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1 Supplementary Figures

Supplementary Figure S1: Coral workflow. Cohort creation workflow in Coral. The selected,
blue cohort ( ) is added to the Input Area (1) and split in the Operation Area (2). The two resulting
subsets define two output cohorts (3) that are added to the Cohort Evolution View (4).

Supplementary Figure S2: Operation selection. The Operation Area allows selecting which
operation to perform. The operations available are grouped by type. Available are: the View
operation with integrated Filter & Split operations for cohort creation and the Prevalence, Inspect
Items, and Compare operations for characterization of cohorts.
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Supplementary Figure S3: Case study 1: Filtering of the starting cohort ( ), which includes
all AACR Project GENIE samples, down to non-small cell lung cancer (NSCLC) samples. Included
tumor types are: lung adenocarcinoma, lung squamous cell carcinoma, and non-small cell lung
cancer.

Supplementary Figure S4: Case study 1: Filtering of the starting cohort ( ), which includes
all AACR Project GENIE samples, down to colorectal cancer samples. Included tumor types are
colon adenocarcinoma, colorectal adenocarcinoma, and rectum adenocarcinoma.
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Supplementary Figure S5: Case study 1: Visualizing the distribution of patient age in the
NSCLC ( ) and colorectal cancer ( ) cohorts.

Supplementary Figure S6: Case study 1: Comparison of the NSCLC ( ) and colorectal can-
cer ( ) cohorts in terms of the distribution of patient age. It can be seen that, on average, NSCLC
patients are older. This difference is statistically significant.

4



Supplementary Figure S7: Case study 1: Comparison of the NSCLC ( ) and colorectal can-
cer ( ) cohorts in terms of the distribution of patient gender. It can be seen that the NSCLC cohort
has a higher proportion of female patients. This difference is statistically significant.

Supplementary Figure S8: Case study 1: Splitting the NSCLC cohort ( ) by the attribute
race and selecting the three largest populations in the cohort, namely White, Asian, and Black.
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Supplementary Figure S9: Case study 1: Splitting the three race cohorts ( , , ) by the
attribute gender.

Supplementary Figure S10: Case study 1: Visualizing the frequencies of various KRAS muta-
tions across the six cohorts generated in the previous steps ( , , , , , ). Link to Coral state in
this figure: http://vistories.org/coral-supplementary-figure-10
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Supplementary Figure S11: Case study 2: Visualizing the KRAS mutation status distribution
for the TCGA tumors dataset ( ) and creating two new cohorts—one for KRAS mutated and one
for KRAS non-mutated.

Supplementary Figure S12: Case study 2: Visualizing the tumor type distribution of the KRAS
mutated cohort ( ) and creating new cohorts for the three most frequent tumor types—pancreatic
adenocarcinoma, lung adenocarcinoma, and colon adenocarcinoma.
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Supplementary Figure S13: Case study 2: Prevalence of KRAS mutations in three different
tumor type cohorts: colon adenocarcinoma ( ), lung adenocarcinoma ( ), and pancreatic adenocar-
cinoma ( ). It can be seen that KRAS mutations are most prevalent in pancreatic adenocarcinoma
patients.

Supplementary Figure S14: Case study 2: Survival plot of colon adenocarcinoma ( ), lung
adenocarcinoma ( ), and pancreatic adenocarcinoma ( ) patients harboring KRAS mutations. It
shows that pancreatic adenocarcinoma ( ) patients have a very poor prognosis.
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Supplementary Figure S15: Case study 2: Visualizing the KRAS mutation-type distribution
for colon adenocarcinoma ( ), lung adenocarcinoma ( ), and pancreatic adenocarcinoma ( ). The
lung adenocarcinoma ( ) cohort differs significantly from the other two tumor type cohorts in regard
to the frequency of specific KRAS mutations.

Supplementary Figure S16: Case study 2: The Inspect Item operation shows the individual
lung adenocarcinoma samples harboring a KRAS Gly12Cys mutation ( ).
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Supplementary Figure S17: Case study 2: Visualizing the EGFR mutation status for KRAS
mutated ( ) and KRAS non-mutated ( ) lung adenocarcinoma samples. It can be seen that EGFR
and KRAS mutations are almost mutually exclusive; i.e., they rarely occur together. Link to Coral
state in this figure: http://vistories.org/coral-supplementary-figure-17
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2 Supplementary Tables

Operation
# of At-
tributes

Attribute
Types

Visualization
for One Cohort

Visualization for
Multiple Cohorts Notes

View, Filter
& Split

1 Categorical Bar Chart Grouped Bar Chart With absolute or
relative scale

View, Filter
& Split 1 Quantitative Density Plot Superimposed Density

Plot

Area under the curve
is not filled, due to
higher readability of

the superimposed plots

View, Filter
& Split 1 Quantitative Kaplan-Meier

Plot
Superimposed

Kaplan-Meier Plot

Kaplan-Meier plot is
also known as survival
plot, and is used only
for attributes related

to the survival

View, Filter
& Split 2

Both
Categorical

Scatterplot
Superimposed

Scatterplot

Dimensionality
reduction algorithm

used to create the 2D
scatterplot

View, Filter
& Split 2

Categorical /
Quantitative

Boxplot for each
Category

Boxplot for each
Category of each

Cohort

View, Filter
& Split

2
Both

Quantitative
Scatterplot Superimposed

Scatterplot

View, Filter
& Split 3 or more

Any
Combination

Scatterplot
Superimposed

Scatterplot

Dimensionality
reduction algorithm

used to create the 2D
scatterplot

Prevalence None –
Novel Prevalence

Encoding

Novel Prevalence
Encoding for each

Cohort

The novel prevalence
encoding allows to
flexibly define the
reference cohort

Inspect Items Any Any Column
Column for each

Cohort

Uses Taggle
(Furmanova et al.,

2020) to show
attribute data for each

item

Compare Any Any Matrix Matrix

Uses TourDino (Eckelt
et al., 2019) to

calculate and visualize
cohort similarity

Supplementary Table S1: Overview of visualizations used, based on the operation, the number
of attributes, attribute types, and their combinations.
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3 Supplementary Notes

3.1 Terminology

A cohort refers to a group of items, also called records or entities, with shared characteristics. A
cohort can be defined based on a single attribute—e.g., patients of a certain age group—or on
multiple attributes—e.g., elderly lung cancer patients with a KRAS mutation.

The basis for forming cohorts are datasets in the form of multi-attribute tabular data. We refer
to the columns of a table as attributes, and the rows as items (Munzner, 2014, p. 25). Within a
column, all values are of the same type: quantitative or categorical.

Our public instance of Coral is pre-loaded with multiple genomics datasets, described in Sec-
tion 3.7.

3.2 User Goals

A cohort analysis tool needs to serve two high-level purposes. Users can either aim to generate new
hypotheses, such as the identification of factors that contribute to the development, progression, or
spread of a disease, or to verify existing hypotheses, like confirming the effect of a specific mutation
on a tumor type. In this section, we introduce the specific operations users need to be able to fulfill
as part of a cohort analysis.

We decided to structure the operations by means of three operation categories: (1) cohort cre-
ation, (2) cohort characterization, and (3) cohort tracking. Operations from these categories are
not carried out in a sequence but users want to be able to switch between them as needed during
the analysis. The cohort creation operations are Filter & Split. The View operation, Compare op-
eration, Prevalence operation, and Inspect Items operation are part of the cohort characterization.
And the Cohort Evolution View keeps track of all cohorts.

3.3 Related Tools

3.3.1 cBioPortal

cBioPortal (Cerami et al., 2012; Gao et al., 2013) is an interactive web application that allows
researchers to access and analyze complex genomic data of different cancer genomics projects. It is
a well established application in the field of cancer research.

cBioPortal, like Coral, allows the definition and comparison of sample groups (cohorts), however,
both applications were developed with different use cases in mind. The main focus of cBioPortal lies
on the analysis of selected genes, the analysis of individual patients, and the exploration of studies.
In contrast, Coral focuses more on the iterative cohort creation, their analysis and comparison. Due
to this difference, cBioPortal has some shortcomings in regard to cohort creation, as outlined below.

There are several limitations regarding the definition of cohorts based on mutation data. For
instance, creating cohorts with specific mutations (e.g., KRAS G12C ) has to be done via OQL
(Onco Query Language; http://www.cbioportal.org/oql), which is a cBioPortal specific language
that makes it difficult for users new to cBioPortal to use all its functionalities. Additionally, defining
cohorts based on the absence of one or multiple mutations (e.g., samples that are EGFR wild-type)
is not trivial. As shown in the cBioPortal group comparison tutorial (https://www.cbioportal.org/
tutorials#group-comparison) this can only be achieved by defining a ‘baseline cohort’ and then using
non-overlapping sets to define the actual cohorts. This cohort creation process, utilizing auxiliary
cohorts, can be too complicated for non-experienced users. More importantly, this approach assumes
that every gene that is not mutated is wildtype, but this assumption does not hold true for data
sources like the AACR Project GENIE which constitutes a heterogeneous mix of gene panels, i.e.
not the exact same set of genes is probed on each panel.

Another limitation is that the iterative process to define a larger set of cohorts can be cumber-
some. For example, creating cohorts by multiple subsequent split operations (e.g., split by ethnicity
followed by split by gender) is not directly supported. Furthermore, tracking the provenance of all
generated cohorts is not possible in cBioPortal. This makes it difficult to keep the overview of the
cohorts and limits the reproducibility of the performed analysis.
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3.3.2 Other Tools

There are many tools, besides cBioPortal, that allow the creation and analysis of cohorts. Most of
them are designed for specific datasets and analysis goals. For example, Composer by Rogers et al.
(2019) focuses on the treatment of patients with lower back conditions. The application allows the
analyst to create cohorts and then to decide which treatment would result in the best outcome.
Other cohort analysis tools are, for instance, CAVA by Zhang et al. (2015) and a prostate cancer
analysis tool by Bernard et al. (2015). All of these three applications allow users to create cohorts,
however, refinement of multiple cohorts at once is not possible. Furthermore, they all have some
kind of history functionality to show which filters were applied, but none of them show how the
created cohorts relate to each other. Additionally, it is not possible to visualize data of multiple
cohorts in these tools. The only exception is Composer that visualizes the main attribute of interest
of multiple cohorts. This makes it cumbersome to compare the different cohorts with each other.

3.4 Session Management: Reproducing and Sharing

An important consideration in the field of (bio)medicine is being able to reproduce an analysis.
This reproducibility is achieved through a session manager that allows users to save, share, and
revisit their analysis session. As a consequence, users need to log in before they can use Coral;
however, to get around the registration process for new users, the publicly available Coral instance
auto-generates accounts.

During an analysis session, the operations performed by the user are recorded and stored in the
local cache of the browser. A user can then decide to make an analysis session persistent, which
moves it from the browser storage to a database on the Coral server. A persistent session can be
made public and shared by copying the URL shown in the browser. When a persistent session is
loaded, Coral restores the cohorts of the analysis, including the operations that were used (Gratzl
et al., 2016). In Supplementary Figure S10 and Supplementary Figure S17 we include a link
in the figure caption with which the cohorts can be reproduced.

3.5 Workflow

The Coral workflow consists of four main steps, as illustrated in Supplementary Figure S1:
(1) select cohorts, (2) select operations that will be applied to the cohorts, (3) define the output
cohorts, and (4) adding these output cohorts to the Cohort Evolution View.

3.5.1 Step 1: Select Cohorts

The user starts the analysis by selecting one or more cohorts from the Cohort Evolution View.
The selection of a cohort adds it to the Input Area of the Action View and assigns a color to the
cohort that is used consistently in all visualizations. We refer to these cohorts as the input cohorts
as they serve as the inputs for the creation and characterization operations (see Supplementary
Figure S1 1 ).

3.5.2 Step 2: Select Operation

In the Operation Area, two types of operations are available: creation and characterization. Char-
acterization operations give insights into the input cohorts but do not manipulate them. They,
therefore, have no output. Users can choose a different operation or use the Cohort Evolution View
to switch inputs when they are done characterizing the input cohorts (see Supplementary Fig-
ure S1 2 and Supplementary Figure S2). Creation operations allow users to create new cohorts
based on different attributes and attribute combinations. For some operations, e.g. Filter & Split,
users have to select one or more attributes of interest with the Search Bar at the top of the Opera-
tion Area. This search bar, as the name indicates, can be used to browse through a list of available
attributes or search for specific ones. Supplementary Table S1 lists the offered visualizations for
the different operations, attribute types, and attribute combinations.
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3.5.3 Step 3: Define Output Cohorts

Creation operations—Filter & Split—output new cohorts, shown in the Output Area. The Split
operation allows splitting an input cohort into multiple output cohorts. Whereas the Filter operation
creates an output cohort from a subset of the input cohort. (see Supplementary Figure S1 3 ).
Users can select categories or value ranges to filter or split the input cohorts. The Input Area and
the Output Area both use a tabular layout that shows input cohorts, their related output cohorts,
and attribute distributions.

3.5.4 Step 4: Add Output Cohorts to Evolution View

The output cohorts and the operations applied are displayed as a preview in the Cohort Evolution
View. Before confirming the set of cohorts to be finally added, users can deselect empty cohorts
or cohorts of no interest. This additional confirmation step avoids cluttering the Cohort Evolution
View during data exploration (see Supplementary Figure S1 4 ).

3.6 Implementation

Coral is publicly available at https://coral.caleydoapp.org/ and its source code is available at
https://github.com/Caleydo/coral. The web-client is implemented in TypeScript and utilizes
Vega-Lite (Satyanarayan et al., 2017) to create visualizations. The server-side uses Python to provide
the REST interface between front-end and back-end as well as the communication with a Postgres
database. The public version is deployed on Amazon Web Services (AWS).

3.7 Data Processing & Integration

The publicly deployed Coral instance contains the following datasets:

• AACR Project GENIE public release version 9.0 (AACR Project GENIE Consortium, 2017)
https://www.aacr.org/professionals/research/aacr-project-genie/

• The Cancer Genome Atlas (TCGA)
https://cancergenome.nih.gov

• Cancer Cell Line Encyclopedia (CCLE, Barretina et al. (2012))
https://portals.broadinstitute.org/ccle

• Project DRIVE (McDonald et al., 2017)

• Avana CERES (Meyers et al., 2017)

3.7.1 AACR Project GENIE

The American Association of Cancer Research (AACR) Project GENIE is a public cancer registry
of real-world data assembled through data sharing between 19 of the leading cancer centers in the
world. GENIE stands for Genomics Evidence Neoplasia Information Exchange and its goal is to
power precision oncology and clinical decision making (https://www.aacr.org/professionals/
research/aacr-project-genie).

We downloaded the latest public release v9.0-public on February 8th, 2021 from http://synapse.

org/genie. We converted the mutation file (data mutations extended.txt) into separate VCF files
per sample and annotated them using Ensembl VEP v70. Upon insertion into the database, which
is based on hg38, we stripped the genomic coordinates of the mutations and only inserted the trans-
lated cDNA and amino acid changes. We checked that the transcript structures of genes listed on
any of the gene panels were comparable between hg19 and hg38.

3.7.2 TCGA Sample Selection

The TCGA sample cohorts COADREAD, FPPP, GBMLGG, KIPAN, and STES were excluded since
these are combined or experimental cohorts.
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3.7.3 TCGA Metadata

The R package TCGAbiolinks (Version 2.5.9, Colaprico et al. (2016)) was used to extract sample
and patient information for TCGA samples by using a custom-made R script.

3.7.4 TCGA Gene Expression Data

The GDC Data Portal’s interface (https://portal.gdc.cancer.gov/) was used to generate a man-
ifest file of all data files that mapped the fields “Program” = “TCGA”, “Data Type” = “Aligned
Reads”, “Experimental Strategy” = “RNA-Seq”, and “Workflow Type” = “STAR 2-Pass”. Using
the GDC Data Transfer Tool, the data was transferred and pre-processed via the commands sam-
tools (Li et al., 2009) collate and samtools fastq to ultimately generate FASTQ files, containing the
unmapped reads. All samples were subsequently processed with a harmonized RNA-seq pipeline,
described in Hofmann et al. (2021).

3.7.5 TCGA Mutation Data

We downloaded the Mutect2 VCF files from the Genomics Data Commons (https://docs.gdc.
cancer.gov/Data/Bioinformatics_Pipelines/DNA_Seq_Variant_Calling_Pipeline/) in Febru-
ary 2018. We reannotated the VCF files using a combination of Ensembl VEP v86 and v93 focusing
on mutations that pass all filtering criteria as employed by the TCGA Mutect2 pipeline (labeled as
PASS). Mutations that failed the filtering but were recurrently present in the COSMIC database
were added.

3.7.6 TCGA Copy Number Data

TCGA SNP6 copy number segmentation data was downloaded from NIH GDC (https://portal.
gdc.cancer.gov/, Grossman et al. (2016)) on December 3, 2018. The segmentation information
was obtained from the files *nocnv grch38.seg.v2.txt. Gene-wise copy numbers were determined
by overlapping the segmentation information with Ensembl v86 gene annotation. If a gene was
covered by a single segment, the copy number of the segment was assigned to the gene. If a gene
was covered by multiple segments, a weighted average copy number was computed based on the size
of the overlap between the gene and each segment. Relative copy numbers <= 1.0 were considered
as “deep deletion”, and relative copy numbers >= 3.5 were considered as “amplification”.

3.7.7 CCLE Metadata

Cell line names and descriptions (organ of origin, metastatic site, histology type, morphology, growth
type, gender, and age at surgery) were taken from the provider’s cell-line data sheet. If a cell line
was available from various vendors, the cell-line name was taken from the top rank in a hierarchy of
vendors in the following order: atcc, dsmz, ecacc, jcrb, iclc, riken, kclb.

3.7.8 CCLE Gene Expression Data

Raw FASTQ data for all CCLE cell lines published in Ghandi et al. (2019), were downloaded via the
European Nucleotide Archive (accession number PRJNA523380). All data were processed identically
to the TCGA data as described above.

3.7.9 CCLE Mutation Data

Variant calling of cell lines followed community best practices. The reads were aligned using BWA
version 0.7.17 against the reference genome hg38. We used Picard 2.17.8 to remove duplicates and
strelka2 2.8.4 to call somatic mutations. We used an unmatched normal sample from the 1000G
project (NA12878) as the normal sample. Called mutations were annotated by a combination of
Ensembl VEP v86 and v93, flagging putative germline variation by using population frequencies
from the 1000G project and gnomAD. Putative alignment artifacts were filtered out using a mu-
tation blacklist derived from the Sanger COSMIC Cell line Project VCF files, for which putative
artifacts/germline variation is flagged in the VCF files. We computed coverage statistics for each
gene in each sample: In the absence of a mutation, we called a gene wild-type if and only if at least
80% of bases of the gene body (excluding the first exon) were sufficiently covered, and NA otherwise.
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3.7.10 CCLE Copy Number Data

SNP6 CEL files were downloaded from https://cghub.ucsc.edu/ in October 2012. Relative copy
number segments were computed using the R package aroma.affymetrix version 3.1.0 (Bengtsson
et al., 2008a,b, 2009) and Rawcopy version 1.1 (Mayrhofer et al., 2016): the SNP6 data was processed
with the AROMA method CRMA v2, where the 50 samples with the least amount of copy number
alterations based on Rawcopy were used to calculate the reference intensities. This was followed
by CBS segmentation. Afterward, the copy number segments were overlapped with Ensembl v86
gene annotation analogously to the TCGA processing in order to obtain gene-wise relative copy
number values. “Amplification” and “deep deletion” status were also assigned as in the TCGA
processing. Absolute copy number segments were computed using PICNIC version c release 2010-
10-29 (Greenman et al., 2010) with reference files adapted for reference genome hg38 and default
parameters. The resulting segments were overlapped with Ensembl v86 gene annotation as in the
TCGA processing in order to obtain gene-wise absolute copy number values.

3.7.11 DRIVE Data

DRIVE (deep RNAi interrogation of viability effects in cancer) is a large shRNA screen of ∼8000
genes and ∼400 cancer cell lines (McDonald et al., 2017). Raw data and processed RSA and ATARIS
scores were transferred via email by the authors. siRNAs targeting multiple genes were discarded.
Gene symbols were translated into Ensembl stable identifiers for genes by using the official gene
symbol provided by the Ensembl database Version 86. Cell-line names are identical to CCLE cell-
line names and were translated to the Boehringer Ingelheim cell-line nomenclature.

3.7.12 Avana Data

The Avana single guide RNA (sgRNA) library was used in a large CRISPR/Cas9 loss-of-function
screen (Meyers et al., 2017) of ∼770 cell lines and ∼17,500 genes (version 21Q1). Processed unscaled
CERES scores (representing the estimated gene knockout effects) were taken from https://depmap.

org and the final CERES scores were calculated (using the common essentials and non-essential genes
from the same source) based on the original method published in Meyers et al. (2017). Entrez Gene
IDs were translated into Ensembl gene identifiers using the Ensembl gene database Version 86. As for
the DRIVE dataset, CCLE cell-line names were used to translate cell-line identifiers into Boehringer
Ingelheim’s cell-line names.

3.8 Case Study 1

The main focus of this case study are KRASG12C somatic mutations. The gene KRAS is mutated
in ∼15% of all human cancers making it one of the most frequently mutated cancer-causing genes.
G12C (a glycine-to-cysteine substitution at codon 12) is one of the most prevalent KRAS mutations
and the target of several new drugs in clinical development.

Here, we reproduce some of the findings from a recently published article about KRASG12C

mutations (Nassar et al., 2021). The authors leverage the AACR Project GENIE patient cohort to
assess race and gender differences with respect to KRASG12C mutation frequencies in Non-Small
Cell Lung Cancer (NSCLC) and colorectal cancer patients.

We start the analysis by loading the AACR Project GENIE public dataset. We then create two
sub-cohorts containing the NSCLC and colorectal cancer samples. To do so, we first filter the GENIE
cohort using the tumor types lung adenocarcinoma, lung squamous cell carcinoma, and non-small cell
lung cancer which comprise the major subtypes of NSCLC (Supplementary Figure S3). Next, we
filter the GENIE cohort using the tumor types colon adenocarcinoma, colorectal adenocarcinoma, and
rectum adenocarcinoma which together constitute colorectal cancers (Supplementary Figure S4).

To get an initial impression of the demographics we select both cohorts and use the View op-
eration to visualize the distribution of the numerical attribute age (Supplementary Figure S5).
Additionally, we add the age attribute to the cohort tables in the Input and Output Area. We see
that NSCLC patients in the GENIE dataset seem to be, on average, older compared to the colorectal
cancer patients. To confirm that this difference is statistically significant, we use the Compare opera-
tion (Supplementary Figure S6). Additionally, we investigate potential differences regarding the
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gender distribution and see that the NSCLC cohort has a significantly higher proportion of female
patients (Supplementary Figure S7).

Subsequently, we want to check potential race and gender differences in the data with respect to
the KRASG12C mutation frequency. For this analysis we focus on NSCLC patients; we can apply
the analysis steps, however, in the same way to the colorectal cancer cohort. We perform the Split
operation to the NSCLC cohort using the categorical attribute race. We then create cohorts for
the three largest populations in the dataset, namely White, Asian, and Black (Supplementary
Figure S8). Next, we generate six new cohorts via the split operation on the categorical attribute
gender (Supplementary Figure S9). Finally, we use the View operation to visualize the frequency
of the different KRAS mutations in each of the cohorts using the categorical attribute KRAS: Amino
Acid Mutation (Supplementary Figure S10).

KRASG12C mutations (here called Gly12Cys) in NSCLC are less frequent in Asian women (∼1%)
compared to Asian men (∼5%), but more frequent in Black and White women (∼12% and ∼14%)
compared to Black and White men (∼9% and ∼11%), respectively. Furthermore, the prevalence of
this mutation is overall lower for Asian compared to Black and White. These observations match
the findings of Nassar et al. (2021) very well (compare the Supplementary Figure S10 Gly12Cys
bar chart with Fig. 1B of Nassar et al. (2021)). Minor differences in the numbers are mainly caused
by the use of different GENIE releases (v8.0 in Nassar et al. (2021) versus v9.0 in Coral).

The visualization in Coral easily allows a closer investigation of other KRAS mutations. We can
see, for instance, that there is a lower gender difference for G12V (Gly12Val) mutations in Asians.
Furthermore, the user can easily select the samples that harbor the mutation of interest, filter for
them, and then analyze them in even further detail.

3.9 Case Study 2

This case study summarizes an analysis session carried out by a collaborator with a background in
bioinformatics. We demonstrate how Coral helps and supports the analysis process visually to get
to the results of the session.

Coral provides a cancer genomics dataset with tissue sample data collected by the The Cancer
Genome Atlas (TCGA; https://cancergenome.nih.gov) project for 33 cancer types. The dataset
contains meta-data, such as the age and gender of the patients, and gene expression, mutation, and
copy number data of the samples.

The main focus of this analysis session is the gene KRAS. As indicated above, it is mutated
in ∼15% of all human cancers making it one of the most frequently mutated cancer-causing genes.
Despite several decades of research into this gene, there are still no approved drugs available that
target KRAS. However, several new drugs are currently in clinical development. The aim of this
analysis session is to investigate the landscape of KRAS mutations across different types of cancer
and to understand which patient populations could benefit from the new drugs.

The analyst starts by selecting the TCGA tumors dataset and then uses the Split operation
to split the cohort into KRAS mutated and KRAS non-mutated cohorts (Supplementary Fig-
ure S11).

Afterward, he assesses the distribution of tumor types in the KRAS mutated cohort and observes
that pancreatic adenocarcinoma, lung adenocarcinoma, and colon adenocarcinoma are the most
frequent tumor types of the TCGA KRAS mutated cases. The analyst selects these and creates the
corresponding cohorts using the Split operation (Supplementary Figure S12).

Subsequently, he assesses the KRAS mutation prevalence in these three tumor types and can
confirm the expectation that KRAS is very frequently mutated in these patients (∼75% in pancreatic,
∼44% in colon, and ∼36% in lung adenocarcinoma), as shown in Supplementary Figure S13.
Furthermore, assessing the survival data of these cohorts (Supplementary Figure S14) shows
that in particular pancreatic adenocarcinoma patients typically have a very poor prognosis. This
highlights the importance of developing drugs against mutated KRAS.

As the next step, the analyst investigates which specific KRAS mutations the patients have. He
selects the three cohorts and visualizes the attribute KRAS: Amino Acid Mutation. From the data it
becomes very obvious that lung adenocarcinomas differ significantly from the other two tumor types
with respect to the frequency of specific KRAS mutations. The three most common mutations in
lung adenocarcinomas are Gly12Cys, Gly12Val, and Gly12Asp (Supplementary Figure S15). In
contrast, the three most common mutations in pancreatic and colon adenocarcinomas are Gly12Asp,
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Gly12Val, and Gly12Arg, and Gly12Asp, Gly12Val, and Gly13Asp, respectively. The KRAS drugs
that are most advanced in clinical development target the mutation Gly12Cys. So, this analysis
shows that lung adenocarcinoma patients would benefit most from them due to the large fraction of
patients with that specific KRAS mutation.

To learn more about these lung adenocarcinoma patients, the analyst selects the top three KRAS
mutations and splits the cohort by them. Selecting the Gly12Cys cohort and opening the Inspect
Items operation reveals the individual samples that could have benefited from the treatment men-
tioned above. This list also allows adding further information for each patient, for example, its age
(Supplementary Figure S16).

As the last aspect of the investigation, the analyst is interested in the mutation frequency of the
gene EGFR in lung adenocarcinoma patients with and without KRAS mutations. EGFR is another
important cancer gene, especially in the context of lung cancer; and several drugs targeting it have
been approved. The analyst selects the cohort of KRAS non-mutated samples and filters them by
the tumor type lung adenocarcinoma. Afterward, he additionally selects the lung adenocarcinoma
cohort for the KRAS mutated samples generated in one of the previous steps and visualizes the
frequency of EGFR mutations. The analyst observes that ∼20% of lung adenocarcinoma patients
without KRAS mutation harbor an EGFR mutation (and could therefore potentially benefit from
related treatments), whereas almost none of the selected KRAS mutated samples have a mutation
in EGFR (Supplementary Figure S17).

So, mutations in KRAS and mutations in EGFR seem to be mutually exclusive. This can be
explained by the fact that both genes belong to the same signaling pathway and that over-activation
of one is sufficient for tumor development.

The results of this analysis session show that KRAS is mutated in many cancers, especially
pancreatic, colon, and lung adenocarcinomas, making them the main target populations for KRAS
drugs in general. But it also highlights that there is a clear difference between these tumor types
with respect to the kind of KRAS mutations that are present. This has a big influence on the
available treatment options. For instance, drugs targeting KRAS Gly12Cys are most relevant for
lung adenocarcinoma. Furthermore, the analysis shows that mutations in KRAS and EGFR usually
occur in a mutually exclusive manner.

In this session, the analyst shows that switching between creating and characterizing cohorts
is done without interfering with the analysis process, which simplifies and speeds-up the analysis.
Furthermore, being able to handle many different cohorts simultaneously allows one to easily manage
even more complex use cases. Finally, the availability of the Prevalence operation is particularly
useful for disease related analyses like this one, since it allows to perform prevalence estimations
without the need of defining reference cohorts manually.

3.10 Future Work

To further extend the utility of Coral, we identified the following aspects for future work.

Session management. The current session management of Coral stores the creation of cohorts.
We plan on extending the stored sessions with further analysis steps, i.e., which attribute was
visualized. This would allow the user to better understand why and how certain cohorts were
created in the analysis session.

Extending data and metadata. To further improve the utility of Coral for cancer research, we
plan to extend the included data and metadata. This includes adding additional data sets as well
as providing more detailed information and assessments related to the already available data, as,
for instance, classifying mutations into drivers and passengers / variants of unknown significance
(VUS).

Support for longitudinal data. Coral currently does not support longitudinal data (e.g., data
from multiple samples of one patient at different time points or a detailed treatment history).
Currently, these kinds of data sets are still rare. However, we expect this type of data to become
more prevalent in the future and therefore plan to extend Coral to support such use cases.

Integration with existing applications. To further support a wider range of tasks without re-
implementing functionality from other established tools, we plan to investigate the possibility of
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making Coral interact with existing tools. In particular, we plan to explore ways of tightly integrating
Coral with cBioPortal.

Going beyond cancer research. Finally, the current focus of Coral and its database is on cancer
genomics. However, technically and conceptually, Coral can be applied to data and problems from
other fields, for instance, to analyze the data of COVID-19 patients of a country or students of a
university. Therefore, we plan to support the upload of custom data and connections to additional
databases in the future. By doing so, Coral will be able to cater the needs of an even broader range
of researchers in other disciplines.
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