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Provectories: Embedding-based Analysis of
Interaction Provenance Data

Conny Walchshofer, Andreas Hinterreiter, Kai Xu, Holger Stitz, and Marc Streit

Abstract—Understanding user behavior patterns and visual analysis strategies is a long-standing challenge. Existing approaches rely
largely on time-consuming manual processes such as interviews and the analysis of observational data. While it is technically possible
to capture a history of user interactions and application states, it remains difficult to extract and describe analysis strategies based on
interaction provenance. In this paper, we propose a novel visual approach for meta-analysis of interaction provenance. We capture
single and multiple user sessions as graphs of high-dimensional application states. Our meta-analysis is based on two different types
of two-dimensional embeddings of these high-dimensional states: layouts based on (i) topology and (ii) attribute similarity. We applied
these visualization approaches to synthetic and real user provenance data captured in two user studies. From our visualizations, we
were able to extract patterns for data types and analytical reasoning strategies.

Index Terms—Visualization techniques, Information visualization, Visual analytics, Interaction Provenance, Sensemaking
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1 INTRODUCTION

UNDERSTANDING the analytical reasoning process of
users who work with interactive tools, in general, and

with visualization tools in particular, has been an active
research topic. One way to gain more insights into how
users work with such tools is to record interaction provenance
data, which describes the lineage of data, system states,
visualizations used, and user interactions. It is typically
recorded in the form of protocols, such as audio/video
recordings [3], usage logs [18], and user notebooks [51].
In the human-computer interaction (HCI) community, these
protocols are analyzed in an attempt to better understand a
user’s behavior and intentions [30].

In recent years, the visualization community has recog-
nized the potential of insights gained from capturing [5],
[11], [33], visualizing [6], [47], and interpreting prove-
nance [45] from user interactions with visualization tools.
According to the distributed cognition approach by Hollan
et al. [23], a close relationship exists between users’ activities
and their thought processes. Pohl et al. [40] argued that
visualizations of interaction provenance data can be used
to make sense of users’ reasoning processes. However, there
are few approaches that support effectively the meta-analysis
of analytic provenance as defined by Ragan et al. [42].

The primary contribution of our work is Provectories,
an approach that helps visualization researchers, designers,
and developers to better understand the behavioral patterns
and analytic strategies of users. As shown in Figure 1, we
transform application states of the interaction provenance
into feature vectors and visualize them using two different
types of embeddings: (1) a topology-driven layout that aims
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to show patterns of states based on their connectivity and
(2) an attribute-driven layout that visualizes states based on
their similarity. These embeddings give rise to visual pat-
terns that can be related to specific user actions. Provectories
can be applied to a broad spectrum of use cases and tools,
ranging from single interactive visualizations to feature-rich
tools such as Tableau and Microsoft Power BI.

As secondary contributions, we describe the visual pat-
terns that we extracted from Provectories visualizations of
synthetic user interactions and of real-world user interac-
tions from two user studies with different visual analysis
tools. We describe insights gained from single sessions
and patterns resulting from the combination of multiple
sessions. We discuss the relative strengths and weaknesses
of both layouts used in the Provectories workflow.

We structured the paper as follows. In Section 2 we
discuss existing approaches to interaction provenance rep-
resentation and analysis. In Section 3 we present application
scenarios and introduce an illustrative example. In Sec-
tion 4 we describe the Provectories workflow conceptually;
implementation details are given in Section 5. In Section 6
we present the results of applying Provectories to synthetic
and real-world interaction provenance data and discuss the
advantages of two different layouts. We then summarize the
limitations of our new visual analysis approach in Section 7.
Section 8 concludes the paper.

2 RELATED WORK

In this section, we describe how interaction provenance has
been defined in the literature and discuss why visualization
researchers might study interaction provenance. We then
discuss previous approaches to meta-analysis, in particular
those based on visualizations of provenance data.

2.1 Interaction Provenance
Ragan et al. introduced an organizational framework for
different types of provenance in visualization and data
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Fig. 1: Identifying meta-analysis patterns for interaction provenance with a topology-driven layout (left: force-directed) for a single user session
and with an attribute-driven layout (right: C-SNE projection) for multiple analysis sessions. The circular annotations highlight 1 a loop back within
the analysis process, 2 a chain of numerical value changes, 3 a selection of multiple countries, and 4 sessions alternating the assignment of
attributes on the G-axis, H-axis, and mark size. The colors of the states indicate numerical values from 1800 (○) in violet to 2015 (○) in light green.

analysis [42]. They defined interaction provenance as “the
history of user actions and commands with a system” [42,
p.35]. There are various motivations for logging explicit
and observable user interactions, such as selections, clicks,
keystrokes, and mouse movement. Gotz and Zhou intro-
duce an action taxonomy consisting of three top-level cate-
gories that can be used to gain insights from provenance
data, namely exploration, insight, and meta actions [19].
Interaction logs can be used for the purposes of collabo-
ration, reproducibility, storytelling, and retrieval [20], [46].
More closely related to our work, interaction provenance
can be analyzed to understand how users interact with a
visualization system [18] or to measure the effectiveness of a
tool [9]. The process of making sense of such logs is referred
to as provenance meta-analysis.

2.2 Provenance Meta-Analysis
Ragan et al. [42] described meta-analysis as one of six
purposes for interaction provenance tracking. Xu et al. [52]
provided a spectrum of possible reasons for conducting
meta-analyses on provenance data. Reviewing an analysis
process to understand the analytic strategies of users has
been identified as an important task [11], [14], [42], which
can be implemented in various ways.

Wei et al. [50], for instance, employed clickstream data
to analyze purchase patterns. The data is labeled with
predefined actions (e.g., selection of a category, setting a
price) and analyzed based on the ordered sequence. Heer
et al. [21] described how users interact with a visual ana-
lytics tool by evaluating aggregated collections of history
sessions. Pohl et al. [31] qualitatively analyzed interaction
provenance based on thinking-aloud protocols. They iden-
tified various strategies that users applied to interpret and

understand visualizations: comparing, laddering, explain-
ing (storytelling), summarizing, eliminating, and verify-
ing. Similarly, Madanagopal et al. [29] analyzed interaction
provenance from a sociotechnical perspective by conducting
interviews. They elaborate on how analytical provenance
can be captured and used by taking different end-users into
account. However, they call for future work, as analytic
provenance in contrast to data provenance is still in its
infancy. With reVISit, Nobre et al. [34] analyzed interaction
provenance by comparing event sequences using a node-
link diagram and identified “multidrag”, “sort and select”,
and “select and refine” as analysis strategies. Provectories
aims to identify such user strategies as visual patterns. Thus,
Provectories is a visualization-based approach to the meta-
analysis of interaction provenance.

2.3 Provenance Visualization
According to a recent survey by Xu et al. [52], interaction
provenance is most commonly encoded as a temporally
ordered sequence. Visualizing interaction provenance in this
way allows step-wise retracing of the individual interac-
tions [5], [11], [14] and can thus convey the users’ thought
processes [28], [53]. However, sequential visualizations are
less suitable for discovering patterns and relationships.
They neither preserve interesting topological structures,
such as loops or branches in a user’s interaction path nor
convey a potential similarity between application states
visited. These issues are addressed by the topology-based and
attribute-driven visualization techniques in Provectories.

2.3.1 Topology-driven Layouts
Provenance data can be treated as a graph, with nodes
representing states of a data item or application and edges



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

representing actions of users that lead to transitions between
the states. Graph-based provenance visualization can reveal
patterns such as branching, cycles, or commonly revisited
states (i.e., nodes with high connectivity).

VisTrails [7] is a graph-based visualization of workflow
provenance. GraphTrails [12] is an exploration tool for net-
work analysis that incorporates interaction-provenance on
the fly. VizCept [8] is a collaborative analysis system for
textual data that allows users to keep track of each other’s
findings and relationships in a shared topological concept
map. The Knowledge-Transfer Graph by Zhao et al. [54] shows
a node-link visualization that aims to help researchers to
externalize their thought processes in collaborative analyses.
reVISit [34] assesses interaction provenance data based on
both qualitative and quantitative data by showing interac-
tion patterns and analysis strategies as event sequences.

Similarly, we use a force-directed graph layout for vi-
sually representing interaction provenance. In addition to
this topology-driven layout, we also investigate and employ
layouts in which the similarity between states determines
the positions of the nodes.

2.3.2 Attribute-driven Layouts

The application states in a provenance log can be viewed
as a high-dimensional time series rather than a graph. Bach
et al. [2] proposed TimeCurves as a visualization technique
for revealing similarity in high-dimensional time series.
Time curves are trajectories through a two-dimensional
embedding of the data points, which give rise to visual
patterns such as clusters, cycles, U-turns and oscillations.
Time curves are based on multidimensional scaling (MDS)
for the embedding; similar visualizations can be constructed
by means of other dimensionality-reduction techniques,
such as PCA, C-SNE [49], and UMAP [32]. Time-curve-like
visualizations have been used to visualize high-dimensional
time series in a wide variety of application domains, for
example, dynamic graphs by van den Elzen et al. [48] and
neural networks by Rauber et al. [43].

In previous work [22], we used collections of time
curves to visualize decision-making processes in games and
puzzles, and described general patterns emerging in such
visualizations. In this work, we use the same approach for
visualizing interaction provenance in an attribute-driven
layout. This makes our approach closely related to Mod-
elSpace by Brown et al. [6]. ModelSpace is based on the
concept of “numerical analytic provenance”, which consists
of sequences of vectors that describe the users’ interactions
with a system “via the proxy of changes to their underlying
machine learning models.” The authors also mention a pos-
sible application of ModelSpace to visual analytics systems
in which the users do not interact with such models. How-
ever, from the brief discussion of the example application—
a search interface for the Finding Waldo puzzle [5]—it is
not clear how the feature space in such cases relates to
the insights gained from the ModelSpace visualization. By
applying our similar approach to two visual analytics tools
with fundamentally different choices for the state represen-
tation, we aim to strengthen this connection. Furthermore,
we show that additional visual encoding options and inter-
action techniques, such as tailored single-state and summary

visualizations or a step-wise path analysis, can facilitate the
interpretation of the projected provenance data.

3 REQUIREMENTS AND USAGE SCENARIO

We designed Provectories for the purpose of understanding
user behavior patterns and analysis strategies from inter-
action provenance. Gleicher [17] enumerated three ways
of comparing sessions: comparison between two items, be-
tween “a few” items, and between many items at the same
time. With Provectories, we aim to cover all three aspects,
performing meta-analysis to understand (i) a single user’s
analytical process, (ii) similar analysis processes by single or
multiple users, and (iii) similar approaches by and between
multiple users. Thus, Provectories uses two layouts to enable
comparison between unique states from a single session,
between unique states from multiple user sessions, and
between contiguous states from multiple user sessions.

Single-session investigation focuses on understanding be-
havioral patterns and the overall analysis strategy of a single
user. This type of investigation aims to answer questions
such as whether a user encountered difficulties during the
analysis and whether the user had a systematic search strat-
egy or performed a rather untargeted exploratory analysis.

Multi-session investigation builds on single-session inves-
tigation, but focuses on the comparison of the interaction
provenance from multiple users working with the same
tool. Here, the goal is to understand the similarities and
differences in analysis behavior between the users. This type
of investigation aims to answer questions such as whether
many users encounter the same difficulties, or how effective
different analysis strategies are. Multi-session investigation
can be divided into comparing sessions in which users
perform (i) the same or similar tasks or (ii) different tasks.

3.1 Requirements

We derive the following requirements for single and multi-
ples sessions from the existing literature [26], [36] and our
prior research experience [13], [22], [52]. To support single-
session investigation, Provectories is designed to:
S1 show the entire analysis sequence from beginning to

end, following the temporal order;

S2 include the user interaction and/or system state infor-
mation, such as the changes between two consecutive
steps in the analysis sequence;

S3 facilitate the analysis of data coverage during the
exploratory analysis, such as the data trails that lead
the user from the starting point to the final answer
and whether a user focuses on certain data attributes
and/or part of the dataset or more widely explores the
entire data space;

S4 facilitate the investigation of any analysis tactics or
strategies user deployed, such as whether the user
explores the data space randomly or follows certain
strategy such as breadth- or depth-first search. This also
includes the identification of situations such as user
getting stuck at a certain stage of the analysis, which
could be indicated by revisiting certain visualization
states from time again.
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Fig. 2: Interface of the Gapminder visual analytics tool [46] with the
history graph.
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Fig. 3: Schematic illustration of the Gapminder usage scenario explain-
ing how application states are mapped in the two layout variants.

To support multi-session investigation, Provectories aims to:
M1 provide an overview of all the analysis sessions, such

as which part of the dataset is more frequently investi-
gated and where does most of the unsuccessful analysis
ended up;

M2 support the comparison among analysis sessions, e.g.,
do successful analysis sessions share similar explo-
ration pathways and if there is any common difference
between successful and unsuccessful sessions;

M3 facilitate the discovery of other sense-making patterns,
such as whether more efficient analysis sessions can be
identified by certain visual patterns and is there any
correlation between the investigation strategy and data
attributes/subspace.

3.2 Usage Scenario
We hereafter use Gapminder [44], [46] as a guiding example
to explain how Provectories works. The Gapminder tool
allows users to explore the development of countries over
time. As outlined in Figure 2, it consists of a bubble chart
in which each country is represented by a colored mark.
Users can interactively map attributes, such as GDP, life
expectancy, and child mortality, to either one of the axes or
the size of the country marks, and change the year between
1800 and 2015 with a time slider. At any time, the application
state can be fully described by the following information:
the timestamp of the interaction; the data attributes mapped
to G-axis, H-axis, mark size, and mark color; the year selected
(between 1800 and 2015); and any countries selected.

In a simple analysis of the relationship between popu-
lation and fertility among countries in 2015, the user can
perform the following steps: (1) change the year to 2015;
(2) change the data attribute for the H-axis to population;
(3) select the country Qatar; (4) add China to the country

selection; and (5) change the data attribute for the G-axis to
fertility. This analysis results in the five applications states
listed in Table 1.

For the purpose of meta-analysis, we use the sequence
of application states visited by a user and display the
interaction provenance in two layouts, see Figure 3. In both
representations,+ and � indicate the beginning and the end
of a session, respectively. When applying a force-directed
layout (topology-driven), a chain of five successive states is
visible. In contrast, the attribute-driven layout (calculated
using C-SNE) places the states corresponding to selections
of the countries (states 3 and 4) closer to each other than
the other selected states. This is the result of an underlying
“conceptual” or “analytical distance”, which was defined to
be smaller between states 2 to 4 than between the other ones.

4 PROVECTORIES

The fundamental workflow underlying the Provectories ap-
proach consists of three steps, as illustrated in Figure 4:
1 the application states resulting from one user’s or mul-

tiple users’ interactions with a visual analytics tool are
recorded; 2 the application states are transformed to high-
dimensional feature vectors; and 3 for the purpose of meta-
analysis, the recorded analysis sessions are interactively
visualized as trajectories through a two-dimensional embed-
ding space based on various layout techniques.

4.1 Logging of Application States
As indicated in Figure 4 1 , the first step in the Provectories
workflow consists of creating user interaction logs for a
given visual analytics tool. Each user interaction (of a prede-
fined set of interactions) triggers the logging of the updated
application state. The complexity of the visual analytics tool
and the goals of the subsequent meta-analysis determine the
granularity of the application state and which interactions
are to be logged. For the subsequent steps in the Provectories
workflow, it is important that each user session is stored
as a temporally ordered list (S1) of potentially unstructured
or heterogeneous data items which can be transformed to
feature vectors.

4.2 Vectorization of Application States
In the second step of the Provectories workflow, the logged
application states are transformed into numerical feature
vectors (see Figure 4 2 ). This transformation serves two

TABLE 1
Interaction provenance for the Gapminder example. Here, x0, y0, s0,
and c0 represent the default data attributes mapped to the axes, size,

and color, respectively; Y 0 and C0 represent the default initial
selections for year and countries. Bold text indicates changes in the

application state resulting from a user interaction.

Time x-axis y -axis Size Color Year Countries

t0 x0 y0 s0 c0 Y 0 C0

t1 x0 y0 s0 c0 2015 C0

t2 x0 population s0 c0 2015 C0

t3 x0 population s0 c0 2015 Qatar
t4 x0 population s0 c0 2015 Qatar, China
t5 fertility population s0 c0 2015 Qatar, China
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Fig. 4: Provectories workflow. (1) Interaction provenance is captured from a visual analytics tool. (2) Each interaction leads to a system state which
is encoded as a feature vector such as s11. (3) The sequence of provenance vectors is then visualized with a topology-driven or attribute-driven
layout. Such a visualization can help to analyze a single session or to compare multiple sessions (such as Sessions 1 � and 2 �) concurrently.

purposes: First, it provides a structured way to determine
equivalent states for the subsequent topology-driven layout
(see Section 4.3.1). Instead of performing the similarity
check directly on the complete and potentially complex
logged states, this “quantization” introduces an optional
abstraction and/or simplification step. Second, it enables
the calculation of distances between application states (see
Section 4.3.2).

We hypothesize that there are three fundamentally dif-
ferent ways of vectorizing application states:

1) Vectorization via proxy—In some applications, users’
interactions with a visual analytics system transform
an underlying object that may be readily represented
as a vector. The changes to this object can serve as a
proxy to understanding the user’s actions. This type of
vectorization is showcased in ModelSpace by Brown et
al. [6]. If the underlying object is by itself not easily
interpretable, as is the case with black-box machine
learning models, this approach may introduce an ad-
ditional layer of complication.

2) Direct translation of interactive elements—In many
visual analytics applications, each user interaction
changes a variable of a given datatype. For instance,
radio buttons relate to categorical variables, sliders to
numerical variables, and the result of panning in a 2D
plot may be represented by a 2D vector. In such cases,
each variable of interest can be directly encoded and
used as part of a compound vector representation that
identifies the current application state.

3) Hand-crafted, semantic representations—In more
complex cases, the effects of user interactions have to
be translated to a numerical form by introducing a
representation that conserves the semantics of the data
that the user interacts with. The exact form of this

representation depends strongly on the specific user
interface, the actions tracked, and the tasks performed
by the users.

The Gapminder usage scenario outlined in Section 3.2 lends
itself well to using a compound representation constructed
from direct translations of the interactive components. Here,
the individual encodings depend on the data type:

Cat For categorical attributes, a simple one-hot encoding
is the obvious choice.

Bool Boolean attributes can be treated as categorical at-
tributes with two options or can be represented by a single
integer that is either 0 or 1.

Num Numerical attributes require no further encoding.

Set Set attributes can be encoded by a sequence of zeros
and ones of length ;, where ; is the cardinality of the
complete set.

These encodings for categorical, Boolean, numerical, and
set attributes introduced above give rise to simple distance
metrics, as specified in Section 4.3.2. In many cases, how-
ever, the user interactions are too complicated to be directly
translated, or the tracked information is too low-level to
carry any information about the user’s mental model. In
such cases, it is necessary to derive higher-level features
with better semantics. In Section 6.3, we describe such a tai-
lored vector representation for the case of users interacting
with a scatterplot through brushing.

4.3 Visualization of Application States
The final step of the Provectories workflow is the visualiza-
tion of the paths that users take through the application-
state space (see Figure 4 3 ). The high-dimensional feature
vectors are embedded in two dimensions and visualized
as a scatterplot using either a topology-driven layout, which
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emphasizes connectivity between identical states, or an
attribute-driven layout, which focuses on the similarity be-
tween states. In both cases, each point represents an appli-
cation state. The paths of users are visualized as trajectories
going through these points. Data attributes or metadata can
be mapped to the visual channels of the line and point
marks. We first describe the embedding techniques and the
required pre-processing of the provenance vectors. We then
discuss the visual encoding choices and how meta-analysts
can interact with the Provectories visualization.

4.3.1 Topology-driven Layout

For the topology-driven layout, we treat the collection of
user sessions as a graph. We first determine a set of unique
nodes, where each node represents a unique application
state. Uniqueness is based on the identity of the high-
dimensional feature vectors. We treat two nodes as con-
nected if one succeeds the other in any of the user sessions.
We lay out the nodes using a force-directed network spa-
tialization algorithm (ForceAtlas2 [24]; for implementation
details, see Section 5). The nodes are then connected by
drawing a Catmull–Rom spline trajectory through them for
each session (M1; see Section 4.3.3).

In the topology-driven layout, a single user session with
no duplicate states always results in a linear “chain” of
points. Only when states are revisited or shared across
multiple sessions, patterns, such as loops and branches,
emerge from this layout (S3, M2).

4.3.2 Attribute-driven Layout

For the attribute-driven layout, we treat the whole col-
lection of application-state vectors across all user sessions
as samples from a high-dimensional manifold. We embed
these samples based on their similarity (S3, M2, M3), using
various dimensionality reduction techniques. Specifically,
we compare the results for MDS, C-SNE, and UMAP.

As these dimensionality reduction techniques aim to
place similar points close to each other, it is important
to define a meaningful metric for calculating the mutual
distances between the high-dimensional feature vectors. For
compound representations based on simple translations of
interactive elements, we suggest defining this distance met-
ric based on individual distance functions for each attribute
type:

Cat For one-hot encoded categorical attributes, the
squared Euclidean distance corresponds to twice the Ham-
ming distance.

Bool For Boolean attributes encoded with a single number
(0 or 1), the result of an exclusive or (XOR) can be used.

Num For one-dimensional numerical attributes in com-
pound representations, it makes sense to define the distance
as the absolute difference normalized by the total value
range of the attribute.

Set Set attributes may be compared using the Jaccard
index. Alternatively, if the encoding described in Section 4.2
is used, a ?-norm of the difference between two vectors,
normalized by the ?th root of the cardinality can be used as
a distance function (see Section 6.1).

Total Finally, the total distance between two feature vec-
tors in a compound representation can be calculated as the
weighted sum of all individual attribute distances, where
the weights can be chosen freely by the meta-analyst. The
higher the weight of a specific attribute, the greater the
likelihood that patterns for the associated data type will
prevail in the embedding.

In the case of a hand-crafted vectorization, the distance
function must be chosen/constructed in such a way that
the desired semantics are preserved (see Section 6.3 for an
example). We use the pairwise distances as an input to the
MDS, C-SNE, and UMAP techniques (Section 6.1 and 6.2).
Unlike in our previous work [22], we remove duplicate
high-dimensional vectors prior to the embedding by default.
Otherwise, clusters of identical points can be mistaken for
specific data-related patterns. In the case of compound rep-
resentations, this removal of duplicates takes into account
whether any of the weights are set to zero by the user.
Zero-weighted attributes are treated as duplicates regardless
of their value. We set the perplexity hyperparameter of C-
SNE to 50 by default [49], and choose the nearest neighbor
parameter for UMAP accordingly (since perplexity can be
understood as a smooth measure of the number of nearest
neighbors). Details of the implementations used for the
embedding are given in Section 5.

4.3.3 Visual Encoding and Interactivity

As stated above, each layout technique results in a scatter-
plot of embedded application states. We visualize the user
sessions as spline trajectories through these points (S1, M1).
We chose this design over more traditional graph-drawing
techniques (e.g., tree layout) for three reasons: First, draw-
ing an individual trajectory for each session automatically
results in an effective multigraph visualization in which
parallel edges are visible as such. Second, each user session
has its own distinct path, whose visual channels can be used
to encode additional data. Third, in cases in which the meta-
analyst decides not to remove duplicates in the attribute-
driven layout, the same drawing algorithm can be applied.

Meta-analysts can select the visual encoding of the point
and line marks. Point marks can be colored categorically
depending on categorical or Boolean values, or using a
sequential color scale for numerical values. An age attribute
is also available which corresponds to the temporal index
of each application state within its session. Lines can be
colored categorically by meta-attributes such as usernames
and predefined task labels. They can further be switched on
and off by their categorical labels and filtered by length by
using a range slider. These coloring and filtering options
address Explore Dimensions and Explore Items in Enriched
Layout tasks and described by Nonato and Aupetit [35].

To let meta-analysts inspect the underlying high-dimen-
sional data for specific points, the Provectories visualization
features so-called summary visualizations [13]. Upon hov-
ering over a point, the summary visualization of the corre-
sponding single application state is shown. When multiple
points are selected (e.g., via a lasso selection), the summary
visualization is adapted to encode the distribution of values
among the application states. The exact visual encoding
of the summary visualization depends on the number and
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(b) The history graph view for step-wise analysis of a single session.

types of attributes that describe the state of a given applica-
tion.

Here, we describe the summary visualization designed
for the Gapminder example (see Figure 5a). A table lists all
categorical and Boolean attributes with their values, where
the frequency of values within the selection is encoded by
the size of the marker in each cell. A histogram shows the
distribution of year values. The distribution of set selections
is displayed as a list of country flags, with each flag’s opacity
encoding the number of states for which that country was
part of the selection. This list is ordered by frequency, with
the most frequently selected countries appearing first.

To facilitate tracing of individual user sessions even in
the presence of potential visual clutter, the history graph
with a list of user actions and the resulting application states
for an individual session can be activated (see Figure 5b).
In reVISit, Nobre et al. [34] refer to the sequential analysis
of interaction states by a video-like experience using a play-
back feature. Selecting states in the history graph overlay the
embedding space with arrows that indicate the position and
direction of the user session. Analysts can follow the session
in a step-wise manner or via an automated animation.

5 IMPLEMENTATION

The Provectories workflow is implemented as three indi-
vidual components which closely correspond to the three
steps of the workflow described in Figure 4: 1 a system
for tracking the interaction provenance, which must be
incorporated into the visual analytics tool that meta-analysts
want to study; 2 a module that structures, processes, and
exports the recorded provenance data; and 3 the interactive
visualization of the user sessions.

For the first user study (Gapminder), we use the Knowl-
edgePearls implementation of Gapminder [46] for prove-
nance tracking. The resulting provenance files are processed
in Python. We provide a Python module1 with classes for
application states, user sessions, and collections of sessions
that can be adapted to interaction data from different vi-
sualizations. For the second user study (User Intent), we

1. https://github.com/jku-vds-lab/sensemakingspace/

use the experiment data from Gadhave et al. [16] that
was used by the authors to predict the users’ intent based
on the selection of data points in a scatterplot using the
Trrack library [10]. We again provide a Python module2.
The processed provenance data can be exported with or
without pre-calculated embedding coordinates. We use the
openTSNE implementation of C-SNE [41], the official UMAP
Python implementation [32], the scikit-learn MDS imple-
mentation [37], and the ForceAtlas2 implementation from
the datashader module [1].

To visualize the exported interaction data, we use an
improved version of the ProjectionPathExplorer tool [22],
with online embedding functionality based on tsnejs [25],
umap-js [38] and Graphology ForceAtlas2 [39]. To increase
the comprehensiveness of pattern recognition through both
topology- and attribute-driven layout, we added a feature to
show both layouts simultaneously in a multiple-coordinated
view. Additionally, as outlined in Section 4.3.3, we use
summary visualizations as suggested by Eckelt et al. [13],
wherefore we implemented custom visualizations for both
user studies, see Figure 5a and 10. All sessions described in
this paper can be explored online3.

6 RESULTS

In this section, we describe patterns identified within in-
teraction provenance data from synthetically generated ses-
sions and discuss detailed patterns observed in two user
studies with real interaction provenance data. The generated
sessions illustrate the visual patterns for data types, whereas
the real user sessions demonstrate the utility of Provecto-
ries in studying actual analysis provenance. The first user
study shows the analysis of user sessions using the social-
economical dataset in Gapminder. The second user study
examines the analysis provenance of 12 different sessions
from the study by Gadhave et al. [16], with six sessions
for outlier tasks (three for outliers based on clustered data
and three for outliers based on linear regression) and six
sessions for clustering tasks . The supplementary material
contains Figures for all analyzed projections using differ-
ent layouts, tasks, datasets, and sessions. To interactively
explore the interaction provenance data, please refer to our
online prototype.

6.1 Patterns for Compound Representations
The goal of the synthetically generated sessions was to
study data type-specific patterns in embeddings based on
compound vector representations. We started by creating
sessions in which only a single data type (e.g., numerical
or set) is changed in a predefined way. For the synthetic
generated sessions, we use the Gapminder dataset. For the
set attribute, we chose the 2-norm as a distance function, so
that the average distance between two random subsets is
close to 0.7, but the between typical country selections with
few items is close to 0.5.

As expected, no data-type-specific patterns are visible
in the topology-driven layout, while we were able to ex-
tract patterns for Boolean, categorical, numerical, and set
attributes from the attribute-driven layout (see Figure 6).

2. https://github.com/jku-vds-lab/provectories-user-intent/
3. Prototype: https://provectories.jku-vds-lab.at

https://github.com/jku-vds-lab/sensemakingspace/
https://github.com/jku-vds-lab/provectories-user-intent/
https://provectories.jku-vds-lab.at
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Bool Boolean attributes are distinctly separated within the
embedding space. In Figure 6a, this can be seen as the
Boolean attribute religion and continent occupy their own
areas in the embedding. We found that for the synthetic
data, a separation of the embedding into two distinct re-
gions almost always resulted from a Boolean attribute, if the
weighting was kept equal.

Cat Like Boolean changes, categorical attribute changes
can cause the formation of clusters for each category in
the embedding. Furthermore, certain trajectory patterns can
reveal categorical changes. In Figure 6b, for instance, a
cluster with the same value for the size attribute population is
shown. Within this cluster, categorical changes in another at-
tribute (here, G-axis) lead to substructures (fertility rate, child
mortality, or GDP) that are connected by crossing, zigzag-
ging lines. This phenomenon can be more pronounced by
varying the weight on a respective data type, giving rise to
hierarchical clustering, as explained later.

Num As shown in Figure 1 2 , changes in numerical at-
tributes lead to a chain of states in ascending or descending
order. With regard to interaction provenance, the states need
not be traversed by the user explicitly in this sequential
order but these states automatically form a chain based on
the definition of the numerical distance. This chain pattern is
consistent for all three attribute-driven approaches (C-SNE,
MDS, and UMAP).

Set If only single set items are selected in each state, all
of these states have a mutual distance of 1/

√
=, where = rep-

resents the total number of countries within the embedding
space. The observation of accumulatively selecting a coun-
try can be seen in Figure 6. C, which attempts to preserve
high-dimensional distances, gives circular arrangements for
single selected set attributes. Thus, a combination of single
and multiple selected countries leads to a ring pattern, as
outlined in Figure 6c. Here, A represents (1) a single selected
set attribute as inner ring, and (2) a second, added country
as the outer ring, before (0) both countries are deselected
again. This ring structure arises from a distance of 1/

√
=

between states with different single-country selections and a
distance of 2/

√
= between states with two different countries

selected.

Weighting. All patterns described so far were identified
for equally weighted attributes (i.e., F8 = 1 for all 8. If the
weight for a attribute type ) is increased (e.g., F8 = 10

for some 8 with :(8) = ) ), the patterns related to that
data type become more dominant in the attribute-driven
layout. For instance, increasing the weight for a numerical
attribute forces more states to be placed along a shared axis
representing that numerical attribute.

Hierarchical clustering. The weighting can be adjusted
to focus on a subset of data types while reducing or
completely removing the effect of the other types. For the
attribute-driven layout shown in Figure 7, the weight of
numerical and set attributes was reduced to zero (F8 = 0
for all 8 with :(8) = num or :(8) = set). This gives rise to
a hierarchical clustering based on the remaining Boolean
and categorical attribute values. Figure 7 1 shows a clear
separation of the application states based on whether the
color attribute represents continent or religion; 2 within
the religion cluster, a further division is determined by the
size attribute; 3 within each cluster of equal-size value,
the attribute mapped to the G-axis causes a further sub-
clustering. The values of these attributes are shown in the
summary visualizations in the lower part of Figure 7. By
adapting the weights, the ordering of attributes within the
hierarchy can be changed.

6.2 Meta-Analysis of Gapminder User Sessions
The goal of the first user study was to confirm the patterns
observed from the synthetic sessions and discover further
analysis patterns from single and across multiple user ses-
sions. We conducted a user study with 32 participants (m:
17, f: 15). The participants were students of a Data Science
master program, as part of which they attended an intro-
ductory course on data visualization. We asked participants
to find answers to four tasks following the Brehmer and
Munzner taxonomy [4] by using the Gapminder tool.

We designed T1 and T2 as directed tasks (identification
task), where the answers could be identified within a small
number of interactions. In contrast, T3 (comparison task)
and T4 (summarization task) are exploratory, open-ended
tasks, which typically lead to longer sequences, see Table 2.
As described in Section 5, we made use of the Vega-
Gapminder tool that saves the interaction provenance. We
asked the participants to download the interaction prove-
nance after completing each task so the starting point for
each session could be identified. We removed the sessions
that contained all tasks in one file, which reduced the total
number of sessions to 109.

(a) C-SNE—Boolean distinction over
multiple sessions

(b) C-SNE—Categorical changes in
multiple sessions

B
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2
1
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21
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34
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(c) C-SNE—Single and multiple set selections within a sin-
gle session

Fig. 6: Patterns identified from synthetically generated single and multiple sessions using an attribute-driven layout. Gapminder data showing (a) a
Boolean distinction between religion (○) and continent (○) within the embedding space; (b) categorical changes (○ ○ ○ ○ ○ the colors show
clusters for x-axis attributes); and (c) single and multiple set selections, where the number of selected states is indicated (0–4).
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Fig. 7: Hierarchical clustering for synthetic user sessions emerges in the following order: 1 Boolean, 2 categorical, 3 categorical after removing
the effect of numerical and set attributes by setting their weights to zero (wnum,set = 5). The simplified summary visualization shows the relative
frequencies of the Boolean and categorical attributes in the corresponding attribute color.

Data Types: We were able to confirm the patterns
observed in the synthetic stories for all four data types (see
Section 6.1). As expected, T1 did not reveal any data-type-
specific patterns because accomplishing the task required
only the year to be changed once. Since task T2 evoked
a Boolean change, sessions related to that task forms two
clusters — although no longer as obvious as in the synthetic
sessions. Moreover, categorical changes become apparent
for both single and multiple sessions. The open-ended task
T3 requires categorical changes, numerical variations, and
set alternations, where most participants set the target at-
tribute to population on the G-axis or mapped it to the size.
As anticipated, T4 consisted mainly of categorical changes,
where participants explored the data point distribution from
the Gapminder scatterplot for almost all possible attribute
combinations and selected single countries at the end of
the sessions. The attribute-driven layout using t-SNE can be
seen for T4in Figure 1, showing the interaction provenance
of all users. Overall, the data type observations in all four
tasks match the patterns from the synthetically generated

stories.

Analytical Strategies: T1 was answered correctly by
78.0% of the participants using an average of 17.52 ± 14.01
steps. It can be seen in both layouts that most participants
had already found the answers to both subquestions after
an average of four steps, but continued to explore the data
and the tool by using the slider for the numerical attribute
or the drop-down menu for categorical changes. As these
additional steps are not necessary to complete the task, we
call this process a random walk. Additionally, superimposing
trajectories pointing from one cluster to another reveals
that most participants chose the same analysis steps to
accomplishing the task. States visualized by the attribute-
driven layout distinctly show two small clusters within the
embedding for both answers. In contrast, in the topology-
driven layout, no unique positions for the answers can
be identified. This can be attributed to the higher number
of nonidentical states (e.g., attribute on G was placed on
the H-axis). Thus, answers that are relatively close to the
actual answer point to the outer region of the embedding

TABLE 2
Overview of the four tasks from the user experiment with average answer correctness and average number of steps taken to accomplish a task.

Task Question ∅ Answer
Correctness

∅ Number
of Steps

T1 In 2015, select (a) the country with the highest GDP, and (b) the country with the largest population. 78.0 % ± 0.3 % 17.5 ± 14.0

T2 In 1843, select the Muslim country that has (a) the highest child mortality rate (b) the highest fertility rate. 87.0 % ± 0.3 % 18.7 ± 13.7

T3 Select the European country that had the largest relative drop in population between 1939 and 1945. 40.6 % ± 0.5 % 27.7 ± 23.8

T4 Select any country on the continent that has the highest correlation between any two attributes in 1945. 0.3 % ± 0.1 % 29.8 ± 34.0
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if no other user selected the same application state. It is
important to note that without the summary visualization,
such sessions cannot be distinguished from random-walk
analysis strategies. For T2, half of the participants started by
changing the year, whereas the other half began by changing
the Boolean attribute first. This can be seen by observing di-
rected trajectories for single user sessions in the embedding
with the history graph. Particularly noticeable are the vari-
ations in categorical attributes. Participants confirmed the
country selection several times by changing the assignment
of the target attribute to different categorical positions (e.g.,
G-axis, H-axis, mark size). These changes formed the zigzag
pattern as shown for the synthetic sessions in Figure 6b.
About one third of the participants (35.38%) completed the
task by identifying both answers (country with the highest
child mortality and fertility rate) in the same application
state with both (T2a) child mortality and (T2b) fertility as
categorical axis options.

(a) Force-Directed layout (b) C-SNE layout

Fig. 8: Gapminder user study: T3, where 1 shows alternation between
y-axis items, 2 toggling between two states and 3 a verification loop
by screening for incorrect states

We observed that multiple exploration paths lead to the
correct answer. For T3, 18 out of 22 sessions first converge on
one unique application state before continuing the analysis
in various ways. Participants started by changing the year
to 1940 before selecting different countries and varying
categorical characteristics to determine the largest relative
drop in the population between 1939 and 1945. As shown
in Figure 8, one user, for instance, started (+) by assessing
the correlation between two attributes by 1 selecting all H-
axis attributes (except for child mortality), and then revisited
the initial attribute. This sequence leads to a visual loop in
the embedding. The user continued by changing the year
and 2 alternating between two set attributes. Toggling com-
pares the two alternatives and verifies the final selection.
Before terminating the analysis, the participant 3 looked
at four other countries and confirmed the initial selection
(�). T3 benefits from visualizing the interaction provenance
in the attribute-driven layout because participants selected
different countries after changing the year to 1940, and the
selected states are positioned close to each other. Hence,
the topology-driven layout treats these states as indepen-
dent and unique (see Figure 8a), and the attribute-driven
approach emphasizes the similarity of the application states
for different analysis processes (see Figure 8b). T3 has an
average answer correctness of 40.6% and an average number
of step taken to accomplish the task of 27.27 ± 23.8.

The last exploration task T4 shows identical states and
overlapping trajectories within the embedding with T3 be-
cause the same year—1945—was selected to accomplish
the task. In general, both open-ended tasks cover a large

TABLE 3
Visual and data patterns extracted from various techniques, with

indicators for the levels of readability (X low, Y medium, Y high) and
validity (Å low, � medium, � high).

Patterns Topology-
driven

C-SNE MDS UMAP

Bool

Cat

Num

Set

Comparison
B8 � B8+1

Looping
B8 = B8+:

Similar
selection
B8 ≈ B 9

Attribute-driven

YÅ Y�

Y�

XÅ Y�

Y�Y� XÅXÅ XÅ

Y�

Y�

XÅ Y�

area within the embedding space. Furthermore, T4 shows
an average response accuracy of 0%, while the number of
steps to accomplish the task is higher (29.8 ± 34.0) than for
the directed tasks (T1 and T2). Overall, participants tried to
find the highest correlation between any two attributes by
varying all attribute combinations for any categorical com-
binations for T4. Furthermore, the attribute-driven layout for
T4 shows a zigzag pattern, which means that G- and size at-
tributes are contained within clusters of H-attributes, which
confirms the hierarchical dependency (see Section 6.2).

Layout Applicability: Based on the insights gained
from synthetically generated sessions and real user interac-
tion provenance, we summarize the identifiable patterns in
Table 3 for the visualizations based on a compound repre-
sentation. Dependent on the layout and the visual pattern,
we introduce an indicator that describes the readability and
validity of each pattern. The former indicates whether it is
possible to identify this pattern within the embedding space,
and the latter signifies the reliability of the pattern.

Data-type-specific patterns emerge only in an attribute-
driven layout. Each Boolean item occupies its own area
within the embedding space, which leads to two distinct
areas for all three techniques (C-SNE, MDS, and UMAP);
this can be accentuated by putting a higher weight on the
data type. When only a single session is embedded by itself,
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categorical changes are difficult to extract due to the low
number of states within the embedding space. In contrast,
when multiple sessions are embedded at the same time,
additional states provide enough context that clusters for
each attribute can emerge. However, based on the high num-
ber of trajectories, visual clutter can result. In these cases,
highlighting and tracing single sessions using the history
feature supports the identification of categorical changes. In
contrast, a chain of states emerging from numerical value
changes has a high validity within all three algorithms; also
cumulatively selected set items resemble this behavior. In
addition, single selected set attributes form a circular state
pattern for C-SNE. MDS and UMAP do not yield a clear
pattern, since many data points converge to almost a single
position in the embedding space. Although C-SNE is known
for preserving local structures better, while UMAP is said
to preserve global structures better, the attribution of set
patterns was the only clear difference we could identify
between both approaches. We also observed—as expected—
that with increasing perplexity values the C-SNE scatterplots
tended to resemble those constructed with UMAP.

To trace users’ analysis steps, both topology-driven and
attribute-driven layouts can be applied to identify steps
revisited in single and multiple sessions based on the re-
moval of duplicates (and, similarly, for loops containing
intermediate states). Thus, confirmation or verification tasks
can be observed for single user sessions. Due to overlapping
and intersecting trajectories, the identification of an analyt-
ical reasoning process for a single session becomes more
difficult with an increasing number of sessions. We address

this shortcoming with the history graph (see Figure 5b) that
allows meta-analysts to detect and understand patterns of
single user sessions in multiple simultaneously displayed
sessions by highlighting the session of interest. Near identi-
cal data points can only be identified in an attribute-driven
layout, where they are positioned closer to each other.
Consequently, overlapping trajectories signify application
states that were also visited by other users in the same
analytical sequence. In MDS and UMAP, however, data
points of set attributes almost overlap in the embedding
space, whereas the chain pattern of numerical values results
in a small distance between similar data points. For UMAP,
this may be improved by choosing a different setting of the
“mindist” parameter. Further, in accordance with attribute-
driven layouts, individual analysis steps or steps of a ran-
dom walk represent unique data points. Particularly for
MDS and UMAP, Boolean, and categorical changes evoke
visually distant data points. Based on the entropy of the
embedding space, individual data points or even sessions
become distinctive.

6.3 Meta-Analysis of User Intent Sessions

We demonstrate the general applicability of Provectories us-
ing interaction provenance data from the users’ intent study
by Gadhave et al. [16]. They conducted a crowdsourcing
user study with 130 participants, where each participant
conducted five different tasks. Among these tasks, partic-
ipants were asked to select outliers or data points that
belong to a cluster in a scatterplot. They analyzed two

Summary Visualization
Superimposed Clusters A –H

Summary Visualization
Whole Embedding

Cluster A 
Initial State

Cluster E

Cluster B

Cluster F Cluster G

Cluster C

Cluster A
Initial State

Cluster H
Ground Truth

Cluster B

Cluster G

Cluster D

Cluster H
Ground Truth

Cluster D

Cluster C

Cluster E

Cluster F

Fig. 9: Cluster-based analysis using C-SNE on the example of the outlier (cluster) medium 2 dataset performing a multiple-user investigation. Distinct
clusters (Cluster A–H) can be observed for outlier selections and superimposed trajectories indicating that the selection of the data points were
performed in the same/similar sequence by multiple users.
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Initial state Selected outlier on 
top

Selected outlier at 
the center

Selected outlier at the
bottom

Selected outlier again
on top

1 2 3 4 5
Task Outlier (Linear) 1

Single User Session InvestigationWhole Embedding

Fig. 10: On the left, summary visualization for all interaction provenance states within the embedding for the dataset outlier (linear) easy 1. 1 —
5 shows the summary visualizations using the storytelling feature (playback features as within Nobre et al. [34]) for analyzing a single user session.

Outlier were first selected on top before selecting data points at the bottom of the scatterplot and going up again.

conditions. In the first condition, users were computation-
ally supported by an auto-complete feature to select e.g.,
the desired outliers. This feature became apparent after
selecting the first data point. For the second condition,
users had to accomplish the tasks manually without any
computational assistance. In total, 12 different datasets were
used for outlier tasks (cluster and linear) and six for cluster
tasks, each with three difficulty levels (easy, medium, hard).

To analyze the user behavior, we extracted the set of
selected data points after each interaction. Unlike in the
Gapminder example, we chose not to use this information as
a simple set attribute, but instead calculate a more meaning-
ful feature vector that concisely describes both the number
and the position of all selected points. We first normalize the
coordinates of all data points from the different datasets that
users interacted with. We then construct a 10-by-10 grid and
count the number of selected points within each grid cell.
The resulting 2D histogram is flattened into a vector and
the vectors are compared using the cosine similarity. This
encoding ensures that point selections in similar regions of
the scatterplots are close together, even if the sets of selected
points do not match exactly. It also enables meaningful
comparison of user selections across different datasets. For
the summary visualizations, we simply show scatterplots of
the selected points, with opacity encoding in how many of
the analyzed states a given point is part of the selection.

We additionally enrich the Provectories visualization with
meta-attributes to understand the embeddings in more de-
tail, following the high-dimensional data summary visual-
ization from Eckelt et al. [13]. Meta-attributes for this user
study are the user ID, the task ID, the accuracy per task on
a user level, the task difficulty level, the Boolean attribute of
auto-complete used, and the selected rank of the prediction
that was used by a user.

Analytical Strategies: In line with the observed select
and refine analysis strategy identified by Nobre et al. [34],
we can confirm this strategy for single user sessions by
means of the playback function in the history graph. More-
over, when performing single-session investigations for the
outlier tasks, a top-to-bottom approach becomes visible (S3
and S4). Thus, participants primarily started to select the
outliers at the top of the scatterplot before selecting outliers
towards the center or bottom, see summary visualizations
in Figure 10. This analysis strategy can also be observed
for multiple users, where outlier selections form distinct
clusters within the embedding (M3), see cluster A–H in

Figure 9. The ground truth is colored in orange (+). Hence,
the summary visualization for all states in the embedding
shows almost the original scatterplot from the dataset,
whereas the summary visualization only for the visually
identifiable clusters in the embedding provides information
about the outlier coordinate positions. In addition, through
both the transparency of trajectories but also the direction in
which the trajectories are pointing to, it can be seen that the
selection of outliers was performed by multiple users in the
same/similar sequence.

(a) Cluster Easy 1 (b) Cluster Hard 1

Fig. 11: Projections for an easy and a hard cluster task. Easy tasks
show superimposed trajectories and few states. The hard task shows
numerous unique states and trajectories pointing in all directions. The
ground truth (+) is colored in orange.

Dataset Difficulty: Further, in line with the per-
formance measures from Gadhave et al. [16], Provectories
shows different patterns in the embedding for the level
of difficulty per dataset. Easy tasks show numerous su-
perimposed trajectories pointing from one state to another,
indicating states with the same data point selections (see
dataset cluster easy 1 in Figure 11a). In contrast, hard tasks
show a higher number of unique states in the embedding
and hardly any overlapping trajectories (see dataset cluster
hard 1 in Figure 11b) (M1). Also as outlined in Figure 11, the
ground truth state colored in orange was found exactly for
the easy task, whereas a 100 % answer correctness was not
reached by any user for the cluster hard 1 dataset. Gadhave
et al. also assumed a confidence interval of 95% to analyze
the answer correctness. When looking at clusters close to the
ground truth state, we can visually determine distinct clus-
ter positions in embedding for the easy tasks, whereas the
auto-complete prediction from the user intent study for hard
tasks does not show any clear clusters, see supplementary
material. We see this observation as a potential approach
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for usability testing of a system by assessing not only the
number of click events a user needs to accomplish a task,
but rather to see if multiple users followed the same path
to navigate through a tool. This could help meta-analysts to
identify aspects of the tool that might distract the user.

Prediction: After consultations with the authors, it
remained unclear if the computational auto-complete sug-
gestion directly lead the users to the final answer or if they
continued their analysis process. Thus, we investigated the
“supported” condition in more detail. By using color and
shape encodings in addition to the summary visualizations,
we were able to observe that 38.7% of the participants who
used the prediction feature for outlier tasks, finalized their
session on the ground truth state—52.5% for the outlier
(cluster) and 25.5% of the outlier (linear) task. For the cluster
tasks, only 21.8% of the users selected the correct suggested
prediction (three prediction options were given to the user)
and therefore ending their session on the ground truth
state. Hardly any participant performing a task on any hard
dataset (outlier and cluster) reached the ground truth state–
except for the outlier (cluster) hard 2 dataset. Moreover, Pro-
vectories enabled the identification of sessions in which users
selected incorrect predictions and consequently refined the
data point selection for the scatterplot (M2).

By analyzing the interaction provenance of the second
user study, analysis strategies such as top-to-bottom, select
and refine, but also the identification of ”dead ends”, which
are resolved by the auto-complete feature, could be ob-
served. By comparing multiple users performing the same
task on a dataset, it was possible to identify clusters in
the projections, which indicate the same or similar state
constitution. By taking superimposed trajectories and the
direction of the trajectories into account, solving strategies
can be determined.

7 DISCUSSION

Vector Representations: In few visual analytics ap-
plications, users manipulate an object for which a vector
representation is readily available (e.g., and underlying
machine learning model). We thus see the compound repre-
sentation explained in Section 4.2—and showcased with the
Gapminder user sessions—as a potential starting point for
provenance meta-analysis. For many applications it may be
possible to encode each interactive visual component based
on the data type of its underlying variable. We showed
that the resulting compound representations lead to certain
type-specific patterns in the Provectories visualization, which
may be accentuated through weighting. However, care must
be taken to correctly interpret patterns under the effect of
hierarchical clustering (see Section 6.2). In our meta-analysis
of the user intent study data [16] presented in Section 6.3,
we show the potential of a semantic state representation
not directly based on low-level variables. Unfortunately, it is
difficult to make general statements about such representa-
tions, as they need to be constructed on a case-by-case basis,
with close consideration of the artifacts manipulated by the
users and the tasks performed.

One aspect that is not considered in the layout
calculation—apart from the sequential order for drawing the
lines—is the time users took between states. We refrained

from adding the timestamp or time differences to the state
representations as this would introduce differences between
otherwise equivalent states, which could in turn obfuscate
the patterns that we identified. However, it would still be
interesting to explore the information contained in the time
data. We see two potential ways going forward: (1) adding
additional encoding options for line segments, which could
be used to identify slow and fast stages of the user sessions;
and (2) incorporating the time separately, in way similar
to how we process connectivity information in our hybrid
layout approach proposed below.

We found it especially challenging to find suitable state
representations in cases where users can create unlimited
visual components themselves (e.g., new views in dash-
boards). We hypothesize that for such tools a representation
similar to Fock states in quantum mechanics [15] could
be used to describe the elements in the infinitely large
configuration space. In such a representation, instead of
listing all views with their attributes, the possible attribute
combinations are listed along with associated “counts” of
views that share those attributes.

Motifs: With our novel visual analysis approach, we
extracted patterns based on the connectivity and similar-
ity of application states. To increase the knowledge about
analysis sequences and to reduce visual complexity, we
suggest using a motif-based aggregation for both layout
approaches [47]. Detection of motifs allows us to aggregate
the provenance graph or parts thereof while preserving the
high-level structure. This adds the potential of chunking
interaction sequences for a more compact display. Further-
more, identified patterns could be rendered as a sequence of
actions and compared across multiple sessions.

Hybrid Layout Approach: To combine the advan-
tages of both the topology and the attribute-driven layout,
we have started to develop a hybrid layout approach. In the
purely attribute-driven layout used in our work, the dis-
tance matrix for C-SNE or UMAP is calculated directly from
the attribute values (see Section 4.2), while the topology-
driven layout is based on the connectivity of states. Our
hybrid approach builds on tsNET [27], which creates a
topology-driven layout by transforming the adjacency ma-
trix of a graph to a distance matrix which is then used for C-
SNE. We combine this topology-driven distance matrix with
the attribute-driven one and use their weighted sum for a
hybrid embedding. For the sessions from the user intent
data, we found that a hybrid embedding with low weight on
the attribute-based distances reveals similar patterns as the
purely attribute-driven one, while circumventing the short-
coming of the degenerate distances for empty selections. We
believe that the applicability of such hybrid layouts exceeds
the scope of Provectories, and we want to further refine and
study this technique in future work.

8 CONCLUSION

In this paper, we have presented a novel visual analysis
approach to extracting patterns from interaction provenance
data. Our Provectories approach consists of three steps:
(1) the acquisition of interaction provenance data in the
form of logged application states, (2) the construction of
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feature vectors representing these states, and (3) the visual-
ization of provenance using topology- and attribute-driven
layouts. By interactively exploring such visualizations for
compound representations and real user sessions, patterns
based on data types and analytical reasoning processes can
be revealed. We demonstrate our approach by means of two
user studies and were able to increase the comprehension
of interaction logs using Provectories However, interaction
provenance from other applications, in particular, feature-
rich tools such as Tableau and Power BI remain to be
explored. We strongly believe that Provectories can fill a gap
in the field of provenance and sense-making to improve
understanding of similarities between analysis processes
and user-specific behaviors.
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V. Dhanoa, C. Humer, M. Schöfl, C. Steinparz, and M. Streit. Visual
Exploration of Relationships and Structure in Low-Dimensional
Embeddings. preprint, Open Science Framework, Apr. 2021. doi:
10.31219/osf.io/ujbrs

[14] M. Feng, E. Peck, and L. Harrison. Patterns and Pace: Quantifying
Diverse Exploration Behavior with Visualizations on the Web.
IEEE Transactions on Visualization and Computer Graphics, 25(1):501–
511, 2019. doi: 10.1109/TVCG.2018.2865117

[15] V. A. Fock. Konfigurationsraum und zweite Quantelung.
Zeitschrift für Physik, 75(9–10):622–647, 1932. doi: 10.1007/
BF01344458
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