2020)
(pp. 13–22). Springer. https://doi.org/10.1007/978-3-030-61166-8_2.
Best Paper Award at iMIMIC 2020. (Cit. on pp. 5, 99, 103)

Hinton, G. E. (2006). Reducing the dimensionality of data with neural net-
works. Science, 313(5786), 504–507. https://doi.org/10.1126/science.
1127647 (cit. on p. 11)

Hinton, G. E.,& Roweis, S. T. (2002). Stochastic neighbor embedding.Advances
in Neural Information Processing Systems, 15, 8 (cit. on pp. 10, 11).

Hinton, G. E., & Zemel, R. S. (1993). Autoencoders, minimum description
length and helmholtz free energy. Proceedings of the 6th International
Conference on Neural Information Processing Systems (NIPS ’93), 3–10.
https://doi.org/10.5555/2987189.2987190 (cit. on p. 11)

Hohman, F., Hodas, N., & Chau, D. H. (2017). ShapeShop: Towards under-
standing deep learning representations via interactive experimen-
tation. Proceedings of the 2017 CHI Conference Extended Abstracts
on Human Factors in Computing Systems - CHI EA ’17, 1694–1699.
https://doi.org/10.1145/3027063.3053103 (cit. on p. 18)

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.48550/arXiv.2210.04582
https://doi.org/10.1109/TVCG.2020.3012063
https://doi.org/10.1109/TVCG.2020.3012063
https://doi.org/10.1145/3387165
https://doi.org/10.1007/978-3-030-61166-8_2
https://doi.org/10.1126/science.1127647
https://doi.org/10.1126/science.1127647
https://doi.org/10.5555/2987189.2987190
https://doi.org/10.1145/3027063.3053103

references 115

Hohman, F., Kahng, M., Pienta, R., & Chau, D. H. (2018). Visual analytics in
deep learning: An interrogative survey for the next frontiers. IEEE
Transactions on Visualization and Computer Graphics, 25(8), 2674–
2693. https://doi.org/10.1109/TVCG.2018.2843369 (cit. on pp. 1, 2, 37,
65, 103, 105)

Holten, D., & Wijk, J. J. v. (2009). Force-directed edge bundling for graph
visualization. Computer Graphics Forum (EuroVis ’09), 28(3), 983–990.
https://doi.org/10.1111/j.1467-8659.2009.01450.x (cit. on p. 9)

Humer, C., Elharty, M., Hinterreiter, A., & Streit, M. (2022). Interactive at-
tribution-based explanations for image segmentation. In M. Krone,
S. Lenti, & J. Schmidt (Eds.), EuroVis 2022 – Posters (3 pages). The
Eurographics Association. https://doi.org/10.2312/EVP.20221130.
(Cit. on p. 105)

Humer, C., Heberle, H., Montanari, F., Wolf, T., Huber, F., Henderson, R.,
Heinrich, J., & Streit, M. (2022). ChemInformatics model explorer
(CIME): Exploratory analysis of chemical model explanations. Journal
of Cheminformatics, 14(1), 21. https://doi.org/10.1186/s13321-022-
00600-z (cit. on p. 75)

Humer, C., Hinterreiter, A., Leichtmann, B., Mara, M., & Streit, M. (2022).
Comparing effects of attribution-based, example-based, and feature-
based explanation methods on AI-assisted decision-making. OSF
Preprint. https://doi.org/10.31219/osf.io/h6dwz. Submitted to the
27th Annual Conference on Intelligent User Interfaces (IUI ’23) (cit. on
p. 7)

Hurter, C., Ersoy, O., Fabrikant, S. I., Klein, T. R.,& Telea, A. C. (2013). Bundled
visualization of dynamic graph and trail data. IEEE Transactions on
Visualization and Computer Graphics, 20(8), 1141–1157. https://doi.
org/10.1109/TVCG.2013.246 (cit. on p. 9)

Kahng, M., Andrews, P. Y., Kalro, A., & Chau, D. H. (2017). ActiVis: Visual ex-
ploration of industry-scale deep neural network models. IEEE Trans-
actions on Visualization and Computer Graphics, 24, 88–97. https:
//doi.org/10.1109/TVCG.2017.2744718 (cit. on p. 38)

Kahng, M., Thorat, N., Chau, D. H. P., Viegas, F. B., & Wattenberg, M. (2019).
GAN lab: Understanding complex deep generative models using
interactive visual experimentation. IEEE Transactions on Visualization
and Computer Graphics, 25(1), 1–11. https://doi.org/10.1109/TVCG.
2018.2864500 (cit. on p. 19)

Kapoor, A., Lee, B., Tan, D., & Horvitz, E. (2010). Interactive optimization for
steering machine classification. Proceedings of the 28th international
conference on Human factors in computing systems - CHI ’10, 1343.
https://doi.org/10.1145/1753326.1753529 (cit. on p. 20)

Keim, D. A., Bak, P., Bertini, E., Oelke, D., Spretke, D., & Ziegler, H. (2010).
Advanced visual analytics interfaces. Proceedings of the International
Conference on Advanced Visual Interfaces - AVI ’10, 3. https://doi.
org/10.1145/1842993.1842995 (cit. on p. 3)

https://doi.org/10.1109/TVCG.2018.2843369
https://doi.org/10.1111/j.1467-8659.2009.01450.x
https://doi.org/10.2312/EVP.20221130
https://doi.org/10.1186/s13321-022-00600-z
https://doi.org/10.1186/s13321-022-00600-z
https://doi.org/10.31219/osf.io/h6dwz
https://doi.org/10.1109/TVCG.2013.246
https://doi.org/10.1109/TVCG.2013.246
https://doi.org/10.1109/TVCG.2017.2744718
https://doi.org/10.1109/TVCG.2017.2744718
https://doi.org/10.1109/TVCG.2018.2864500
https://doi.org/10.1109/TVCG.2018.2864500
https://doi.org/10.1145/1753326.1753529
https://doi.org/10.1145/1842993.1842995
https://doi.org/10.1145/1842993.1842995

116 references

Kingma, D. P., & Ba, J. (2017). Adam: A method for stochastic optimization.
arXiv: 1412.6980 [cs]. Retrieved March 30, 2022, from http://arxiv.

org/abs/1412.6980 (cit. on pp. 90, 91)
Kobak, D., & Linderman, G. C. (2021). Initialization is critical for preserving

global data structure in both t-SNE and UMAP. Nature Biotechnology,
39(2), 156–157. https://doi.org/10.1038/s41587-020-00809-z (cit. on
p. 11)

Kondo, B., & Collins, C. (2014). DimpVis: Exploring time-varying information
visualizations by direct manipulation. IEEE Transactions on Visual-
ization and Computer Graphics (InfoVis ’14), 20(12), 2003–2012. https:
//doi.org/10.1109/TVCG.2014.2346250 (cit. on p. 9)

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images
(Vol. 1, No. 4). University of Toronto. (Cit. on pp. 21, 22, 26, 29, 43,
80).

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification
with deep convolutional neural networks. Communications of the
ACM, 60(6), 84–90. https://doi.org/10.1145/3065386 (cit. on p. 13)

Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness of fit
to a nonmetric hypothesis. Psychometrika, 29(1), 1–27. https://doi.
org/10.1007/BF02289565 (cit. on p. 91)

Kulis, B. (2012). Metric learning: A survey. Foundations and Trends in Machine
Learning, 5(4), 287–364 (cit. on pp. 11, 78).

LeCun, Y. (2005). The MNIST database of handwritten digits. Retrieved
September 20, 2022, from http://yann.lecun.com/exdb/mnist/. (Cit. on
pp. 67, 80, 85, 92, 94, 95)

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553),
436–444. https://doi.org/10.1038/nature14539 (cit. on p. 65)

LeCun, Y., Bottou, L., Bengio, Y.,&Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11),
2278–2324. https://doi.org/10.1109/5.726791 (cit. on p. 28)

Lee, C.-Y., Xie, S., Gallagher, P., Zhang, Z., & Tu, Z. (2015). Deeply-supervised
nets. Proceedings of the Eighteenth International Conference on Arti-
ficial Intelligence and Statistics, 38, 562–570. http://proceedings.mlr.
press/v38/lee15a.html (cit. on p. 78)

Leichtmann, B., Hinterreiter, A., Humer, C., Streit, M., & Mara, M. (2022).
Explainable artificial intelligence improves human decision-making:
Results from a mushroom picking experiment at a public art festival.
OSF Preprint. https://doi.org/10.31219/osf.io/68emr. To be sub-
mitted to the International Journal of Human–Computer Interaction
(cit. on pp. 7, 8, 106)

Leichtmann, B., Humer, C., Hinterreiter, A., Streit, M., & Mara, M. (2023).
Effects of explainable artificial intelligence on trust and human be-
havior in a high-risk decision task. Computers in Human Behavior,
139, 107539. https://doi.org/10.1016/j.chb.2022.107539 (cit. on pp. 7,
8, 105)

Lekschas, F., Behrisch, M., Bach, B., Kerpedjiev, P., Gehlenborg, N., & Pfister,
H. (2020). Pattern-driven navigation in 2d multiscale visualizations

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1038/s41587-020-00809-z
https://doi.org/10.1109/TVCG.2014.2346250
https://doi.org/10.1109/TVCG.2014.2346250
https://doi.org/10.1145/3065386
https://doi.org/10.1007/BF02289565
https://doi.org/10.1007/BF02289565
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/5.726791
http://proceedings.mlr.press/v38/lee15a.html
http://proceedings.mlr.press/v38/lee15a.html
https://doi.org/10.31219/osf.io/68emr
https://doi.org/10.1016/j.chb.2022.107539

references 117

with scalable insets. IEEE Transactions on Visualization and Computer
Graphics, 26(1), 611–621. https://doi.org/10.1109/TVCG.2019.2934555
(cit. on p. 104)

Lex, A., Streit, M., Schulz, H.-J., Partl, C., Schmalstieg, D., Park, P., & Gehlen-
borg, N. (2012). StratomeX: Visual analysis of large-scale heteroge-
neous genomics data for cancer subtype characterization. Computer
Graphics Forum, 31(3), 1175–1184. https://doi.org/10.1111/j.1467-
8659.2012.03110.x (cit. on p. 39)

Lex, A., Schulz, H.-J., Streit, M., Partl, C., & Schmalstieg, D. (2011). VisBricks:
Multiform visualization of large, inhomogeneous data. IEEE Trans-
actions on Visualization and Computer Graphics (InfoVis ’11), 17 (12),
2291–2300. https://doi.org/10.1109/TVCG.2011.250 (cit. on p. 39)

Li Fei-Fei, Fergus, R., & Perona, P. (2004). Learning generative visual mod-
els from few training examples: An incremental bayesian approach
tested on 101 object categories. 2004 Conference on Computer Vision
and Pattern Recognition Workshop, 178–178. https://doi.org/10.
1109/CVPR.2004.383 (cit. on p. 29)

Liberacki, L., & Brannan, T. (2015). Rubik’s cube solver coded in python.
Retrieved February 28, 2019, from https://github.com/CubeLuke/

Rubiks-Cube-Solver. (Cit. on p. 58)
Liu, D., Cui, W., Jin, K., Guo, Y., & Qu, H. (2019). DeepTracker: Visualizing the

training process of convolutional neural networks. ACM Transactions
on Intelligent Systems and Technology, 10, Article 6. https://doi.org/
10.1145/3200489 (cit. on pp. 19, 20, 38)

Liu, S., Maljovec, D., Wang, B., Bremer, P. T.,& Pascucci, V. (2017). Visualizing
high-dimensional data: Advances in the past decade. IEEE Trans-
actions on Visualization and Computer Graphics, 23(3), 1249–1268.
https://doi.org/10.1109/TVCG.2016.2640960 (cit. on p. 3)

Liu, Z., Sun, M., Zhou, T., Huang, G.,&Darrell, T. (2018). Rethinking the value
of network pruning. arXiv: 1810.05270 [cs, stat]. Retrieved March 18,
2019, from http://arxiv.org/abs/1810.05270 (cit. on p. 32)

Long, D., &Magerko, B. (2020). What is AI literacy? competencies and design
considerations. In R. Bernhaupt (Ed.), Proceedings of the 2020 CHI con-
ference on human factors in computing systems (pp. 1–16). Association
for Computing Machinery. https://doi.org/10.1145/3313831.3376727.
(Cit. on p. 105)

Lu, W.-L., Wang, Y.-S.,& Lin, W.-C. (2014). Chess evolution visualization. IEEE
Transactions on Visualization and Computer Graphics, 20(5), 702–713.
https://doi.org/10.1109/TVCG.2014.2299803 (cit. on p. 62)

L’Yi, S., Wang, Q., Lekschas, F.,& Gehlenborg, N. (2022). Gosling: A grammar-
based toolkit for scalable and interactive genomics data visualization.
IEEE Transactions on Visualization and Computer Graphics, 28(1), 140–
150. https://doi.org/10.1109/TVCG.2021.3114876 (cit. on p. 87)

Mao, Y., Dillon, J., & Lebanon, G. (2007). Sequential document visualization.
IEEE Transactions on Visualization and Computer Graphics, 13(6),
1208–1215. https://doi.org/10.1109/TVCG.2007.70592 (cit. on p. 49)

https://doi.org/10.1109/TVCG.2019.2934555
https://doi.org/10.1111/j.1467-8659.2012.03110.x
https://doi.org/10.1111/j.1467-8659.2012.03110.x
https://doi.org/10.1109/TVCG.2011.250
https://doi.org/10.1109/CVPR.2004.383
https://doi.org/10.1109/CVPR.2004.383
https://github.com/CubeLuke/Rubiks-Cube-Solver
https://github.com/CubeLuke/Rubiks-Cube-Solver
https://doi.org/10.1145/3200489
https://doi.org/10.1145/3200489
https://doi.org/10.1109/TVCG.2016.2640960
http://arxiv.org/abs/1810.05270
https://doi.org/10.1145/3313831.3376727
https://doi.org/10.1109/TVCG.2014.2299803
https://doi.org/10.1109/TVCG.2021.3114876
https://doi.org/10.1109/TVCG.2007.70592

118 references

Mayr, A., Klambauer, G., Unterthiner, T., Steijaert, M., K. Wegner, J., Ceule-
mans, H., Clevert, D.-A., & Hochreiter, S. (2018). Large-scale com-
parison of machine learning methods for drug target prediction on
ChEMBL. Chemical Science, 9(24), 5441–5451. https://doi.org/10.
1039/C8SC00148K (cit. on p. 13)

McInnes, L., Healy, J., & Melville, J. (2018). UMAP: Uniform manifold approx-
imation and projection for dimension reduction. arXiv: 1802.03426
[cs, stat] (cit. on pp. 11, 57, 77, 85, 90, 96).

McLachlan, P., Munzner, T., Koutsofios, E., & North, S. (2008). LiveRAC:
Interactive visual exploration of systemmanagement time-series data.
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’08), 1483–1492 (cit. on p. 34).

Mead, A. (1992). Review of the development of multidimensional scaling
methods. The Statistician, 41(1), 27. https://doi.org/10.2307/2348634
(cit. on p. 77)

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Dis-
tributed representations of words and phrases and their composition-
ality. Advances in Neural Information Processing Systems, 26. https:
//proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c

4923ce901b-Abstract.html (cit. on p. 90)
Miksch, S.,&Aigner,W. (2014). Amatter of time: Applying a data–users–tasks

design triangle to visual analytics of time-oriented data. Computers
& Graphics, 38, 286–290. https://doi.org/10.1016/j.cag.2013.11.002
(cit. on p. 9)

Min, M. R., van der Maaten, L., Yuan, Z., Bonner, A. J., & Zhang, Z. (2010).
Deep supervised t-distributed embedding. Proceedings of the 27th
International Conference on Machine Learning (ICML-10). https://
icml.cc/Conferences/2010/papers/149.pdf (cit. on pp. 11, 77, 78)

Ming, Y., Cao, S., Zhang, R., Li, Z., Chen, Y., Song, Y., & Qu, H. (2017). Under-
standing hidden memories of recurrent neural networks. 2017 IEEE
Conference on Visual Analytics Science and Technology (VAST), 13–24.
https://doi.org/10.1109/VAST.2017.8585721 (cit. on pp. 18, 20)

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S.,
Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra,
D., Legg, S.,&Hassabis, D. (2015). Human-level control through deep
reinforcement learning. Nature, 518(7540), 529–533. https://doi.org/
10.1038/nature14236 (cit. on p. 65)

Mohamed, A.-r., Hinton, G., & Penn, G. (2012). Understanding how deep
belief networks perform acoustic modelling. 2012 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 4273–
4276. https://doi.org/10.1109/ICASSP.2012.6288863 (cit. on p. 65)

Molnar, C. (2022). Interpretable machine learning: A guide for making black box
models explainable (2nd ed.). christophm.github.io/interpretable-ml-
book/. (Cit. on p. 99)

Munzner, T. (2014). Visualization analysis and design. CRC Press, Taylor &
Francis Group. (Cit. on p. 1).

https://doi.org/10.1039/C8SC00148K
https://doi.org/10.1039/C8SC00148K
https://doi.org/10.2307/2348634
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://doi.org/10.1016/j.cag.2013.11.002
https://icml.cc/Conferences/2010/papers/149.pdf
https://icml.cc/Conferences/2010/papers/149.pdf
https://doi.org/10.1109/VAST.2017.8585721
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.1109/ICASSP.2012.6288863
christophm.github.io/interpretable-ml-book/
christophm.github.io/interpretable-ml-book/

references 119

Narayan, A., Berger, B.,& Cho, H. (2021). Assessing single-cell transcriptomic
variability through density-preserving data visualization. Nature
Biotechnology, 39(6), 765–774. https://doi.org/10.1038/s41587-020-
00801-7 (cit. on p. 101)

Ngo, Q. Q., Dennig, F. L., Keim, D. A.,& Sedlmair, M. (2022). Machine learning
meets visualization – experiences and lessons learned. it - Information
Technology, 64(4), 169–180. https://doi.org/10.1515/itit-2022-0034
(cit. on pp. 1, 2)

Nguyen, P. H., Xu, K., Wheat, A., Wong, B. L. W., Attfield, S., & Fields, B.
(2016). SensePath: Understanding the sensemaking process through
analytic provenance. IEEE Transactions on Visualization and Computer
Graphics, 22(1), 41–50. https://doi.org/10.1109/TVCG.2015.2467611
(cit. on p. 69)

NHS. (2015). Fetal anomaly screening programme: Programme handbook june
2015. Public Health England. Retrieved September 25, 2022, from
https://www.gov.uk/government/publications/fetal-anomaly-screeni

ng-programme-handbook. (Cit. on p. 80)
Nogueira dos Santos, C., & Gatti, M. (2014). Deep convolutional neural net-

works for sentiment analysis of short texts. Proceedings of the 25th
International Conference on Computational Linguistics (COLING 2014),
69–78 (cit. on p. 13).

Nonato, L. G., & Aupetit, M. (2019). Multidimensional projection for visual
analytics: Linking techniques with distortions, tasks, and layout en-
richment. IEEE Transactions on Visualization and Computer Graphics,
25(8), 2650–2673. https://doi.org/10.1109/TVCG.2018.2846735 (cit. on
pp. 74, 103)

O’Connor, R. (2021). PyTorch vs TensorFlow in 2022. Retrieved September 29,
2022, from https://www.assemblyai.com/blog/pytorch-vs-tensorflow-

in-2022/. (Cit. on pp. 100, 105)
Oskolkov, N. (2019). How exactly UMAP works. Retrieved April 20, 2020,

from https : / / towardsdatascience . com / how - exactly - umap - works -

13e3040e1668. (Cit. on p. 72)
Park, D., Drucker, S. M., Fernandez, R., & Elmqvist, N. (2018). Atom: A gram-

mar for unit visualizations. IEEE Transactions on Visualization and
Computer Graphics, 24(12), 3032–3043. https://doi.org/10.1109/TVCG.
2017.2785807 (cit. on p. 87)

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Des-
maison, A., Antiga, L., & Lerer, A. (2017). Automatic differentiation
in PyTorch. NIPS 2017 Autodiff Workshop, 4 (cit. on p. 86).

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang,
E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B.,
Fang, L., … Chintala, S. (2019). PyTorch: An imperative style, high-
performance deep learning library. Advances in Neural Information
Processing Systems, 32, 12 (cit. on pp. 86, 90, 100, 105).

Pearson, K. (1901). On lines and planes of closest fit to systems of points in
space. The London, Edinburgh, and Dublin Philosophical Magazine

https://doi.org/10.1038/s41587-020-00801-7
https://doi.org/10.1038/s41587-020-00801-7
https://doi.org/10.1515/itit-2022-0034
https://doi.org/10.1109/TVCG.2015.2467611
https://www.gov.uk/government/publications/fetal-anomaly-screening-programme-handbook
https://www.gov.uk/government/publications/fetal-anomaly-screening-programme-handbook
https://doi.org/10.1109/TVCG.2018.2846735
https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2022/
https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2022/
https://towardsdatascience.com/how-exactly-umap-works-13e3040e1668
https://towardsdatascience.com/how-exactly-umap-works-13e3040e1668
https://doi.org/10.1109/TVCG.2017.2785807
https://doi.org/10.1109/TVCG.2017.2785807

120 references

and Journal of Science, 2(11), 559–572. https://doi.org/10.1080/
14786440109462720 (cit. on p. 10)

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E.
(2011). Scikit-learn: Machine learning in python. Journal of Machine
Learning Research, 12, 2825–2830 (cit. on pp. 57, 91).

Petrus, L. (1997). Solving rubik’s cube for speed. Retrieved July 21, 2020, from
https://lar5.com/cube/:%202019-11-20. (Cit. on p. 58)

Peysakhovich, V., Hurter, C.,&Telea, A. (2015). Attribute-driven edge bundling
for general graphs with applications in trail analysis. 2015 IEEE Pa-
cific Visualization Symposium (PacificVis), 39–46. https://doi.org/10.
1109/PACIFICVIS.2015.7156354 (cit. on p. 9)

Pezzotti, N., Hollt, T., Van Gemert, J., Lelieveldt, B. P., Eisemann, E., & Vi-
lanova, A. (2018). DeepEyes: Progressive visual analytics for design-
ing deep neural networks. IEEE Transactions on Visualization and
Computer Graphics, 24(1), 98–108. https://doi.org/10.1109/TVCG.
2017.2744358 (cit. on pp. 19, 20, 38)

Pike, W. A., Stasko, J., Chang, R., & O’Connell, T. A. (2009). The science of
interaction. Information Visualization, 8(4), 263–274. https://doi.
org/10.1057/ivs.2009.22 (cit. on p. 3)

Pirolli, P., & Card, S. (2005). The sensemaking process and leverage points
for analyst technology as identified through cognitive task analysis.
Proceedings of Conference on Intelligence Analysis. https://analysis.
mitre.org/proceedings/Final_Papers_Files/206_Camera_Ready_Paper.

pdf (cit. on p. 3)
Pohl, M., Smuc, M.,&Mayr, E. (2012). The user puzzle - explaining the interac-

tion with visual analytics systems. IEEE Transactions on Visualization
and Computer Graphics, 18(12), 2908–2916. https://doi.org/10.1109/
TVCG.2012.273 (cit. on p. 69)

Poličar, P. G., Stražar, M., & Zupan, B. (2019). openTSNE: A modular python
library for t-SNE dimensionality reduction and embedding. bioRxiv.
https://doi.org/10.1101/731877 (cit. on pp. 57, 72, 79, 92)

Pühringer, M., Hinterreiter, A., & Streit, M. (2020). InstanceFlow: Visualizing
the evolution of classifier confusion at the instance level. 2020 IEEE
Visualization Conference –- Short Papers. https://doi.org/10.1109/
VIS47514.2020.00065 (cit. on pp. 4, 8, 35, 103, 104)

Ragan, E., Endert, A., Sanyal, J., & Chen, J. (2016). Characterizing provenance
in visualization and data analysis: An organizational framework of
provenance types and purposes. IEEE Transactions on Visualization
and Computer Graphics (VAST ’15), 22(1), 31–40. https://doi.org/10.
1109/TVCG.2015.2467551 (cit. on p. 69)

Rao, R., & Card, S. K. (1994). The table lens: Merging graphical and symbolic
representations in an interactive focus + context visualization for
tabular information. Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI), 318–322. https://doi.org/10.
1145/191666.191776 (cit. on pp. 39, 42)

https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
https://lar5.com/cube/:%202019-11-20
https://doi.org/10.1109/PACIFICVIS.2015.7156354
https://doi.org/10.1109/PACIFICVIS.2015.7156354
https://doi.org/10.1109/TVCG.2017.2744358
https://doi.org/10.1109/TVCG.2017.2744358
https://doi.org/10.1057/ivs.2009.22
https://doi.org/10.1057/ivs.2009.22
https://analysis.mitre.org/proceedings/Final_Papers_Files/206_Camera_Ready_Paper.pdf
https://analysis.mitre.org/proceedings/Final_Papers_Files/206_Camera_Ready_Paper.pdf
https://analysis.mitre.org/proceedings/Final_Papers_Files/206_Camera_Ready_Paper.pdf
https://doi.org/10.1109/TVCG.2012.273
https://doi.org/10.1109/TVCG.2012.273
https://doi.org/10.1101/731877
https://doi.org/10.1109/VIS47514.2020.00065
https://doi.org/10.1109/VIS47514.2020.00065
https://doi.org/10.1109/TVCG.2015.2467551
https://doi.org/10.1109/TVCG.2015.2467551
https://doi.org/10.1145/191666.191776
https://doi.org/10.1145/191666.191776

references 121

Rauber, P. E., Fadel, S. G., Falcão, A. X., & Telea, A. C. (2017). Visualizing the
hidden activity of artificial neural networks. IEEE Transactions on
Visualization and Computer Graphics, 23(1), 101–110. https://doi.
org/10.1109/TVCG.2016.2598838 (cit. on pp. 49, 66, 78)

Recht, B., Roelofs, R., Schmidt, L.,& Shankar, V. (2018). Do CIFAR-10 classifiers
generalize to CIFAR-10? arXiv: 1806.00451 [cs, stat]. Retrieved June 13,
2018, from http://arxiv.org/abs/1806.00451 (cit. on pp. 21, 22, 26)

Ren, D., Amershi, S., Lee, B., Suh, J.,&Williams, J. D. (2017). Squares: Support-
ing interactive performance analysis for multiclass classifiers. IEEE
Transactions on Visualization and Computer Graphics, 23(1), 61–70.
https://doi.org/10.1109/TVCG.2016.2598828 (cit. on pp. 20, 21, 38)

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). ”why should i trust you?”:
Explaining the predictions of any classifier. KDD ’16: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 1135–1144. https://doi.org/10.1145/
2939672.2939778 (cit. on p. 35)

Rokicki, T., Kociemba, H., Davidson, M., & Dethridge, J. (2010). God’s number
is 20. Retrieved November 2, 2019, from http://www.cube20.org/.
(Cit. on p. 73)

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological Review, 65(6),
386–408. https://doi.org/10.1037/h0042519 (cit. on p. 1)

Rosling, H., & Zhang, Z. (2011). Health advocacy with gapminder animated
statistics. Journal of Epidemiology and Global Health, 1(1), 11. https:
//doi.org/10.1016/j.jegh.2011.07.001 (cit. on p. 69)

Rusu, A. A., Rao, D., Sygnowski, J., Vinyals, O., Pascanu, R., Osindero, S., &
Hadsell, R. (2018). Meta-learning with latent embedding optimization.
arXiv: 1807.05960. https://doi.org/10.48550/ARXIV.1807.05960 (cit. on
p. 78)

Sacha, D., Stoffel, A., Stoffel, F., Kwon, B. C., Ellis, G., & Keim, D. A. (2014).
Knowledge generation model for visual analytics. IEEE Transactions
on Visualization and Computer Graphics, 20(12), 1604–1613. https:
//doi.org/10.1109/TVCG.2014.2346481 (cit. on p. 3)

Sacha, D., Zhang, L., Sedlmair, M., Lee, J. A., Peltonen, J., Weiskopf, D., North,
S. C., & Keim, D. A. (2017). Visual interaction with dimensional-
ity reduction: A structured literature analysis. IEEE Transactions on
Visualization and Computer Graphics (InfoVis ’16), 23(1), 241–250.
https://doi.org/10.1109/TVCG.2016.2598495 (cit. on p. 3)

Sainburg, T., McInnes, L., & Gentner, T. Q. (2021). Parametric UMAP embed-
dings for representation and semisupervised learning. Neural Com-
putation, 33(11), 2881–2907. https://doi.org/10.1162/neco_a_01434
(cit. on pp. 11, 86, 93)

Satyanarayan, A., Moritz, D., Wongsuphasawat, K.,&Heer, J. (2017). Vega-lite:
A grammar of interactive graphics. IEEE Transactions on Visualization
and Computer Graphics, 23(1), 341–350. https://doi.org/10.1109/
TVCG.2016.2599030 (cit. on pp. 87, 105)

https://doi.org/10.1109/TVCG.2016.2598838
https://doi.org/10.1109/TVCG.2016.2598838
http://arxiv.org/abs/1806.00451
https://doi.org/10.1109/TVCG.2016.2598828
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
http://www.cube20.org/
https://doi.org/10.1037/h0042519
https://doi.org/10.1016/j.jegh.2011.07.001
https://doi.org/10.1016/j.jegh.2011.07.001
https://doi.org/10.48550/ARXIV.1807.05960
https://doi.org/10.1109/TVCG.2014.2346481
https://doi.org/10.1109/TVCG.2014.2346481
https://doi.org/10.1109/TVCG.2016.2598495
https://doi.org/10.1162/neco_a_01434
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030

122 references

Satyanarayan, A., Russell, R., Hoffswell, J., & Heer, J. (2016). Reactive vega:
A streaming dataflow architecture for declarative interactive visual-
ization. IEEE Transactions on Visualization and Computer Graphics,
22(1), 659–668. https://doi.org/10.1109/TVCG.2015.2467091 (cit. on
p. 87)

Schreck, T., Tekušová, T., Kohlhammer, J., & Fellner, D. (2007). Trajectory-
based visual analysis of large financial time series data. ACM SIGKDD
Explorations Newsletter, 9(2), 30–37 (cit. on p. 49).

Setlur, V., Battersby, S. E., Tory, M., Gossweiler, R., & Chang, A. X. (2016).
Eviza: A natural language interface for visual analysis. Proceedings
of the Symposium on User Interface Software and Technology, 365–377.
https://doi.org/10.1145/2984511.2984588 (cit. on p. 69)

Settles, B. (2012). Active learning. Morgan & Claypool Publishers. https :
//doi.org/10.2200/S00429ED1V01Y201207AIM018. (Cit. on p. 27)

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanc-
tot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K.,
& Hassabis, D. (2018). A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play. Science, 362(6419),
1140–1144. https://doi.org/10.1126/science.aar6404 (cit. on p. 75)

Simonyan, K., Vedaldi, A., & Zisserman, A. (2014). Deep inside convolu-
tional networks: Visualising image classification models and saliency
maps. In Y. Bengio & Y. LeCun (Eds.), International conference on
learning representations (ICLR) workshop track proceedings. Retrieved
January 30, 2018, from http://arxiv.org/abs/1312.6034. (Cit. on p. 15)

Smilkov, D., Carter, S., Sculley, D., Viégas, F. B., & Wattenberg, M. (2017).
Direct-manipulation visualization of deep networks. arXiv: 1708.03788
[cs, stat]. Retrieved January 30, 2018, from http://arxiv.org/abs/

1708.03788 (cit. on p. 19)
Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A.,& Potts, C.

(2013). Recursive deep models for semantic compositionality over
a sentiment treebank. Conference on Empirical Methods in Natural
Language Processing, 1631–1642 (cit. on p. 13).

Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance
measures for classification tasks. Information Processing & Manage-
ment, 45(4), 427–437. https://doi.org/10.1016/j.ipm.2009.03.002
(cit. on p. 13)

Stahnke, J., Dörk, M., Müller, B., & Thom, A. (2016). Probing projections:
Interaction techniques for interpreting arrangements and errors of
dimensionality reductions. IEEE Transactions on Visualization and
Computer Graphics (InfoVis ’15), 22(1), 629–638. https://doi.org/10.
1109/TVCG.2015.2467717 (cit. on p. 75)

Steinparz, C. A., Hinterreiter, A., Stitz, H., & Streit, M. (2019). Visualization of
Rubik’s cube solution algorithms. In T. v. Landesberger & C. Turkay
(Eds.), EuroVis workshop on visual analytics (EuroVA ’19). The Eu-
rographics Association. https://doi.org/10.2312/eurova.20191119.
(Cit. on pp. 6, 8)

https://doi.org/10.1109/TVCG.2015.2467091
https://doi.org/10.1145/2984511.2984588
https://doi.org/10.2200/S00429ED1V01Y201207AIM018
https://doi.org/10.2200/S00429ED1V01Y201207AIM018
https://doi.org/10.1126/science.aar6404
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1708.03788
http://arxiv.org/abs/1708.03788
https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.1109/TVCG.2015.2467717
https://doi.org/10.1109/TVCG.2015.2467717
https://doi.org/10.2312/eurova.20191119

references 123

Stitz, H., Gratzl, S., Piringer, H., Zichner, T., & Streit, M. (2019). Knowledge-
Pearls: Provenance-based visualization retrieval. IEEE Transactions
on Visualization and Computer Graphics (VAST ’18), 25(1), 120–130.
https://doi.org/10.1109/TVCG.2018.2865024 (cit. on p. 69)

Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance
of initialization and momentum in deep learning. Proceedings of the
30th International Conference on Machine Learning, 28, 1139–1147.
https://proceedings.mlr.press/v28/sutskever13.html (cit. on p. 90)

Swihart, B. J., Caffo, B., James, B. D., Strand, M., Schwartz, B. S., & Punjabi,
N. M. (2010). Lasagna plots: A saucy alternative to spaghetti plots.
Epidemiology, 21(5), 621–625. https://doi.org/10.1097/EDE.0b013e
3181e5b06a (cit. on pp. 22, 23)

Talbot, J., Lee, B., Kapoor, A., & Tan, D. S. (2009). EnsembleMatrix: Interactive
visualization to support machine learning with multiple classifiers.
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, 1283–1292. https://doi.org/10.1145/1518701.1518895 (cit.
on pp. 19, 20)

Tang, J., Liu, J., Zhang, M., & Mei, Q. (2016). Visualizing large-scale and high-
dimensional data. Proceedings of the 25th International Conference on
World Wide Web, 287–297. https://doi.org/10.1145/2872427.2883041
(cit. on pp. 90, 93, 94)

Tenenbaum, J. B. (2000). A global geometric framework for nonlinear dimen-
sionality reduction. Science, 290(5500), 2319–2323. https://doi.org/
10.1126/science.290.5500.2319 (cit. on pp. 10, 11, 77, 94)

Thomas, J. J., & Cook, K. A. (2005). Illuminating the path: The research and
development agenda for visual analytics. IEEE Computer Society Press.
(Cit. on p. 3).

Tomar, V. S., & Rose, R. C. (2014). Manifold regularized deep neural networks.
Fifteenth Annual Conference of the International Speech Communica-
tion Association, 348–352. https://wiki.inf.ed.ac.uk/twiki/pub/
CSTR/ListenTerm1201415/rose.pdf (cit. on p. 78)

Torgerson, W. S. (1952). Multidimensional scaling: I. theory and method.
Psychometrika, 17 (4), 401–419. https://doi.org/10.1007/BF02288916
(cit. on p. 10)

Tukey, J. W. (1962). The future of data analysis. The Annals of Mathematical
Statistics, 33(1), 1–67. https://doi.org/10.1214/aoms/1177704711
(cit. on p. 1)

van den Elzen, S., Holten, D., Blaas, J., & van Wijk, J. (2016). Reducing snap-
shots to points: A visual analytics approach to dynamic network
exploration. IEEE Transactions on Visualization and Computer Graph-
ics, 22(1), 1–10. https://doi.org/10.1109/TVCG.2015.2468078 (cit. on
p. 49)

van den Elzen, S., & van Wijk, J. (2011). BaobabView: Interactive construction
and analysis of decision trees. Proceedings of the IEEE Symposium on
Visual Analytics Science and Technology (VAST ’11), 151–160 (cit. on
pp. 19, 20).

https://doi.org/10.1109/TVCG.2018.2865024
https://proceedings.mlr.press/v28/sutskever13.html
https://doi.org/10.1097/EDE.0b013e3181e5b06a
https://doi.org/10.1097/EDE.0b013e3181e5b06a
https://doi.org/10.1145/1518701.1518895
https://doi.org/10.1145/2872427.2883041
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1126/science.290.5500.2319
https://wiki.inf.ed.ac.uk/twiki/pub/CSTR/ListenTerm1201415/rose.pdf
https://wiki.inf.ed.ac.uk/twiki/pub/CSTR/ListenTerm1201415/rose.pdf
https://doi.org/10.1007/BF02288916
https://doi.org/10.1214/aoms/1177704711
https://doi.org/10.1109/TVCG.2015.2468078

124 references

van der Maaten, L. (2009). Learning a parametric embedding by preserving
local structure. Proceedings of the Twelth International Conference on
Artificial Intelligence and Statistics, 5, 384–391. http://proceedings.
mlr.press/v5/maaten09a.html (cit. on pp. 11, 77–79, 86)

van der Maaten, L. (2020). T-SNE – FAQ. Retrieved April 20, 2020, from
https://lvdmaaten.github.io/tsne/%5C#faq. (Cit. on p. 72)

van der Maaten, L.,& Hinton, G. (2008). Visualizing data using t-SNE. Journal
of Machine Learning Research, 9, 2579–2605 (cit. on pp. 10, 11, 67, 77,
85, 88, 92).

van der Maaten, L., Postma, E., & van den Herik, J. (2009). Dimensional-
ity reduction: A comparative review (Technical Report TR 2009-005).
Tilburg University. Tilburg, Netherlands. (Cit. on p. 10).

VanderPlas, J., Granger, B. E., Heer, J., Moritz, D., Wongsuphasawat, K., Satya-
narayan, A., Lees, E., Timofeev, I., Welsh, B., & Sievert, S. (2018).
Altair: Interactive statistical visualizations for python. Journal of
open source software, 3(32), 1057 (cit. on p. 104).

Vanschoren, J., van Rijn, J. N., Bischl, B., & Torgo, L. (2014). OpenML: Net-
worked science in machine learning. ACM SIGKDD Explorations
Newsletter, 15(2), 49–60. https://doi.org/10.1145/2641190.2641198
(cit. on p. 29)

Venna, J., & Kaski, S. (2001). Neighborhood preservation in nonlinear projec-
tion methods: An experimental study. In G. Dorffner, H. Bischof, & K.
Hornik (Eds.), Artificial neural networks — ICANN 2001 (pp. 485–491).
Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-44668-
0_68. (Cit. on p. 95)

Vu, V.M., Bibal, A.,& Frenay, B. (2022). Integrating constraints into dimension-
ality reduction for visualization: A survey. IEEE Transactions on Ar-
tificial Intelligence, 1–19. https://doi.org/10.1109/TAI.2022.3204734
(cit. on pp. 86, 96)

Walchshofer, C., Hinterreiter, A., Xu, K., Stitz, H.,& Streit, M. (2021). Provecto-
ries: Embedding-based analysis of interaction provenance data. IEEE
Transactions on Visualization and Computer Graphics (Early Access).
https://doi.org/10.1109/TVCG.2021.3135697 (cit. on pp. 6, 8, 69–71,
103)

Wang, C., & Han, J. (2022). DL4scivis: A state-of-the-art survey on deep
learning for scientific visualization. IEEE Transactions on Visualization
and Computer Graphics, 1–1. https://doi.org/10.1109/TVCG.2022.
3167896 (cit. on p. 2)

Wang, J., Song, Y., Leung, T., Rosenberg, C., Wang, J., Philbin, J., Chen, B.,
& Wu, Y. (2014). Learning fine-grained image similarity with deep
ranking. 2014 IEEE Conference on Computer Vision and Pattern Recog-
nition, 1386–1393. https://doi.org/10.1109/CVPR.2014.180 (cit. on
p. 97)

Wang, J., Gou, L., Shen, H.-W., & Yang, H. (2019). DQNViz: A visual analytics
approach to understand deep q-networks. IEEE Transactions on Visu-
alization and Computer Graphics, 25(1), 288–298. https://doi.org/10.
1109/TVCG.2018.2864504 (cit. on pp. 19, 20, 38)

http://proceedings.mlr.press/v5/maaten09a.html
http://proceedings.mlr.press/v5/maaten09a.html
https://lvdmaaten.github.io/tsne/%5C#faq
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1007/3-540-44668-0_68
https://doi.org/10.1007/3-540-44668-0_68
https://doi.org/10.1109/TAI.2022.3204734
https://doi.org/10.1109/TVCG.2021.3135697
https://doi.org/10.1109/TVCG.2022.3167896
https://doi.org/10.1109/TVCG.2022.3167896
https://doi.org/10.1109/CVPR.2014.180
https://doi.org/10.1109/TVCG.2018.2864504
https://doi.org/10.1109/TVCG.2018.2864504

references 125

Wang, J., Gou, L., Yang, H., & Shen, H.-W. (2018). GANViz: A visual analytics
approach to understand the adversarial game. IEEE Transactions
on Visualization and Computer Graphics, 24(6), 1905–1917. https:
//doi.org/10.1109/TVCG.2018.2816223 (cit. on pp. 18–20, 38)

Wang, Q., Chen, Z., Wang, Y., & Qu, H. (2021). A survey on ML4vis: Applying
MachineLearning advances to data visualization. IEEE Transactions
on Visualization and Computer Graphics, 1–1. https://doi.org/10.
1109/TVCG.2021.3106142 (cit. on p. 2)

Wang, Z., & Oates, T. (2015). Encoding time series as images for visual in-
spection and classification using tiled convolutional neural networks.
Trajectory-Based Behavior Analytics: Papers from the 2015 AAAI Work-
shop, 40–46 (cit. on p. 10).

Ward, M. O., & Guo, Z. (2011). Visual exploration of time-series data with
shape space projections. Computer Graphics Forum, 30(3), 701–710.
https://doi.org/10.1111/j.1467-8659.2011.01919.x (cit. on p. 49)

Werbos, P. (1974). Beyond regression: New tools for prediction and analysis
in the behavioral science (Doctoral dissertation). Harvard University.
(Cit. on p. 1).

Wexler, J., Pushkarna, M., Bolukbasi, T., Wattenberg, M., Viegas, F., &Wilson,
J. (2019). The what-if tool: Interactive probing of machine learning
models. IEEE Transactions on Visualization and Computer Graphics,
1–1. https://doi.org/10.1109/TVCG.2019.2934619 (cit. on p. 18)

Williams, C. K. (2002). On a connection between kernel PCA and metric
multidimensional scaling. Machine Learning, 46, 11–19. https://doi.
org/10.1023/A:1012485807823 (cit. on p. 10)

Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis.
Chemometrics and Intelligent Laboratory Systems, 2(1), 37–52. https:
//doi.org/10.1016/0169-7439(87)80084-9 (cit. on p. 77)

Wongsuphasawat, K., Smilkov, D., Wexler, J., Wilson, J., Mane, D., Fritz, D.,
Krishnan, D., Viegas, F. B., & Wattenberg, M. (2018). Visualizing
dataflow graphs of deep learning models in TensorFlow. IEEE Trans-
actions on Visualization and Computer Graphics, 24(1), 1–12. https:
//doi.org/10.1109/TVCG.2017.2744878 (cit. on p. 18)

Wongsuphasawat, K. (2020). Encodable: Configurable grammar for visual-
ization components. IEEE Visualization Conference (VIS’20), 131–135.
https://doi.org/10.1109/VIS47514.2020.00033 (cit. on p. 87)

Wu, Y., Kozintsev, I., Bouguet, J., & Dulong, C. (2006). Sampling strategies for
active learning in personal photo retrieval. 2006 IEEE International
Conference on Multimedia and Expo, 529–532. https://doi.org/10.
1109/ICME.2006.262442 (cit. on p. 27)

Xiao, H., Rasul, K., & Vollgraf, R. (2017). Fashion-MNIST: A novel image
dataset for benchmarking machine learning algorithms. arXiv: 1708.
07747 [cs, stat]. Retrieved March 18, 2019, from http://arxiv.org/

abs/1708.07747 (cit. on p. 32)
Zeng, H., Haleem, H., Plantaz, X., Cao, N., & Qu, H. (2017). CNNComparator:

Comparative analytics of convolutional neural networks. VADL 2017:

https://doi.org/10.1109/TVCG.2018.2816223
https://doi.org/10.1109/TVCG.2018.2816223
https://doi.org/10.1109/TVCG.2021.3106142
https://doi.org/10.1109/TVCG.2021.3106142
https://doi.org/10.1111/j.1467-8659.2011.01919.x
https://doi.org/10.1109/TVCG.2019.2934619
https://doi.org/10.1023/A:1012485807823
https://doi.org/10.1023/A:1012485807823
https://doi.org/10.1016/0169-7439(87)80084-9
https://doi.org/10.1016/0169-7439(87)80084-9
https://doi.org/10.1109/TVCG.2017.2744878
https://doi.org/10.1109/TVCG.2017.2744878
https://doi.org/10.1109/VIS47514.2020.00033
https://doi.org/10.1109/ICME.2006.262442
https://doi.org/10.1109/ICME.2006.262442
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747

126 references

Workshop on Visual Analytics for Deep Learning. https://vadl2017.
github.io/paper/vadl_0108-paper.pdf (cit. on pp. 18–20, 38)

Zhang, J., Wang, Y., Molino, P., Li, L.,& Ebert, D. S. (2019). Manifold: A model-
agnostic framework for interpretation and diagnosis of machine
learning models. IEEE Transactions on Visualization and Computer
Graphics, 25(1), 364–373. https://doi.org/10.1109/TVCG.2018.2864499
(cit. on pp. 18, 20)

Zheng, Y. (2015). Trajectory data mining: An overview. ACM Transactions
on Intelligent Systems and Technology, 6(3), 1–41. https://doi.org/10.
1145/2743025 (cit. on pp. 10, 55)

Zhong, W., Xie, C., Zhong, Y., Wang, Y., Xu, W., Cheng, S., & Mueller, K.
(2017). Evolutionary visual analysis of deep neural networks. ICML
Workshop on Visualization for Deep Learning, 9 (cit. on p. 38).

Zhu, B., & Chen, W. (2016). Performance histogram curve: Abstractive visual-
ization and analysis of NBA games. International Journal of Software
& Informatics, 10(3), 11. https : / / doi . org / 10 . 21655 / ijsi . 1673 -
7288.00231 (cit. on p. 49)

https://vadl2017.github.io/paper/vadl_0108-paper.pdf
https://vadl2017.github.io/paper/vadl_0108-paper.pdf
https://doi.org/10.1109/TVCG.2018.2864499
https://doi.org/10.1145/2743025
https://doi.org/10.1145/2743025
https://doi.org/10.21655/ijsi.1673-7288.00231
https://doi.org/10.21655/ijsi.1673-7288.00231

C O N F U S I O N F L O W : A D D I T I O N A L I N F O R M A T I O N

aa.1 performance measures

Several performance measures can be derived from intermediate results
during the training of classifiers. Consider a classification problem with a
training dataset 𝑋 consisting of instances {𝑥1, ..., 𝑥𝑁}, for which ground truth
labels 𝑔𝑖 ∈ Γ are available. The set of different classes Γ = {𝛾1, ..., 𝛾𝐾} is called
the class alphabet. A classifier model 𝑐(𝜃) with parameters 𝜃 is trained on
𝑋 such that the predicted class labels 𝑐(𝜃)(𝑥𝑖) best match the ground truth
labels 𝑔𝑖. The exact notion of “best match” is specified in the loss function.
This function, together with an optimization method, determines how the
parameters 𝜃 are updated at each training step 𝑡. In case of neural networks,
one training step is called an epoch, and is comprised of passing the whole
training data through the network once. Over the course of the training, the
classifier progresses through different model states 𝑐(𝜃𝑡), each with different
parameters and a different error behavior. The term parameters in this case
is not to be confused with the term hyperparameters, which stands for model
and optimization settings that have to be chosen before training. We chose
the term configuration to refer to the set of model, optimization techniques,
hyperparameters, and input data.

A typical measure for a classifier’s quality is the accuracy 𝐴. It is given
by the fraction of correctly classified instances:

𝐴𝑡 =
|{𝑥𝑖 ∣ 𝑐(𝜃𝑡)(𝑥𝑖) = 𝑔𝑖}|

𝑁
. (a.1)

Other popular aggregate measures are precision and recall, which are
built on the binary classification notions of true positives, false positives,
and false negatives. For a given class 𝛾𝑗, the number of true positives is
given by TP𝑗, 𝑡 = |{𝑥𝑖 ∣ 𝑐(𝜃𝑡)(𝑥𝑖) = 𝛾𝑗 ∧ 𝑔𝑖 = 𝛾𝑗}|, i. e. the number of correctly
classified instances of that class. The number of false positives is defined by
FP𝑗, 𝑡 = |{𝑥𝑖 ∣ 𝑐(𝜃𝑡)(𝑥𝑖) = 𝛾𝑗 ∧ 𝑔𝑖 ≠ 𝛾𝑗}|, i. e. the number of instances classified as
𝛾𝑖 that actually belong to another class. Finally, the number of false negatives
is given by FN𝑗, 𝑡 = |{𝑥𝑖 ∣ 𝑐(𝜃𝑡)(𝑥𝑖) ≠ 𝛾𝑗 ∧ 𝑔𝑖 = 𝛾𝑗}|, i. e. the number of instances
of class 𝛾𝑗 that the classifier wrongly assigned to another class. With these
quantities, precision and recall can be defined for each class 𝛾𝑗 by:

Precision𝑗, 𝑡 =
TP𝑗, 𝑡

TP𝑗, 𝑡 + FP𝑗, 𝑡
Recall𝑗, 𝑡 =

TP𝑗, 𝑡
TP𝑗, 𝑡 + FN𝑗, 𝑡

. (a.2)

The harmonic mean of precision and recall is called 𝐹1-score.
An extension of individual class-wise performance measures is the confu-

sion matrix 𝑀, which lists confusion counts for all pairs of classes:

𝑀𝑖𝑗, 𝑡 = |{𝑥𝑙 ∣ 𝑔𝑙 = 𝛾𝑖 ∧ 𝑐(𝜃𝑡)(𝑥𝑙) = 𝛾𝑗}|. (a.3)

127

128 confusionflow: additional information

Figure a.1: Class-conditional preci-
sion and recall in the context of the
confusion matrix.

This means that entry (𝑖, 𝑗) in𝑀 is the number of instances with ground truth
class label 𝛾𝑖 that the classifier assigned to class 𝛾𝑗.

Figure a.1 schematically shows the relationship between the confusion
matrix and precision and recall.

a.2 scalability: additional figures

Here we provide a number of additional screenshots from the multi-step
scalability study presented in Section 3.4.2..

Figure a.2: Global accuracy during
training of a neural network on the
CIFAR-100 images dataset. Severe
overfitting is apparent from the tem-
poral trend of the global accuracy. The
plot was slightly adapted from the
ConfusionFlow detail view.

scalability: additional figures 129

Aq Fi Fl FC FV Dv Fu In Cv OT OS Ov MM Iv Pe Re SM Tr V1 V2

Aq

Fi

Fl

FC

FV

Dv

Fu

In

Cv

OT

OS

Ov

MM

Iv

Pe

Re

SM

Tr

V1

V2

Aquatic mammals

Fish

Flowers

Food containers

Fruits/Vegetables

Devices

Furniture

Insects

Carnivores

Outdoor things

Outdoor scenes

Omnivores/Herbivores

Medium-sized mammals

Non-insect invertebrates

People

Reptiles

Small mammals

Trees

Vehicles 1

Vehicles 2

Aq

Fi

Fl

FC

FV

Dv

Fu

In

Cv

OT

OS

Ov

MM

Iv

Pe

Re

SM

Tr

V1

V2

Predicted
G

ro
u
n
d
 T

ru
th Aq

Fi

Fl

FC

FV

Dv

Fu

In

Cv

OT

OS

Ov

MM

Iv

Pe

Re

SM

Tr

V1

V2

Figure a.3: Superclass ConfusionFlow matrix for a neural network classifier trained on the CIFAR-100 image dataset, and evaluated on
the train () and test folds (), respectively. The low-level class labels were used during training. The superclass confusion values were
subsequently determined from the class predictions.

130 confusionflow: additional information

Figure a.4: ConfusionFlow matrix for a neural network classifier trained on the CIFAR-100 image dataset, and evaluated on the train ()
and test folds (), respectively. The ten classes with the lowest 𝐹1-scores were selected.

scalability: additional figures 131

Figure a.5: ConfusionFlow matrix for a neural network classifier trained on the CIFAR-100 image dataset, and evaluated on the train ()
and test folds (), respectively. All classes present in the twenty worst pairs with respect to class confusion were selected.

R U B I K ’ S C U B E D E M O N S T R A T O R

bTo tighten the connection between our visualization approach for Rubik’s
cube solution strategies (Section 5.4.1) and real-world actions and decisions
made by users, we built a physical interactive demonstrator. The setup is
shown schematically in Figure b.1. It consists of a special Rubik’s cube with
sensors and Bluetooth connectivity (Giiker Supercube, http://www.giiker.cn),
a Lego Mindstorm robot (MindCub3r; Gilday, 2019), and a display showing
an adapted version of the interactive Rubik’s cube visualization.

While the user tries to solve the cube, rotations are immediately reflected
in the visualization. The trail of previous cube states, as well as the current
one, are shown in the embedded state space of several hundreds of reference
solution trajectories of random initial cubes. Since the current cube state may
not have been part of this initial set of calculated solutions, out-of-sample
extension must be used. We implemented a parametric, real-time out-of-
sample extension, based on the work by Gisbrecht et al. (2015). Along with
the reference trajectories and the trajectory of movements performed so far,
also the future path necessary to arrive at the solution is displayed (for a
selected solution algorithm). Upon each cube movement, the future path is
updated, if it has been affected by the user’s decision. This serves as a highly
salient visual feedback for the user, as “incorrect” movements may result in
drastic changes of the computed future paths.

To aid the users, the correct movements to stay on the right track are
shown with a rendering of Rubik’s cube. If users decide to stop trying to solve
the cube on their own, they can hand the cube over to a Lego Mindstorms
robot that will continue the solution. Users can then simultaneously watch
the real cube being solved, while the current cube state moves along the
solution trajectory in the visualization. The demonstrator setup also includes
a two-player mode, in which two players can race through the solution
trajectories with two separate Bluetooth cubes. The setup is mainly used
to introduce prospective computer science students to the functioning of
algorithms, interactive visualization, and projection techniques.

133

http://www.giiker.cn

134 rubik’s cube demonstrator

Figure b.1: Schematic of the Rubik’s cube physical demonstrator setup. Users can solve a Rubik’s cube, which transmits its states to
a vue.js-powered web application via Bluetooth. The projected cube states are calculated in real time using out-of-sample extension
implemented in Python. The projection of the current state and the previous trajectory are visualized on a screen. Users can hand off the
unsolved cube to a Lego Mindstorms robot, which receives its instructions from the Python backend, and automatically solves the cube.

	Abstract
	Kurzfassung
	Acknowledgements
	Contents
	Introduction
	Visualization & Machine Learning
	About this Thesis

	Related Work
	Time Series Visualization
	Dimensionality Reduction

	ConfusionFlow
	Problem Space Characterization
	Related Work on Model Analysis
	ConfusionFlow Technique
	Evaluation
	Discussion
	Conclusion

	InstanceFlow
	User Tasks
	Related Instance-level Approaches
	InstanceFlow Technique
	Usage Scenario: CIFAR-10 Image Classification
	Limitations & Future Work
	Conclusion

	Projection Path Explorer
	Related Work on Projected Sequential Data
	Technique
	Interactive Visualization Prototype
	Applications
	Discussion
	Conclusion

	Projective Latent Interventions
	Introduction
	Context & Contribution
	Method
	Experiments
	Discussion
	Conclusion

	ParaDime
	Related Work on Generalizing and Constraining DR
	The ParaDime Grammar of Parametric DR
	Framing Existing Techniques in Terms of ParaDime
	Experimenting With Combined Techniques
	Discussion
	Conclusion

	Summary & Outlook
	Automation & Guidance
	The Tooling Landscape
	Societal Impact & Outreach

	References
	Appendix
	ConfusionFlow: Additional Information
	Performance Measures
	Scalability: Additional Figures

	Rubik's Cube Demonstrator

