
InstanceFlow: Visualizing the Evolution of
Classifier Confusion on the Instance Level

Michael Pühringer*

Johannes Kepler University Linz
Andreas Hinterreiter†

Johannes Kepler University Linz
Imperial College London

Marc Streit‡

Johannes Kepler University Linz

A

B C

Figure 1: InstanceFlow visualizes the evolution of a classifier’s predictions throughout the training process on an instance level. The
Flow View A shows all instances and their corresponding class association as rectangular glyphs. A Sankey diagram shows the
fractions of instances moving between classes. Additionally, the traces of single instances can be highlighted. The Tabular View B

of the instance predictions over time along with custom performance scores C allows finding, ranking, and grouping instances.

ABSTRACT

Classification is one of the most important supervised machine learn-
ing tasks. During the training of a classification model, the train-
ing instances are fed to the model multiple times (during multiple
epochs) in order to iteratively increase the classification performance.
The increasing complexity of models has led to a growing demand
for model interpretabilty through visualizations. Existing approaches
mostly focus on the visual analysis of the final model performance
after training and are often limited to aggregate performance mea-
sures. In this paper we introduce InstanceFlow, a novel dual-view
visualization tool that allows users to analyze the learning behavior
of classifiers over time on the instance-level. A Sankey diagram
visualizes the flow of instances throughout epochs, with on-demand
detailed glyphs and traces for individual instances. A tabular view
allows users to locate interesting instances by ranking and filter-
ing. In this way, InstanceFlow bridges the gap between class-level
and instance-level performance evaluation while enabling users to
perform a full temporal analysis of the training process.

Keywords: Classification. Performance analysis. Time series
visualization.

*E-mail: michipueh@gmail.com
†E-mail: andreas.hinterreiter@jku.at or a.hinterreiter@imperial.ac.uk
‡E-mail: marc.streit@jku.at

1 INTRODUCTION

The real-world application of increasingly complex machine learning
models has led to a growing interest in visualizations for post-hoc
model explainability [2,5,12]. One of the most important supervised
machine learning tasks, with a wide variety of application areas,
is classification. The performance of classification models can be
analyzed and visualized on three levels of detail [11]: global, class-
level, and instance-level. Additionally, extending the analysis to
cover the whole training process (multiple training iterations, i.e.
epochs) has been identified as a promising research direction [5,
12, 18]. However, existing approaches often focus on fully trained
models and disregarding the temporal evolution that led to this final
model state. Furthermore, tools that enable temporal performance
analysis are typically limited to global, single-value performance
measures [8].

In previous work, we argue that extending a temporal performance
analysis to the class-level can lead to new insights [11]. Still, the
aggregated nature of class-level performance measures showed that
a full analysis of a classification model’s learning behavior also
requires drilling down to the level of individual instances.

To address this issue, we introduce InstanceFlow, a novel vi-
sualization that combines aggregated temporal information in a
Sankey diagram with detailed traces of individually selected in-
stances. These interesting instances can be located via a tabular view
that allows users to rank and filter instances by several temporal
difficulty measures. With this dual approach, InstanceFlow aims at
bridging the gap between class- and instance-level analysis of the
learning behaviors of classification models.

ar
X

iv
:2

00
7.

11
35

3v
1

 [
cs

.L
G

]
 2

2
Ju

l 2
02

0

2 USER TASKS

As stated in the introduction, InstanceFlow focuses on a temporal
analysis of instance-level classification performance. Such an anal-
ysis can lean either towards exploring instance-based properties of
certain epochs, or analyzing the temporal characteristics of individ-
ual instances. Consequently, we have structured the user tasks that
we seek to address with InstanceFlow by whether they are epoch- or
instance-focused (see Table 1). We based the individual user tasks
on a survey of existing instance-level visualizations (Section 3), with
a focus on filling gaps related to model-agnosticism and temporal
analysis.

The instance-focused tasks (IT) are concerned with finding in-
stances which are hard to classify correctly (IT1), or whose predic-
tions evolve unusually (IT2–IT4). This allows users to assess tempo-
rally (un)stable weaknesses of the model or detect input data with
potentially wrong ground truth labels. The epoch-focused tasks (ET)
are related to analyzing epoch-wise class distributions ET1 or locat-
ing problematic epochs (ET2, ET3). Problematic epochs are those
for which weight or parameter changes produce a non-beneficial
outcome, such as an increase of confusion between two critical
classes.

Table 1: User tasks addressed by InstanceFlow, categorized by their
focus on epoch- (ET) or instance-driven (IT) analysis.

Task Description

IT1 Find difficult instances
IT2 Trace an instance’s path over multiple epochs
IT3 Analyze if an instance visits many or few classes
IT4 Find instances oscillating between classes

ET1 Assess class distributions for a given epoch
ET2 Find momentarily wrongly and/or correctly instances
ET3 Find instances staying in their class or moving between

classes at a given epoch

3 RELATED WORK

Previous work on visualizing instance-level information in machine
learning has mostly focused on model-dependent parameters such
as the activation of neurons in deep neural networks in response
to a given input instance. Often, the visualizations are tailored
to exploring the behavior of individual layers of the networks [7,
13, 19, 25]. A number of works have focused particularly on the
convolutional layers of CNNs [3,17,24]. Similar visualizations exist
for GANs [23] and Deep Q-networks [22]. Most of these model-
specific approaches are further limited in that they only provide
information for a single iteration at a time.

Likewise, visualizations focused on the performance analysis of
classifiers typically do not enable a true temporal analysis. Chae at
al. [4] show instance-wise predictions and aggregated distributions;
Alsallakh et al. [1] focus on class-confusion with basic drill-down
functionality to explore problematic instances. In both cases, limited
temporality is achieved via single-epoch selection sliders.

Squares by Ren et al. [21] is closely related to our work in
terms of visual design and the type of information shown. Users
can switch between aggregated prediction distributions and a fine-
grained instance-wise visualization using rectangular glyphs. How-
ever, in Squares only the final model predictions can be explored.

InstanceFlow aims at enabling a true temporal performance anal-
ysis on the instance level. In this regard, it is closely related to
our previous work, ConfusionFlow [11], which enables temporal
class-level analysis of classification models via a novel adaptation
of the confusion matrix.

Visually, InstanceFlow combines a multiform Sankey diagram
similar to VisBricks [15] and StratomeX [16] with a sortable, aggre-
gable tabular view (cf. Table Lens [20], LineUp [10], and Taggle [9]).

4 INSTANCEFLOW

The InstanceFlow interface consists of two main components, as
illustrated in Figure 1: The Flow View A shows a Sankey diagram
of the model’s instance predictions throughout the selected train-
ing epochs; the Tabular View B lists detailed temporal instance
information including performance scores C .

The Flow View supports different levels of granularity. In its
basic form, the Flow View visualizes “class changers” in a Sankey
diagram. Distribution Bar Charts emphasize the fraction of correctly
versus incorrectly classified instances. At the finest granularity, In-
stance Glyphs encode each individual sample, with Instance Traces
connecting the instances to reveal their paths through the epochs.

The Tabular View lists all instances along with their associated
predictions over time and allows finding, ranking, and grouping
instances via custom instance-level performance measures.

The Flow View and Tabular View are fully linked, such that traced
or selected instances are highlighted in both views simultaneously.

4.1 Flow View
The flow visualization can be seen in Figure 2 (top left), where
the x-axis denotes the epoch and the y-axis denotes the predicted
classes. A Sankey diagram visualizes the Flow, i.e., how many
instances move from one class to another in the following epoch.
The user selects classes of interest, and each class is assigned to
a vertical region in the Sankey diagram. All non-selected classes
are aggregated as “Other” and also assigned to a dedicated vertical
region. The range of epochs to be visualized can be selected via an
epoch slider. Hovering over a section of the Sankey diagram reveals
the exact number of instances moving between the corresponding
classes. Clicking on a section of the Sankey diagram selects those
instances.

Distribution Charts The height of each flow implicitly encodes
the distribution of the predictions in each class. To emphasize
the distributions at each epoch, they can be explicitly encoded in
Distribution Bar Charts placed between the Flow visualizations (see
Figure 2, top right).

Instance Glyphs For a more detailed view, the instances them-
selves can be represented as by rectangular glyphs (see Figure 4,
bottom left). The color of the Instance Glyphs denotes the actual
class of the instances (e.g., � and � in Figure 2). Additional in-
formation is encoded in their shape, opacity, and position. The
shape and horizontal position indicate if the instance predictions are
temporally stable (), changing from a different class (), leaving

Flow View (basic) Distribution Bar Charts

Instance Glyphs Instance Traces

Figure 2: Flow View with all possible extensions. Distribution Bar
Charts emphasize the class distribution, Instance Glyphs show the
underlying instances, and Instance Traces reveal individual paths
through epochs.

for a different class (), or coming from and leaving for different
classes (). The opacity and vertical box position encode one of the
calculated numerical difficulty measures described in Section 4.2,
which visually ranks the instances by the model’s performance.
Instance Traces To allow users to track the path of specific in-
stances throughout the training epochs, their traces can be visualized
as lines connecting the corresponding instance glyphs (see Figure 4,
bottom right). The color of these Instance Traces indicates if the in-
stance is moving to the correct () or incorrect () class. Instance
Traces are only shown for selected instances, i.e., by clicking on
an Instance Glyph, a section of the Sankey diagram, or selecting
instances from the Tabular View.

4.2 Tabular View
The per-class distribution flow is effective for finding anomalies
in the learning process, but recognizing specific instances can be
hard due to the high information density. To facilitate the tasks
of identifying problematic instances (IT1–IT4), all instances are
organized in a sortable, filterable, and flexibly customizable table.
The LineUp technique allows an interactive exploration of rankings
based on multiple attributes of a given tabular dataset [10]. Each
instance is a row in the LineUp table. By default, only instances
with at least one incorrect classification are shown in InstanceFlow’s
Tabular View. The columns include the input data (i.e., images
in case of image classification), the ground truth class label, and
several “difficulty” measures defined in Section 4.2. One column
shows the class predictions over time as a colored heatmap (see sixth
column in Figure 1), using a categorical color scheme to encode
the sequence of predicted classes. An additional column shows a
histogram of correct (�), incorrect (�), and other (�) predictions
(see fifth column in Figure 1). Here, “incorrect” refers to predictions
of wrong classes from among the selected subset of classes, while
“other” refers to wrong predictions of non-selected classes. The
encodings in both of these columns can be switched between time-
dependent heatmaps and summarizing histograms.

The LineUp technique includes a number of interactive features
to explore the instance predictions: (1) Ranking: instances can be
sorted by each of the attributes in the columns, or by user-defined
combinations of attributes; (2) Filtering: Users can further filter
the instances, again either by an individual column’s value, or by
using combined filters on multiple columns. Advanced filtering
with respect to temporally changing attributes is possible via regular
expressions. (3) Grouping and Aggregating: Users can gain an
overview of the table by switching to a display mode in which the
height of each row is reduced to a minimal height of a single pixel
(see Figure 3). As a result, the previously individual heatmaps and
bar charts now form a dense, two-dimensional table that reveals
overall patterns, similar to the Table Lens technique [20]. User
can further condense the display by using the group aggregation
feature of LineUp, which shows only summary visualizations for
the selected classes. Depending on the attribute type, classes are
summarized using histograms or box plots (see Figure 4). The
summary histograms for the prediction distributions encode the
same information as a confusion matrix.
Difficulty Measures The ranking and filtering operations can help
users to identify interesting instances when used in conjunction with
measures that describe how difficult an instance is to classify. In this
section, we describe three such measures.

Let m be the total number of instances, n the number of classes,
and k the number of selected epochs. Let C(i) be the actual class of
instance i and P(i, j) the prediction for instance i in epoch j.

The misclassification score S of an instance is the fraction
of epochs in which it was assigned to the wrong class: S(i) =
(1/k)∑

k
j=1[P(i, j) 6= C(i)]. An misclassification score of 0 means

the model predicted the correct class in every epoch, whereas a score
of 1 means that the model never predicted the correct class.

Figure 3: Condensed mode of all instances revealing patterns of
successful learning in the classification process.

Figure 4: Summary mode of the Tabular View. The overview is similar
to a confusion matrix, with correct classifications along the diagonal.

The variability V is the ratio of how many classes were predicted
for an instance across all epochs: V (i) = (1/n)|{P(i, j)} j∈{1,...,k}|.
A variability of 1/n means that the model predicted the same class
in every epoch, whereas a variability of 1 means that the model
predicted every possible class at least once.

The frequency F is the ratio of epoch transitions for which
the model’s prediction jumps between classes: F(i) = 1/(k −
1)∑k−1

j=1[P(i, j) 6= P(i, j+1)]. A frequency of 0 means that an in-
stance always stayed in the same class, whereas a frequency of 1
means that the prediction changed after every epoch.

4.3 Relationship between Views and Tasks

The different levels of detail in the Flow View and the Tabular View
with its different numerical measures have complementary strengths.
Table 2 assigns the proposed user tasks from Table 1 to the different
visualizations/measures, depending on whether the tasks are well
supported (4), partially supported (4), or not supported. Instance-
focused tasks (IT1–IT4) are primarily enabled by the Flow View at
full detail, whereas the epoch-focused tasks (ET1–ET3) are better
supported by the more aggregated visualizations. The Tabular View
supports a wide range of tasks.

For the instance-level analysis, the Flow View is focused primar-
ily on the free exploration of a classifier’s behavior, or for tracing
individual instances once they have been located. This location of
interesting instances is enabled by the Tabular View with its ranking
and filtering operations based on the difficulty measures. For epoch-
level analysis, the aggregated Sankey visualization provides a good
overview of the class distributions and overall flows.

4.4 Implementation

InstanceFlow is a client-side web application built using the React
framework. The code for InstanceFlow is available on GitHub1.
A deployed prototype of InstanceFlow with example datasets and
the ability to upload new datasets is available online2.

1Repository: https://github.com/puehringer/InstanceFlow
2Prototype: https://instanceflow.pueh.xyz/

https://github.com/puehringer/InstanceFlow
https://instanceflow.pueh.xyz/

Table 2: Comparison of InstanceFlow visualization components & diffi-
culty measures with respect to the user tasks introduced in Section 2.

Visualization / Metric IT1 IT2 IT3 IT4 ET1 ET2 ET3

Flow View (basic) 4 4 4
Distribution Bar Charts 4 4 4
Instance Glyphs & Traces 4 4 4 4 4 4
Tabular View 4 4 4 4 4 4 4

Misclassification Score 4 4 4
Variability 4 4 4
Frequency 4 4 4

5 USE CASE: CLASSIFICATION OF CIFAR-10 IMAGES

For this use case, we consider a simple neural network trained to
classify thumbnail images from the CIFAR-10 dataset. This training
and test set is a popular choice in the machine learning field and
consists of 60,000 color images (32×32 px) divided into 10 different
classes such as Auto, Truck, Cat, and Dog [14]. A model developer
build a simple CNN using Keras [6]. The developer is satisfied
with the overall performance, but notices errors for Auto and Truck
instances. The model developer (user) analyzes the training process
with InstanceFlow to better understand what causes these errors.

1. The user trains the neural network to classify CIFAR-10 images,
and loads the classification results into InstanceFlow.

2. In the Tabular View, the user groups instances by their actual class
and enables the condensed mode with the predictions shown as
histograms. This gives the user a hint about class confusion over
the total selected epoch range (i.e., similar to the time-integral of
a confusion matrix).

3. The user notices that most classes are predicted correctly (with
the bin for correct classification being by far the highest). How-
ever, for the Auto class the user finds that the Truck bar is similarly
high as the actual class (and vice versa). This is an immediate
hint for a high class confusion between Auto and Truck.

4. The user is now interested in why the neural network incorrectly
classifies Auto images as Truck. To focus on this confusion, the
user hides all other classes. Additionally, the user filters the
instances to only show those classified as Auto or Truck at least
once. Finally, the user switches from the condensed mode to the
normal mode to gain access to the actual underlying instances.
Sorting by high misclassification score and low variability reveals
to the user that the most problematic instances are mainly Auto
images classified as Truck.

5. Now the user notices a common pattern:
the topmost images all show old and
bulky cars (see Figure 5).

6. The user proceeds by investigating the flow of these images
(see Figure 6). It becomes clear that all of them were correctly
classified in early epochs, but then suddenly change to Truck one
after another.

7. The user checks the traces of random modern-looking cars and
finds, in stark contrast to the previous instances, that many of
them are temporally stable and correctly classified after an initial
misclassification. This leads the user to hypothesize that the
network, over time, learns features that tend to prioritize modern
cars over bulky, antique cars.

8. The user can use these new insights in the subsequent model de-
velopment or refinement process, e.g., by increasing the number
of problematic instances in an attempt to improve the accuracy
and temporal stability for Auto images.

Figure 5: InstanceFlow showing Auto and Truck instances of CIFAR-
10 sorted by high score and low variability, and grouped by the ground
truth label.

Figure 6: Instance Traces for several selected Auto images of bulky,
antique cars. These images are correctly classified as Auto in the
beginning, but tend to be consistently classified as Truck over time.

6 LIMITATIONS & FUTURE WORK

Scalability Due to the combination of aggregated information in
the basic Flow View (without Instance Glyphs and Traces) with the
functionality of the Tabular View, InstanceFlow scales well to large
datasets. However, for more than ∼ 100 selected instances and at
full detail, the InstanceFlow visualization can get cluttered. Addi-
tionally, with each selected class, the number of possible paths in the
Sankey visualization increases. Thus, additional class aggregation
or automatic class and/or instance selection mechanisms would be
necessary for exploring datasets with many (& 15) classes.
Comparison of Datasets A comparison of multiple classification
models can be helpful for evaluating the effectiveness of modifi-
cations applied during model development. A combined temporal-
comparative approach was introduced for class-level analysis with
ConfusionFlow [11]. However, it is not straightforward how to ex-
tend InstanceFlow to allow similar comparison tasks in a way that is
more effective than simply using two InstanceFlow visualizations
side by side.

7 CONCLUSION

We introduced InstanceFlow, a visualization of the evolution of
instance classifications in machine learning. The Flow View supports
users in understanding the temporal progression of predicted class
distributions in a Sankey diagram. Detailed visualizations allows
users to trace the predictions for individual instances over time.
Interesting instances can be located effectively in the Tabular View,
which allows ranking and filtering by numerical difficulty measures.
With its different aggregation levels, InstanceFlow bridges the gap
between class-level and instance-level performance evaluation while
enabling a full temporal analysis of the training process.

REFERENCES

[1] B. Alsallakh, A. Jourabloo, M. Ye, X. Liu, and L. Ren. Do Convolu-
tional Neural Networks Learn Class Hierarchy? IEEE Transactions on
Visualization and Computer Graphics, 24(1):152–162, 2018. doi: 10.
1109/TVCG.2017.2744683

[2] A. B. Arrieta, N. Dı́az-Rodrı́guez, J. Del Ser, A. Bennetot, S. Tabik,
A. Barbado, S. Garcı́a, S. Gil-López, D. Molina, R. Benjamins, et al.
Explainable artificial intelligence (XAI): Concepts, taxonomies, op-
portunities and challenges toward responsible AI. Information Fusion,
58:82–115, 2020.

[3] D. Bruckner. ML-o-Scope: A Diagnostic Visualization System for
Deep Machine Learning Pipelines. Technical report, Defense Tech-
nical Information Center, Fort Belvoir, VA, 2014. doi: 10.21236/
ADA605112

[4] J. Chae, S. Gao, A. Ramanthan, C. Steed, and G. D. Tourassi. Visual-
ization for Classification in Deep Neural Networks. In Workshop on
Visual Analytics for Deep Learning at IEEE VIS, p. 6, 2017.

[5] A. Chatzimparmpas, R. M. Martins, I. Jusufi, and A. Kerren. A survey
of surveys on the use of visualization for interpreting machine learning
models. Information Visualization, 19(3):207–233, 2020. doi: 10.
1177/1473871620904671

[6] F. Chollet. Simple MNIST convnet. https://keras.io/examples/
vision/mnist_convnet/, 2015. Accessed: 2020-7-10.

[7] S. Chung, S. Suh, and C. Park. ReVACNN: Real-Time Visual Analytics
for Convolutional Neural Network. In ACM SIGKDD Workshop on
Interactive Data Exploration and Analytics (IDEA), p. 7, 2016.

[8] C. Ferri, J. Hernández-Orallo, and R. Modroiu. An experimental com-
parison of performance measures for classification. Pattern Recognition
Letters, 30(1):27 – 38, 2009. doi: 10.1016/j.patrec.2008.08.010

[9] K. Furmanova, S. Gratzl, H. Stitz, T. Zichner, M. Jaresova, M. En-
nemoser, A. Lex, and M. Streit. Taggle: Combining overview
and details in tabular data visualizations. Information Visualization,
19(2):114–136, 2019. doi: 10.1177/1473871619878085

[10] S. Gratzl, A. Lex, N. Gehlenborg, H. Pfister, and M. Streit. LineUp:
Visual Analysis of Multi-Attribute Rankings. IEEE Transactions on
Visualization and Computer Graphics (InfoVis ’13), 19(12):2277–2286,
2013. doi: 10.1109/TVCG.2013.173

[11] A. Hinterreiter, P. Ruch, H. Stitz, M. Ennemoser, J. Bernard, H. Strobelt,
and M. Streit. Confusionflow: A model-agnostic visualization for
temporal analysis of classifier confusion. arXiv:1910.00969 [cs], 2019.

[12] F. Hohman, M. Kahng, R. Pienta, and D. H. Chau. Visual Analytics in
Deep Learning: An Interrogative Survey for the Next Frontiers. IEEE
Transactions on Visualization and Computer Graphics, 25(8):2674–
2693, 2018. doi: 10.1109/TVCG.2018.2843369

[13] M. Kahng, P. Y. Andrews, A. Kalro, and D. H. Chau. ActiVis: Visual
Exploration of Industry-Scale Deep Neural Network Models. IEEE
Transactions on Visualization and Computer Graphics, 24(1):88–97,
2018. doi: 10.1109/TVCG.2017.2744718

[14] A. Krizhevsky. Learning Multiple Layers of Features from Tiny Images.
Technical Report Vol. 1, No. 4, University of Toronto, 2009.

[15] A. Lex, H.-J. Schulz, M. Streit, C. Partl, and D. Schmalstieg. Vis-
bricks: Multiform visualization of large, inhomogeneous data. IEEE
Transactions on Visualization and Computer Graphics (InfoVis ’11),
17(12):2291–2300, 2011. doi: 10.1109/TVCG.2011.250

[16] A. Lex, M. Streit, H.-J. Schulz, C. Partl, D. Schmalstieg, P. J. Park,
and N. Gehlenborg. StratomeX: visual analysis of large-scale heteroge-
neous genomics data for cancer subtype characterization. In Computer
graphics forum, vol. 31, pp. 1175–1184, 2012.

[17] D. Liu, W. Cui, K. Jin, Y. Guo, and H. Qu. DeepTracker: Visual-
izing the training process of convolutional neural networks. ACM
Transactions on Intelligent Systems and Technology, 10(1):1–25, 2018.

[18] S. Liu, X. Wang, M. Liu, and J. Zhu. Towards better analysis of
machine learning models: A visual analytics perspective. Visual Infor-
matics, 1:48–56, 2017. doi: 10.1016/j.visinf.2017.01.006

[19] N. Pezzotti, T. Hollt, J. Van Gemert, B. P. Lelieveldt, E. Eisemann,
and A. Vilanova. DeepEyes: Progressive Visual Analytics for Design-
ing Deep Neural Networks. IEEE Transactions on Visualization and
Computer Graphics, 24(1):98–108, 2018. doi: 10.1109/TVCG.2017.
2744358

[20] R. Rao and S. K. Card. The Table Lens: Merging Graphical and Sym-
bolic Representations in an Interactive Focus + Context Visualization
for Tabular Information. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’94), pp. 318–322. ACM,
1994. doi: 10.1145/191666.191776

[21] D. Ren, S. Amershi, B. Lee, J. Suh, and J. D. Williams. Squares:
Supporting Interactive Performance Analysis for Multiclass Classifiers.
IEEE Transactions on Visualization and Computer Graphics, 23(1):61–
70, 2017. doi: 10.1109/TVCG.2016.2598828

[22] J. Wang, L. Gou, H.-W. Shen, and H. Yang. DQNViz: A Visual Ana-
lytics Approach to Understand Deep Q-Networks. IEEE Transactions
on Visualization and Computer Graphics, 25(1):288–298, 2019. doi:
10.1109/TVCG.2018.2864504

[23] J. Wang, L. Gou, H. Yang, and H.-W. Shen. GANViz: A Visual Analyt-
ics Approach to Understand the Adversarial Game. IEEE Transactions
on Visualization and Computer Graphics, 24(6):1905–1917, 2018. doi:
10.1109/TVCG.2018.2816223

[24] H. Zeng, H. Haleem, X. Plantaz, N. Cao, and H. Qu. CNNCom-
parator: Comparative Analytics of Convolutional Neural Networks.
arXiv:1710.05285 [cs], 2017.

[25] W. Zhong, C. Xie, Y. Zhong, Y. Wang, W. Xu, S. Cheng, and K. Mueller.
Evolutionary Visual Analysis of Deep Neural Networks. In ICML
Workshop on Visualization for Deep Learning, p. 9, 2017.

https://doi.org/10.1109/TVCG.2017.2744683
https://doi.org/10.1109/TVCG.2017.2744683
https://doi.org/10.1109/TVCG.2017.2744683
https://doi.org/10.1109/TVCG.2017.2744683
https://doi.org/10.1109/TVCG.2017.2744683
https://doi.org/10.1109/TVCG.2017.2744683
https://doi.org/10.1109/TVCG.2017.2744683
https://doi.org/10.1109/TVCG.2017.2744683
https://doi.org/10.1109/TVCG.2017.2744683
https://doi.org/10.21236/ADA605112
https://doi.org/10.21236/ADA605112
https://doi.org/10.21236/ADA605112
https://doi.org/10.21236/ADA605112
https://doi.org/10.21236/ADA605112
https://doi.org/10.21236/ADA605112
https://doi.org/10.21236/ADA605112
https://doi.org/10.21236/ADA605112
https://doi.org/10.21236/ADA605112
https://doi.org/10.21236/ADA605112
https://doi.org/10.1177/1473871620904671
https://doi.org/10.1177/1473871620904671
https://doi.org/10.1177/1473871620904671
https://doi.org/10.1177/1473871620904671
https://doi.org/10.1177/1473871620904671
https://doi.org/10.1177/1473871620904671
https://doi.org/10.1177/1473871620904671
https://doi.org/10.1177/1473871620904671
https://doi.org/10.1177/1473871620904671
https://keras.io/examples/vision/mnist_convnet/
https://keras.io/examples/vision/mnist_convnet/
https://doi.org/https://doi.org/10.1016/j.patrec.2008.08.010
https://doi.org/https://doi.org/10.1016/j.patrec.2008.08.010
https://doi.org/https://doi.org/10.1016/j.patrec.2008.08.010
https://doi.org/https://doi.org/10.1016/j.patrec.2008.08.010
https://doi.org/https://doi.org/10.1016/j.patrec.2008.08.010
https://doi.org/https://doi.org/10.1016/j.patrec.2008.08.010
https://doi.org/https://doi.org/10.1016/j.patrec.2008.08.010
https://doi.org/10.1016/j.patrec.2008.08.010
https://doi.org/10.1177/1473871619878085
https://doi.org/10.1177/1473871619878085
https://doi.org/10.1177/1473871619878085
https://doi.org/10.1177/1473871619878085
https://doi.org/10.1177/1473871619878085
https://doi.org/10.1177/1473871619878085
https://doi.org/10.1177/1473871619878085
https://doi.org/10.1177/1473871619878085
https://doi.org/10.1109/TVCG.2013.173
https://doi.org/10.1109/TVCG.2013.173
https://doi.org/10.1109/TVCG.2013.173
https://doi.org/10.1109/TVCG.2013.173
https://doi.org/10.1109/TVCG.2013.173
https://doi.org/10.1109/TVCG.2013.173
https://doi.org/10.1109/TVCG.2013.173
https://doi.org/10.1109/TVCG.2013.173
https://doi.org/10.1109/TVCG.2018.2843369
https://doi.org/10.1109/TVCG.2018.2843369
https://doi.org/10.1109/TVCG.2018.2843369
https://doi.org/10.1109/TVCG.2018.2843369
https://doi.org/10.1109/TVCG.2018.2843369
https://doi.org/10.1109/TVCG.2018.2843369
https://doi.org/10.1109/TVCG.2018.2843369
https://doi.org/10.1109/TVCG.2018.2843369
https://doi.org/10.1109/TVCG.2018.2843369
https://doi.org/10.1109/TVCG.2017.2744718
https://doi.org/10.1109/TVCG.2017.2744718
https://doi.org/10.1109/TVCG.2017.2744718
https://doi.org/10.1109/TVCG.2017.2744718
https://doi.org/10.1109/TVCG.2017.2744718
https://doi.org/10.1109/TVCG.2017.2744718
https://doi.org/10.1109/TVCG.2017.2744718
https://doi.org/10.1109/TVCG.2017.2744718
https://doi.org/10.1109/TVCG.2011.250
https://doi.org/10.1109/TVCG.2011.250
https://doi.org/10.1109/TVCG.2011.250
https://doi.org/10.1109/TVCG.2011.250
https://doi.org/10.1109/TVCG.2011.250
https://doi.org/10.1109/TVCG.2011.250
https://doi.org/10.1109/TVCG.2011.250
https://doi.org/10.1109/TVCG.2011.250
https://doi.org/10.1016/j.visinf.2017.01.006
https://doi.org/10.1016/j.visinf.2017.01.006
https://doi.org/10.1016/j.visinf.2017.01.006
https://doi.org/10.1016/j.visinf.2017.01.006
https://doi.org/10.1016/j.visinf.2017.01.006
https://doi.org/10.1016/j.visinf.2017.01.006
https://doi.org/10.1016/j.visinf.2017.01.006
https://doi.org/10.1016/j.visinf.2017.01.006
https://doi.org/10.1109/TVCG.2017.2744358
https://doi.org/10.1109/TVCG.2017.2744358
https://doi.org/10.1109/TVCG.2017.2744358
https://doi.org/10.1109/TVCG.2017.2744358
https://doi.org/10.1109/TVCG.2017.2744358
https://doi.org/10.1109/TVCG.2017.2744358
https://doi.org/10.1109/TVCG.2017.2744358
https://doi.org/10.1109/TVCG.2017.2744358
https://doi.org/10.1109/TVCG.2017.2744358
https://doi.org/10.1109/TVCG.2017.2744358
https://doi.org/10.1145/191666.191776
https://doi.org/10.1145/191666.191776
https://doi.org/10.1145/191666.191776
https://doi.org/10.1145/191666.191776
https://doi.org/10.1145/191666.191776
https://doi.org/10.1145/191666.191776
https://doi.org/10.1145/191666.191776
https://doi.org/10.1145/191666.191776
https://doi.org/10.1145/191666.191776
https://doi.org/10.1145/191666.191776
https://doi.org/10.1109/TVCG.2016.2598828
https://doi.org/10.1109/TVCG.2016.2598828
https://doi.org/10.1109/TVCG.2016.2598828
https://doi.org/10.1109/TVCG.2016.2598828
https://doi.org/10.1109/TVCG.2016.2598828
https://doi.org/10.1109/TVCG.2016.2598828
https://doi.org/10.1109/TVCG.2016.2598828
https://doi.org/10.1109/TVCG.2016.2598828
https://doi.org/10.1109/TVCG.2018.2864504
https://doi.org/10.1109/TVCG.2018.2864504
https://doi.org/10.1109/TVCG.2018.2864504
https://doi.org/10.1109/TVCG.2018.2864504
https://doi.org/10.1109/TVCG.2018.2864504
https://doi.org/10.1109/TVCG.2018.2864504
https://doi.org/10.1109/TVCG.2018.2864504
https://doi.org/10.1109/TVCG.2018.2864504
https://doi.org/10.1109/TVCG.2018.2864504
https://doi.org/10.1109/TVCG.2018.2816223
https://doi.org/10.1109/TVCG.2018.2816223
https://doi.org/10.1109/TVCG.2018.2816223
https://doi.org/10.1109/TVCG.2018.2816223
https://doi.org/10.1109/TVCG.2018.2816223
https://doi.org/10.1109/TVCG.2018.2816223
https://doi.org/10.1109/TVCG.2018.2816223
https://doi.org/10.1109/TVCG.2018.2816223
https://doi.org/10.1109/TVCG.2018.2816223
http://arxiv.org/abs/1710.05285
http://arxiv.org/abs/1710.05285
http://arxiv.org/abs/1710.05285
http://arxiv.org/abs/1710.05285
http://arxiv.org/abs/1710.05285

	Introduction
	User Tasks
	Related Work
	InstanceFlow
	Flow View
	Tabular View
	Relationship between Views and Tasks
	Implementation

	Use Case: Classification of CIFAR-10 Images
	Limitations & Future Work
	Conclusion

