
Supplementary Materials

ChemInformatics Model Explorer (CIME): Exploratory

analysis of chemical model explanations

Christina Humer, Henry Heberle, Floriane Montanari,
Thomas Wolf, Florian Huber, Ryan Henderson, Julian Heinrich and Marc Streit

julian.heinrich@bayer.com, marc.streit@jku.at

April 8, 2022

Memory usage and response time

Although CIME was designed to handle up to 20,000 compounds and around 1000 fingerprints,
users can upload larger datasets. While the projection algorithm uses fingerprints and consumes
much CPU while running in the browser, memory is a bottleneck in the back-end due to storage
and processing of SDF. Depending on where the back- and front-end run, computational power will
define the limits of the tool.

To understand CIME’s limits we ran a benchmark with two computers. They are laptops with
specifications defined in Table 1.

Table 1: Specification of computers used in the benchmark.

Computer OS
Processor

RAM GPU
Model Frequency Cores

A macOS 11 Intel Core i7-9750H 2.6 GHz 6 32 GB AMD Radeon Pro 5300M 4 GB
B Windows 10 Intel Core i7-10750H 2.6 GHz 6 16 GB NVIDIA GeForce RTX 2070 Max-Q

To run the benchmark, we created bigger datasets by replicating the compounds into datasets
with up to 200, 000 and uploaded them to the system. The number of fingerprints were also explored,
in the range of 1, 500, and 1000 fingerprints. Explainability, properties and predictions were fixed
to 25. We ran the back-end using Docker 20.10.7 (docker.com) and accessed the front-end using
the web browser Google Chrome 95 (google.com/chrome).

The benchmark consisted of uploading a dataset, loading all compounds into LineUp, executing
the UMAP projection using fingerprints, and interacting with the graphic user interface to check
if it is responsive, using CIME version 0.1.19. We restarted the Docker container whenever a new
dataset was uploaded.

Table 2 reports the relation between dataset dimensions and the columns: (Upload) the time
that the backend took to process the upload of a dataset; (RAM) amount of memory used in the

1

https://www.docker.com/
https://www.google.com/chrome/


backend just after the upload completed in MiB; (LU) whether or not LineUp was able to load all
items of the dataset; (UMAP) the time to compute the projection in minutes:seconds (MM:SS).
We highlight in gray the upper-limits of our tests that worked in both computers. Asterisks (*)
indicate when CIME stopped working.

Table 2 shows that in many cases we concluded the upload successfully, however we couldn’t
complete the UMAP projection. This might be connected to the fact that we are running both
front- and back-end in the same computer and a high amount of memory is used in the backend,
limiting the resources available for the browser, where LineUp is populated with compounds and
the projection is computed. Memory is used in the browser: (a) to store fingerprints and compute
and store a distance matrix for the projection with size NxN, where N is the number of compounds;
(b) to store compounds and their properties in another matrix in the LineUp object. Therefore,
we expect that the limits of CIME in computer A and B would increase if the back-end is running
on another computer with enough RAM, i.e., 2GB available for a dataset with 100,000 compounds
and 1 fingerprint, or 10 GB for a dataset with 100,000 compounds and 500 fingerprints or 60,000
compounds and 1,000 fingerprints.

Table 2: Benchmark table showing number of compounds (column Compounds), the number of
fingerprints (column Fin.), time to complete the upload of a dataset (column Upload), the amount
of memory used in the back-end in MiB (column RAM), whether the LineUp table worked or
not (column LU), and the time to complete a multidimensional projection (column UMAP) in
minutes:seconds (MM:SS). An asterisk (*) indicates that the task could not be completed. After
uploading the dataset, we loaded all compounds into LineUp and executed the UMAP on finger-
prints without normalization. Lines in gray indicate the upper-limits of our tests that worked in
both computers.

Dataset Computer A Computer B

Compounds Fin. Upload RAM LU UMAP Upload RAM LU UMAP

1, 000 1 00:01 124 X precomputed X
40, 000 1 01:29 482 X precomputed X
60, 000 1 02:27 664 X precomputed X
100, 000 1 04:31 1000 X precomputed 03:40 1100 X precomputed
200, 000 1 * * * precomputed * * * precomputed

1, 000 500 00:07 210 X 00:04 X
5, 000 500 00:37 394 X 00:24 X
10, 000 500 01:25 1013 X 00:43 X
20, 000 500 02:36 1921 X 01:25 X
40, 000 500 05:32 3777 X 03:02 04:45 3800 X 02:45
60, 000 500 07:49 5604 X * 07:03 5500 X 05:00
80, 000 500 11:05 7467 X * 10:04 7500 X *
100, 000 500 * * * *

1, 000 1000 00:19 278 X 00:05 X
5, 000 1000 01:35 966 X 00:28 X
10, 000 1000 03:07 1748 X 00:54 X
20, 000 1000 06:25 3348 X 01:53 04:59 3400 X 01:45
40, 000 1000 13:04 6737 X * 10:42 6600 X *
60, 000 1000 * * * * * * *

2



Overall, CIME easily handled datasets with up to 20, 000 compounds. For a higher number of
compounds, we recommend pre-calculating the projection and adding only one fingerprint to the
SDF file. This will drastically reduce memory consumption and increase speed response time in
the browser. In the current version, adding 1 fingerprint to the SDF will make CIME ignore the
calculation of fingerprints (default behavior when CIME does not find fingerprints in the dataset).
Users must add instead 1-bit fingerprint to their SDF and provide the x,y coordinates. Future
versions of CIME should not require the 1-bit fingerprint and calculate fingerprints on request.

We are changing CIME’s architecture and expect to have an improved version of the system
by mid-2022. Please check the updated documentation in the git repository: github.com/jku-vds-
lab/cime.

1 Chemical Calculations

We utilize various functions from the RDKit ?? framework. The following is a list of important
RDKit functions used in CIME. We explicitly indicate those parameters that were changed from
their default value:

• Fingerprint Calculation: calculated with RDKit’s “GetMorganFingerprintAsBitVect” func-
tion; parameters are set to (radius = 5, nBits = 256)

• Compound Image Rendering: rendered with RDKit’s “MolToImage” function

• MCS - Maximum Common Substructure: calculated with RDKit’s “FindMCS” func-
tion; parameters are set to (timeout = 60, matchValences = False, ringMatchesRingOnly =
True, completeRingsOnly = True, atomCompare = AtomCompare.CompareAny, bondCom-
pare = BondCompare.CompareAny)

• Highlight Substructure on Compound: rendered with RDKit’s “PrepareAndDrawMolecule”
function

• Contribution Highlighting: rendered with RDKit’s “GetSimilarityMapFromWeights” func-
tion; the following parameters can be changed by users in the front-end: size, contourLines,
scale, sigma

• Compound Alignment: calculated with RDKit’s “AlignMolToTemplate2D” function with
clearConfs = True

Use cases

In this section, we bring supplementary information for the use cases:

• Use case 1: Visualizing attributions to hydration energy predictions using SHAP values.

• Use case 2: Comparing the attributions of models trained on a lipophilicity dataset.

3

https://github.com/jku-vds-lab/cime
https://github.com/jku-vds-lab/cime


Use case 1: Visualizing attributions to hydration energy predictions using
SHAP values

ML modeling A nested 5-fold cross-validation was performed to identify the error and optimize
hyperparameters. We obtained an RMSE of 1.03 on the predicted experimental values. To define
the folds of the cross-validation in a way that very similar compounds are placed together in the
same fold, we used hierarchical clustering (average linkage) to group them. Groups of compounds
with a Tanimoto similarity of at least 0.75 were placed in the same fold. These folds define the outer-
loop of the nested cross-validation. For each of the outer folds, an inner-loop of cross-validation
was used to optimize the CatBoost hyperparameters using Optuna [1].

Use case 2: Comparing the attributions of models trained on a lipophilic-
ity dataset

Multidimensional projection The projection was calculated using UMAP and the “fingerprint-
XAI” properties of the compounds that are shown in the Projection Menu when using CIME with
the provided dataset (See Figure 1).

Absolute error To identify areas of the chemical space where both models performed well, we
calculated for each compound the absolute error [2] of predictions from the base and XAI models
against the measure LogD. Therefore, each compound has two errors associated: base error and
XAI error. We show the compounds colored by the mean value between their base and XAI errors
in Figure 1 — approach used to identify a cluster with low error in both models. We see in the
projection that most compounds have error much closer to 0 than to 4 (see color legend). Very few
regions (dark) reveal extensive disagreement among predictions and experimentally measured logD
values.

Histograms of predictions and measured LogD In Figure 3 we can analyze a summary of
models’ predictions and performance for the entire dataset with the histograms displayed at the
top. Histograms in red (Base and XAI error) and brown (mean between Base and XAI errors)
confirm that the errors from both models are closer to 0, i.e., they are left-skewed. Histograms in
blue (measured and predicted LogD) show that the predictions’ distributions are similar to each
other (2nd and 3rd columns) and slightly different from the measured experimental LogD values
(1st column), being the predicted values closer to normal distributions.

Group of compounds In this use case, we selected a few compounds to compare the explanations
extracted from two models. Those compounds were filtered from a group of similar structures
detailed in Figures 2 and 3.

4



Figure 1: Projection of compounds based on XAI model’s latent space representations. Color
represents the average between absolute errors from Base and XAI models. The blue circle identifies
the studied group; its mean errors appear in Figure 3.

5



Figure 2: Overview of the compounds in the studied group, as seen in the Summary View in CIME.

Figure 3: Detailed screenshot of CIME’s “Table View” with ID, measured LogD, predicted LogD
(base and XAI models), absolute errors (base and XAI), and mean between errors (base and XAI) of
each compound in the studied group (bar charts). Compounds are sorted by mean error. Histograms
represent the entire dataset, and box plots represent all compounds that are not in the studied group.

6



References

[1] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation
hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD In-
ternational Conference on Knowledge Discovery & Data Mining. KDD ’19, pp. 2623–
2631. Association for Computing Machinery, New York (2019). doi:10.1145/3292500.3330701.
https://doi.org/10.1145/3292500.3330701 Accessed 2021-11-25

[2] Willmott, C.J., Matsuura, K.: Advantages of the mean absolute error (mae) over the root mean
square error (rmse) in assessing average model performance. Clim. Res. 30(1), 79–82 (2005)

7


	Chemical Calculations

