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Clinical Decision Support Systems (CDSS) provide assistance to physicians in clinical decision-making. 

Based on patient-specific evidence items triggering the inferencing process, such as examination findings, 

and expert-modeled or machine-learned clinical knowledge, these systems provide recommendations in 

finding the right diagnosis or the optimal therapy. The acceptance of, and the trust in, a CDSS are highly 

dependent on the transparency of the recommendation’s generation. Physicians must know both the key 

influences leading to a specific recommendation and the contradictory facts. They must also be aware of 

the certainty of a recommendation and its potential alternatives. 

We present a glyph-based, interactive multiple views approach to explainable computerized clinical 

decision support. Four linked views (1) provide a visual summary of all evidence items and their rele- 

vance for the computation result, (2) present linked textual information, such as clinical guidelines or 

therapy details, (3) show the certainty of the computation result, which includes the recommendation 

and a set of clinical scores, stagings etc., and (4) facilitate a guided investigation of the reasoning behind 

the recommendation generation as well as convey the effect of updated evidence items. We demonstrate 

our approach for a CDSS based on a causal Bayesian network representing the therapy of laryngeal can- 

cer. The approach has been developed in close collaboration with physicians, and was assessed by six 

expert otolaryngologists as being tailored to physicians’ needs in understanding a CDSS. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Clinical Decision Support Systems (CDSS) provide assistance to

hysicians in clinical decision-making about a specific patient at

he time of care. Applications range from more focused decisions

n response to a concrete clinical question (such as medication rec-

mmendation) over the selection of the optimal therapy given a

et of evidence items triggering the inferencing process (available

atient-specific information and findings), up to differential diag-

osis based on fuzzy complaints and undifferentiated clinical fea-

ures. This work focuses on therapy decision support within clini-

al routine. 

A crucial prerequisite for the acceptance and the adoption of a

DSS in clinical routine is establishment of physicians’ trust in the
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omputed recommendation [1] . The recommendation needs to be

xplained and justified by providing evidence items impacting the

omputed recommendation, and research evidence [2] . Physicians

articularly benefit from such explanation facilities when they dis-

gree with the system’s recommendation, or when they are at an

arly level of their professional training and have a limited under-

tanding of the rationale for the line of reasoning for a computed

ecommendation [3] . In this context, they need to know the rele-

ance of evidence items for the computed recommendation (global

elevance) and must know if an item is supporting or contradicting

he recommendation (local relevance). 

The demand for explainable computerized clinical decision sup-

ort has recently been reinforced with the increasing applica-

ion of artificial neural networks (ANNs) in non-knowledge-based

DSSs [4] , which are learned from data without including previous

nowledge. However, explainability has already been researched

efore in the context of knowledge-based CDSSs frequently apply-

ng Bayesian networks (BNs), which are in focus of this work [5] .

https://doi.org/10.1016/j.cag.2020.06.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2020.06.004&domain=pdf
mailto:juliane.mueller@med.ovgu.de
https://doi.org/10.1016/j.cag.2020.06.004
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Fig. 1. Oversimplified Bayesian network for differential diagnosis of laryngitis and 

laryngeal cancer. Smoking and alcohol influence the development of laryngeal can- 

cer. This influence is characterized by the node’s conditional probability table (CPT). 
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BNs model probabilistic relationships between components of a

complex system, and are particularly suited for clinical decision-

making under uncertainty and missing information [6] . They have

been applied, e.g., in diagnostic reasoning, classification of findings,

identification of risk factors, and therapy management [7,8] . The

reasoning in BNs is difficult to explain since it does not imitate hu-

man reasoning but follows a normative approach, i.e., it assumes

an ideal and informed decision-maker performing computations

with perfect accuracy [9] . Moreover, the reasoning is based on con-

ditional probabilities, which are hard to assess by humans [10] . 

Visualization can assist in elucidating the result of, and the rea-

soning behind, a decision-making process and hence support cog-

nition in CDSSs [11] . However, most existing works in the context

of BN-based decision support focus on a visualization of the un-

derlying directed acyclic graphical model (see the work of Cypko

et al. [12] for a brief overview). They neglect the application-

specific presentation and explanation of the model’s computation

result and its reasoning via a sophisticated human–computer in-

terface. For instance, Cypko et al. [12] focus on the presentation

of the BN network structure for exploratory analysis with less em-

phasis on a concise interface with explanation facilities supporting

the decision-making process in clinical routine. The need for such

interfaces has been identified as the grand challenge in clinical de-

cision support [13,14] . We address this challenge with a visual ap-

proach to explainable computerized clinical decision support and

contribute: 

• a scoring function for computing the relevance of an evidence

item for the recommendation and for the classification into

supportive, contradictory, and recommendation-changer evi-

dence items, 
• an interactive multiple views system for explainable clinical de-

cision support inspired by decision-making within clinical rou-

tine, and 

• capabilities to modify evidence items with the advent of new

clinical information or in hypothetical reasoning and a compar-

ative glyph-based visualization of anterior and posterior results.

Parts of our approach can be transferred to any kind of CDSS

that gives weighted recommendations based on weighted evidence

items for which an influence on the recommendation can be com-

puted. We demonstrate our approach for a BN-based CDSS in en-

dometrial carcinoma management [15] . Our visual approach has

been developed in close collaboration with physicians and was

evaluated by six expert otolaryngologists. The source code of our

visual approach is publicly available online ( https://github.com/

JulianeMu/explainable _ cdss _ for _ therapy _ planning ). 

The remainder of this work starts with a brief introduc-

tion of BNs ( Section 2 ), followed by an overview of related

work ( Section 3 ). Then, we present an analysis of requirements on

explainable computerized clinical decision support ( Section 4 ), in-

troduce level of relevance computations ( Section 5 ), and detail our

visual approach in compliance with the requirements ( Section 6 ).

Finally, we describe our evaluation study ( Section 7 ), discuss limi-

tations ( Section 8 ), and draw conclusions ( Section 9 ). 

2. Background on Bayesian networks 

Bayesian networks are directed acyclic graphical (DAG) models

that represent conditional probabilistic relations between random

variables [16] . Nodes represent variables and edges represent re-

lations. Depending on the variable type, nodes can be discrete or

continuous. Discrete nodes have a certain number of states , e.g.,

a node representing the boolean variable “Tobacco” can have the

states “true” and “false”. Each node is assigned a probability func-

tion that takes the variable values of its parent nodes as an input
nd outputs a probability distribution over the states of the ran-

om variable. The distribution is stored in the form of a conditional

robability table (CPT). For instance, the probability distribution of a

oolean node with m Boolean parent nodes is stored in a CPT with

 

m × 2 entries. Fig. 1 shows a simple BN illustrating these concepts.

BNs are used to answer probabilistic queries about the repre-

ented domain. Given the values of variables that can be observed,

o-called evidence items , the posterior marginal probability distribu-

ions of unobserved variables can be computed using probabilistic

nference methods [17] . In a medical context, BNs are often con-

tructed based on clinical guidelines and results of clinical and

pidemiological studies. BN variables are clinical concepts and re-

ations are causal dependencies , i.e., an effect (“Laryngeal Cancer”)

s dependent on the causes (“Tobacco” and “Alcohol”). Evidence

tems are typically those representing patient attributes, e.g., sex,

ge, and the outcomes of medical examinations, e.g, tumor size

nd blood levels. Unobserved variables comprise unknown patient

ttributes, outcomes of medical examinations that have not been

onducted, and target variables , such as the therapy recommenda-

ion and a clinical score or staging. The corresponding node of a

arget variable has as many states as therapy options available and

he inferred probability distribution indicates the optimal option as

ell as the uncertainty about it. 

. Related work 

This section describes the related work on explanation methods

or BNs and reviews visualization in CDSSs, with a focus on the

isualization of recommendation and reasoning. 

.1. Explanation methods for Bayesian networks 

Work on explanation of BNs is scarce and mostly in the narrow

cope of a particular system with a few exceptions [18] . For in-

tance, a classification of existing research in terms of explanation

roperties, such as “focus”, “purpose”, “level”, and “causality”, has

een proposed by Lacave and Diez [5] . The “focus” property is par-

icularly relevant for our work since the focus of explanation can

e on evidence, model or reasoning. The explanation of evidence is

ightly related to inference, and refers to finding the configuration

f unobserved variables that best explains the available evidence.

he explanation of the model consists of displaying the content of

he underlying knowledge base. The explanation of the reasoning

efers to explaining the reasoning process and its results. This work

s focused on the latter and links to an explanation of the model. 

Linguistic expressions of probability are easier to comprehend

han numbers. Hence, the explanation of reasoning is often ex-

ressed linguistically, e.g., “Increased probability of B makes A

ore likely” [19] , and presented together with a graphical repre-

entation of the BN [20–22] . Especially in case of large BNs, how-

https://github.com/JulianeMu/explainable_cdss_for_therapy_planning
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ver, too much text strains the user, the space consumption is too

igh, and relevant explanations could be overlooked in the process

f reading all explanations. Therefore, we favor a graphical repre-

entation. 

The relevance of individual evidence items for the computa-

ion result of a target variable can be determined by means of

 sensitivity analysis computing the cost of omitting each evi-

ence [23] . Based on cross-entropy as cost function, the level of

elevance and the strength of so-called chains of reasoning , i.e., net-

ork paths from an evidence to a target variable, can be com-

uted. A graphical approach showing how evidence is propagated

hrough a causal BN has been proposed by Madigan et al. [24] ,

here for each evidence, the level of relevance is computed and

isplayed on the BN graph representation by modifying the visual

roperties of nodes and edges. A graphical evidence balance sheet

hows all evidence items together with their level of relevance.

hains of reasoning are also computed and displayed similar to

he work of Suermondt [23] . A visual encoding of evidence rele-

ance and a chain of reasoning visualization have been integrated

n the ELVIRA tool for building graphical probabilistic models [25] .

he relevance of evidence items within BNs has also been visu-

lly addressed by Champion and Elkan [26] using force-directed

ode-link diagrams and pie chart-inspired glyphs for probability

istribution presentation. However, this approach lacks in provid-

ng a sufficient overview of given evidence items and is not tai-

ored to applicability within healthcare. Especially when exploring

arge BNs of more than 10 0 0 nodes, evidence items can be missed

espite the emphasis of nodes of interest due to visual clutter.

ypko et al. [12] present a comparative, graph-based exploration

f the computed probability distributions obtained from different

vidence configurations for supporting the preparation of a head

nd neck tumor board – a multidisciplinary expert meeting dis-

ussing and giving a recommendation about the best therapy for a

atient diseased with cancer. Neither of these approaches provides

ufficient information about the relevance of an evidence item for

he computed recommendation (global relevance) nor whether the

tem is supporting or contradicting the recommendation (local rel-

vance). However, both are crucial to understand the recommenda-

ion generation as well as in assessing the recommendation’s ro-

ustness or certainty and hence, in gaining trust into the CDSS.

urthermore, the approaches do not provide any information re-

arding the clinical guidelines and the possible treatments for ver-

fication of the computed recommendation. Finally, they do not

upport exploring the underlying BN in a more structured way

long the causal flow. 

The evidence view, which shows the available evidence items

n a sorted manner regarding their global relevance for the recom-

endation (see Section 6.1 ), is inspired by the graphical evidence

alance sheet proposed by Madigan et al. [24] . It is, however, tai-

ored to visualizing the relevance of evidence items in deciding be-

ween multiple therapy options. The level of relevance is computed

y means of a sensitivity analysis but in contrast to the approach

roposed by Suermondt [23] , a bounded metric is used as cost

unction ( Section 5 ). Linguistic expressions and chains of reasoning

ould be useful extensions, but so far have not been considered. 

.2. Visualization and human–computer interfaces in Clinical 

ecision Support Systems 

Visualization and human–computer interfaces have been ac-

nowledged as key components of CDSSs, but are insufficiently

tudied [2,11,13] . Recently proposed design recommendations stress

he importance of a simple interface, a clean and concise pre-

entation, explanation facilities, and easy interaction [2] . Existing

pplication-independent, BN-based decision support systems, such 

s HUGIN [27] , Netica [28] , Ergo [29] , and GeNIe [30] , support the
ntire pipeline from model building over verification to inference.

ence, their interfaces are complex and not suited for the tight

chedule of clinical routine. Further, the incorporated explanation

acilities are often limited and/or not tailored to the clinical do-

ain. The visualization of BNs in these systems focuses on drawing

he underlying graphical model including the adequate representa-

ion of causality and its properties as well as the display of large

PTs (see the work of Cypko et al. [12] for a brief overview). 

A sunburst, parallel set, and tree visualization, for example, are

mployed in a CDSS for patient-specific antibiotic stewardship and

ompared to traditional antibiograms concluding in tree visualiza-

ions to be favored by users due to their familiarity [31] . Donut

harts are used for monitoring antibiotic resistance in an intensive

are unit [32] . The equally-sized donut chart segments represent

ossible healthcare-associated infections, whereas the color of seg-

ents encodes the cases of resistance. Within this CDSS, physicians

re only provided with the computed recommendation while infor-

ation about relevant reasons and underlying uncertainty are lack-

ng. The BN-based visual verification of a tumor’s classification has

een proposed by Cypko et al. [12] in the context of tumor board

reparation. To avoid the cumbersome inspection of the entire

arge BN in an overview visualization, an adjustable sub-network

an be defined. In a drill-down of the BN, nodes can be dragged

o and removed from a focus region, causing a restriction of the

isualization to this focus and its causally related child nodes. The

atter are arranged in the periphery by means of a force-directed

ayout algorithm, which yields an uncluttered visualization but at

he cost of an inconsistent and less predictable node positioning.

his hampers orientation in the large network. The probabilities

f the node states are encoded by circular glyphs. A dedicated

ncoding allows for the comparison of a given tumor classifica-

ion from the patient’s paper record to the classification computed

y the system. User interfaces in the form of coordinated multi-

le views have been implemented in CDSSs for diagnostics and

reatment planning of traumatic brain injury and for prediction

f highly prevalent heart and cardiovascular diseases [33,34] . Both

DSSs include a computation of the relevance of available evidence

tems for a recommendation, but neglect whether an evidence item

s supportive or contradictory for specific states of the recommen-

ation. Lastly, the web tool NeuroSuites ( https://neurosuites.com/ )

resents BNs using force-directed or circular node-link diagrams.

dditional information, such as the variable’s name or most prob-

ble state, is only provided on-demand through interaction meth-

ds. 

Our work proposes an interactive multiple views approach pre-

enting the different aspects of the underlying data, e.g., the ther-

py guidelines and the system’s recommendation, and bringing the

elationships between these aspects to attention by means of in-

eraction. Similar to the developed method of Cypko et al. [12] ,

e display only a subset of the BN. Inspired by Wang and

ueller [35] , however, we trade the less-predictable, force-directed

raph layout and the free exploration for a layout and exploration

ased on the BN’s causal flow . We use donut charts for encoding

he probability distribution of node states and their design is re-

ned for comparing two distributions resulting from differing sets

f evidence items. 

. Requirements and design considerations 

To develop an effective visualization for explainable CDSSs, we

rst must understand the common decision-making process within

linical routine. We need to know which types of information are

vailable about the decision problem, and how humans process

hese information entities [36,37] . 

In clinical routine, decision-making is based on clinical guide-

ines and the physicians’ knowledge and experience. The guidelines

https://neurosuites.com/
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take patient-specific data into account, such as examination find-

ings, gender, and age. These data are available from various sources

in an often unstructured form and unsorted regarding their rele-

vance for the decision. Physicians integrate the available informa-

tion mentally and generate their own mental decision model based

on knowledge and experience. In this process, they automatically

filter all relevant information and weight information entities by

their expected impact on the outcome. We have analyzed this pro-

cess in numerous regularly-conducted work shadowings over four

years [12,38,39] and by means of discussions with two collaborat-

ing physicians from different disciplines and with mixed levels of

experience in BNs. One physician was reassigned from clinical du-

ties for one year to help us implementing a CDSS in laryngeal can-

cer management ( Section 7 ) [39] . Based on our experiences and

taking into account recently proposed design and functional crite-

ria of CDSSs [2] , our approach must include representations of: 

R1 Patient-specific data . Evidence items representing the key in-

fluences need to be emphasized and sorted regarding their

relevance for the recommendation. In that regard, physicians

must know supporting as well as contradictory facts for the

recommendation and its potential alternatives. 

R2 Clinical Guidelines . Physicians must know the body of medi-

cal evidence used for recommendation computation. 

R3 Reasoning model . To improve the acceptance and trustwor-

thiness of a recommendation, physicians have to understand

the underlying reasoning process. This can be supported in

a BN-based CDSS by facilitating a guided drill-down of the

network along the causal flow. Thereby, physicians can relate

the BN’s reasoning to their mental decision-making model

and reasoning. 

R4 Decision . The certainty of the computed recommendation

needs to be shown. The state with the highest probability

(e.g., optimal therapy option) must be emphasized but at the

same time, its uncertainty, i.e., probabilities of other states

(e.g., alternative therapy options), must be conveyed. 

Furthermore, the decision-making within clinical routine can be

classified as decision-making under uncertainty and risk [40] . Physi-

cians are trained to decide under a certain level of uncertainty but

they must at least know its level, i.e., by which magnitude does,

e.g., the computed optimal therapy option outperform its alterna-

tives? Moreover they must be able to evaluate the robustness of

a recommendation in “what-if” scenarios investigating what cause

provokes what effect by what means at what rate if a particular

information is added or updated [41] . Hence, we propose the fol-

lowing additional requirements: 

R5 Conveyance of uncertainty . Most recommendations of a CDSS

are associated with uncertainty due to the uncertainty in the

underlying knowledge base. The surety of the optimal option

given all available options must be conveyed to the physi-

cians. 

R6 “What-if” scenarios . During the decision-making process, new

patient information may become available, e.g., a very re-

cent pathological report, or existing information is temporar-

ily adjusted in hypothetical reasoning, e.g., in understanding

how further reducing tumor size would affect the recom-

mendation. Thus, our visual approach for explainable CDSS

must allow for a fast recommendation update and a pre-post

comparison. 

5. Level of relevance computation 

In decision-making, physicians mentally sort all available evi-

dence items according to their relevance for the addressed ques-

tion and incorporate the order in developing a recommendation.
n the following, we distinguish between global and local relevance

nd contribute a simple measure of the latter. We determine both

ypes of relevance in a sensitivity analysis computing the cost of

mitting each evidence, similar to Suermondt et al. [23] . Instead

f cross-entropy, the Jensen–Shannon Distance (JSD) is employed as

ost function measuring the dissimilarity between the probability

istributions of the target variable before ( P ) and after ( Q ) omission

42] . A small dissimilarity corresponds to a low level of relevance.

n contrast to cross-entropy, the JSD is a metric, it is zero for equal

istributions, and has an upper bound of one (0 ≤ JSD ≤ 1): 

SD (P || Q ) = 

√ 

1 

2 

D (P || M ) + 

1 

2 

D (Q|| M ) (1)

ith D (X || Y ) = 

∑ 

i 

x (i ) log 2 

(
x (i ) 

y (i ) 

)

and M = 

1 

2 

(P + Q ) (2)

he JSD provides a global level of relevance but does not convey

he local relevance of an evidence for each state of the recommen-

ation, e.g., each therapy option, and whether the most probable

tate has shifted after omitting the evidence. Hence, the signed

re-post probability differences are computed and shifts are de-

ected during the sensitivity analysis ( local relevance ). Evidence

tems yielding a positive difference for a specific state are support-

ve , those yielding a negative difference are contradictory , and those

ausing a state shift are recommendation-changers . 

. Visual approach to explainable computerized clinical 

ecision support 

Our approach is implemented as an interactive multiple

iews system ( Fig. 2 ), with one view displayed on-demand

nly ( Fig. 2 (4)) as well as several on-hover views, e.g., Fig. 2 (5).

or simplification, we introduce our approach using a small BN for

ndometrial carcinoma management ( http://www.cs.ru.nl/ ∼peterl/

ndomcancer.html ). It consists of 18 nodes, e.g., the patient-specific

pre-operative grade”, “recurrence of the tumor”, and “lymph node

etastasis”, as well as 36 relations, and computes a recommenda-

ion for the most suitable patient-specific “adjuvant therapy” [15] . 

The evidence view provides an overview of all evidence items

orted by their level of relevance for the computed outcome,

.g., an “Adjuvant therapy” recommendation ( Fig. 2 (1)). The doc-

ment view introduces the patient through doctor’s letters and

rovides therapy-relevant information such as the clinical guide-

ines ( Fig. 2 (2)). The outcome view overviews the computed prob-

bility distributions of the recommendation and an adjustable set

f clinical scores, stagings, etc. ( Fig. 2 (3)). By scrolling down or

electing an evidence in the evidence view, the network view is re-

ealed facilitating a structured exploration of the BN starting at the

elected evidence ( Fig. 2 (4)). 

.1. Evidence view 

Inspired by the regular decision-making within clinical routine,

e provide medical decision-makers with all available patient-

pecific information. In a tabular evidence view , we list all evidence

tems as rows sorted from top to bottom in descending order of

lobal relevance ( Eq. (2) ) for the computation result of a chosen

arget variable ( R1 ). This assists physicians in identifying the key

nformation for a specific recommendation. 

We focus on two levels of impacts instead of just one: the

lobal relevance for the computed recommendation and the local

elevance for each target node’s states, which are important to rep-

esent the underlying uncertainty within the model ( R5 ). This as-

ists users in understanding the reasoning process, and helps to

http://www.cs.ru.nl/~peterl/endomcancer.html
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Fig. 2. Interactive multiple views approach to explainable computerized clinical decision support demonstrated on the ENDORISK model [15] . The evidence view (1) shows 

the observed evidence items (Enlarged nodes in CT observation, Lymphovascular Space Invasion (LVSI), and Recurrence) sorted from top to bottom in descending order 

of their global relevance in computing the target variable ( Adjuvant therapy ). The evidence item’s name, state, global level of relevance (colored bars), and local level of 

relevance for each state of the target variable (circles) are conveyed. The document view (2) shows doctor’s letters and clinical guideline parts related to the target variable. 

A placeholder text is displayed here. The outcome view (3) overviews the computed probability distributions of the recommendation and an adjustable set of clinical scores, 

stagings etc. The target variable under investigation is having a light blue background color. Here, two possible target variables ( Adjuvant therapy and Postoperative grade ) 

have been defined. The network view (4) allows for a structured exploration of the underlying Bayesian network. The user can drill-down the network along its causal 

flow. The current node of investigation ( Adjuvant therapy ) is displayed in the center with its causes and effects displayed to the left and right, respectively. Donut and pie 

chart-based glyphs represent the probability distributions of the nodes’ states. For comparing distributions after an evidence update, the outer (blue) and inner (red) donut 

chart depict the post and prior probability distribution. The sign of difference in probability is encoded by line textures. Hovering facilities provide further insights on the 

computed probability distributions (5). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 3. Evidence view sorted by evidence items’ local relevance for a selected out- 

come state (“Adjuvant therapy – no (therapy) ”, first column in local relevance mul- 

ticolumn). Supporting and contradictory evidence items are shown in the top and 

bottom table, respectively. The level of local relevance is encoded by circle area. 

Hovering allows for detailed effect analysis. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 
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uild trust in the system. Therefore, and because of the effort-

ess representation of additional information, we decided to use a

abular-inspired view to present evidence items. 

In Fig. 2 (1), sorting of evidence items is according to the global

elevance for the computed “Adjuvant therapy” recommendation,

here the presence of “Enlarged nodes in CT observation” has a

ittle higher relevance level than “lymphovascular space invasion

LVSI)” and “recurrence” ( Fig. 2 (1)). The evidence item’s name

nd state are shown in the first two columns. A gray circle in

he third column indicates that this evidence is a recommendation-

hanger , e.g., Enlarged nodes in CT observation in Fig. 2 (1). Thus,

ithout this evidence, another recommendation would have been

iven. Hovering methods allow for deeper investigation of the re-

ated recommendations with and without this evidence ( Fig. 3 ).

he fourth column shows the evidence item’s global relevance for

he computed recommendation encoded by colored bars. In agree-

ent with our collaborating physicians, we propose a segmented

olor scale with values from less relevant (0–25%; light purple) over

elevant (25–75%; purple) to highly relevant (75–100%; dark purple).

he abstracted categories instead of numerical values with no clin-

cal meaning support interpretability. The remaining columns rep-

esent the evidence item’s local relevance for all individual states

“no (therapy)”, “radiotherapy”, “chemotherapy”, and “chemoradio-

herapy”) of the target variable (“Adjuvant therapy”) sorted from

eft to right according to clinical severity. The circles’ area encodes

he local relevance for the respective target node state whereas its
olor is linked to the global relevance of this evidence. In this con-

ext, we distinguish between filled and blank circles to represent

upporting and contradictory effects on the particular target node’s

tates, respectively ( R1 , R5 ). 

Visual perception studies have shown that humans can more

ccurately read off quantitative values from length than from

rea [43] . For encoding local relevance, we still favor circles over

ars to avoid confusion with the bars encoding global relevance.

e employ perceptual scaling to compensate for the known non-

inear relationship between an increase in circular area and the

erceived increase [44] . This facilitates coarse areas estimates, i.e.,
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Fig. 4. Donut chart presentation of the probability distribution of a node. The arc 

length of each segment encodes the probability of the corresponding node state 

(accessable via hovering). Severe states are displayed in a dark color and positioned 

close to 12 o’clock while non-severe states are bright and closer to 0’o clock. The 

blue outer arc depicts the current probability distribution. In case new/more re- 

cent evidence is entered or in hypothetical reasoning ( Section 6.5 ), an additional 

red inner arc is displayed depicting the probability distribution before evidence ad- 

justment. Line textures then, encode the sign of probability differences. Hovering 

methods emphasize related states and display the probability changes. The clinical 

severity of a state is mapped to color saturation. Inside the donut chart, the state 

having the highest probability and the corresponding probability value are shown. 

The node label is positioned below the glyph. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this arti- 

cle.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Evidence updates can be accomplished in a temporary canvas view facili- 

tating the definition of a new probability distribution via sliders. By submitting the 

new evidence, the Bayesian inference engine is triggered and all views are updated. 
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(  
small, medium and large, that are sufficient to understand the ap-

proximate local relevance. Hovering allows for obtaining the pre-

cise numerical value ( R1 , R5 ). 

Above the table, a text field with auto-complete functionality

allows for the search of a specific evidence whose row is then tem-

porarily highlighted in red. The plus icon allows for inserting new

and updating existing evidence items to obtain more information

in “what-if” scenarios ( R6 , Section 6.5 ). The row of the correspond-

ing evidence item is highlighted in yellow for quick identification.

A drop-down list allows for switching the sorting criterion of the

table from global relevance to local relevance for a specific state,

e.g., “no (therapy)” in Fig. 3 . This yields a split view of supporting

and contradictory evidence items in a sorted top and bottom table,

respectively. For example, the “regional distant recurrence of the

tumor” finding represents the strongest evidence contradicting the

“Adjuvant therapy – no (therapy) ” outcome, whereas the “Enlarged

nodes in CT observation” presence and “LVSI” finding are support-

ing factors for the application of no therapy. 

6.2. Document view 

Next to the patient-specific information, physicians are pro-

vided with clinical guidelines, doctor’s letters, and information

about the therapy. We present this information dynamically in

the document view ( R2 , Fig. 2 (2)). Text related to the currently-

selected outcome variable is displayed and all occurrences of the

variable’s most probable state are highlighted. 

6.3. Outcome view 

To communicate the recommendation, we introduce the out-

come view. It shows the computed probability distributions of the

recommendation and an adjustable set of clinical scores, stagings,

etc. ( R4 ). In Fig. 2 (3), the recommendation for “Adjuvant therapy”

is shown. The most probable state (“no (therapy)”) and its proba-

bility are displayed as text below the glyph. 

A segmented circular glyph shape ( Fig. 4 ) is favored to encode

the probability distribution among node states over easier to com-

pare rectangular bars, since it allows for a more dense information
epresentation in case of many variable states, conveys the part-

hole relationship, and is visually more pleasing. This is inspired

y the proposed approaches of Cypko et al. [12] and Champion

t al. [26] , but we use color (yellow) to emphasize evidence items

o improve their pre-attentive perception [45] . Since these glyphs

hall provide a brief presentation of the underlying probability dis-

ribution to convey the underlying uncertainty ( R5 ) and to avoid

verwhelming the user, we decided to not label all possible states,

s proposed by Cypko et al. [12] . Hovering facilities, however, pro-

ide the actual probabilities on-demand ( Fig. 4 ) or detailed labels

nd probabilities of all states ( Fig. 2 (5)). Additionally, a compar-

tive view can be displayed in an extra, temporary canvas to al-

ow for an in-detail investigation (similar to Fig. 5 with disabled

liders). The size of the glyph segments encodes the values of the

omputed state probabilities. The color saturation and clockwise

osition of segments redundantly encode the order of the states

n the underlying BN. In causal BNs, the order corresponds to the

linical severity of a state. Thus, severe states, e.g, a high num-

er of lymph nodes affected by cancer, are displayed in a dark

olor and positioned close to 12 o’clock while non-severe states,

.g., small tumor size, are bright and closer to 0’o clock ( Fig. 4 ).

ince no significant difference in proportion assessment accuracy

etween pie and donut charts could be observed [46] , we advo-

ate for donut charts in case of sufficient space. 

In case an evidence has been modified by the user, the glyph

s split into an inner ring (red) and an outer ring (blue) encoding

he pre- and post probability distributions resulting from the orig-

nal and modified set of evidence items, respectively ( R6 ) ( Fig. 4 ).

gain, the color saturation and position order correspond to the

redefined state order in the underlying BN. Thus, corresponding

tates in the inner and outer ring can be mentally assigned to

ach other. Inferring the exact numerical difference from the mu-

ually shifted ring segments is difficult. However, inferring whether

robabilities are increasing or decreasing was deemed sufficient by

ur collaborators. In order to avoid confusion by adding another

olor scheme, a stripe texture is applied for encoding the sign of

he numerical difference. In case the evidence modification did not

hange the probability distribution, the inner ring is also, drawn in

lue. This facilitates a quick identification of nodes affected by the

ewly entered evidence. 

The glyph representing the variable under investigation

“Adjuvant therapy”) is drawn with a light blue background
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olor ( Fig. 2 (3)). Clicking on a glyph updates the evidence view

ccordingly, so that highly relevant evidence items for the selected

arget node are positioned at the top and the local relevancies are

pdated regarding the chosen target node’s states. The plus icon

llows for adding a variable to the outcome view. 

.4. Network view 

Physicians use their mental model of the patient and the de-

ision process to reason about the optimal therapy option. To im-

rove acceptance and trustworthiness of a computed recommenda-

ion, they must be enabled to relate their mental model to the BN

nd the inference processes of the CDSS. Thus, we support a struc-

ured exploration of the BN along the causal flow of recommen-

ation generation in a dedicated network view ( R3 , Fig. 2 (4)). The

iew can be particularly useful in case physicians disagree with the

omputed outcome or relevance of an evidence as well as for in-

estigating the impact of a newly entered or modified evidence.

his view is displayed on-demand only by clicking on an evidence

n the evidence view ( Fig. 2 (1)) or by scrolling down on the inter-

ace. 

Inspired by a filmstrip metaphor, the user can explore the

N structure forward and backward, starting at the selected ev-

dence [47] . The exploration is guided by the BN’s causal flow,

hich in the representation is from left (cause) to right (effect) as

roposed by Wang et al. [35] . The selected evidence is initially dis-

layed in the center and drawn enlarged for better recognition. Its

auses and effects are connected by arcs, and sorted alphabetically

rom top to bottom to ensure a consistent layout and simplify the

earch for nodes. 

If the user clicks on a cause, the filmstrip is animated from left

o right. The old node of investigation becomes the effect, the se-

ected cause becomes the centered node of investigation, and its

auses smoothly fade in. Navigation facilities are displayed in the

op right of the view. Arrow icons allow for moving in either direc-

ion along the taken causal path by a sequence of node clicks ( R3 ).

oreover, the user can jump to a specific node by a text search

or its name (magnifier icon) and return to the home position

home icon). 

The donut chart-based glyphs introduced in Section 6.3 and

ig. 4 represent the probability distributions of the node

tates ( R5 ). The glyph encoding is similar to the outcome view

ith the difference of showing the most probable state and its

robability in the center of the glyph instead of positioning it un-

erneath. Additionally, a bar chart-inspired visualization to show

etailed information on the probability distribution, similar to

ig. 5 with disabled sliders, can temporarily fade-in. 

A yellow background color and ring indicate nodes represent-

ng evidence, e.g., the “LVSI” node in Fig. 2 (1) and (4), respec-

ively. Its saturation encodes the clinical severity of the evidence

 Section 6.3 ). We apply a yellowish color instead of blueish to sup-

ort differentiation between given evidence items and computed

ariables. In Fig. 2 (4), we simulated that new evidence regard-

ng the “regional distant tumor recurrence” became available dur-

ng the use of the CDSS. The updated and the previous computed

robability distributions of the “Adjuvant therapy” node are then

ncoded by its outer and inner ring, respectively. In case of multi-

le evidence updates, the inner circle always represents the initial

robability distribution. 

.5. Evidence updates 

New evidence can be inserted, and existing evidence can be

odified, after clicking on the plus icon in the upper part of the

vidence view ( R6 , Fig. 2 (1)). A temporary active canvas view

pens and via text search, the desired node is selected ( Fig. 5 ).
liders and text inputs facilitate the evidence definition while the

ie or donut chart-based glyph on the left side is updated au-

omatically to represent the probability distribution. In case of a

undred percent certain evidence, the respective state is simply

et to 100%. If the clinical information is affected by uncertainty,

.g., resulting from a measurement device, manual assessments, or

he age of information [48] , a probability distribution is defined. A

anity check verifies that the overall probability sums up to 100%.

y submitting the evidence update to the system, the BN infer-

nce engine is triggered. The resulting changes are reflected in the

vidence view ( Section 6.1 ) and can be investigated in the out-

ome ( Section 6.3 ) and the network view ( Section 6.4 ). 

.6. Implementation 

Our approach is implemented as a web-based solution using

TML5, and D3 JavaScript [49] . Since the installation of additional

oftware in clinical environments is hard to accomplish due to se-

urity issues, we chose a web-based solution. Furthermore, it al-

ows for a quick exchange with users and is available from all

inds of modern web browsers without installing additional soft-

are. The internal BN representation and the inference engine are

mplemented as a FLASK REST web service using the SMILE engine

or python (pySMILE) [50] . 

. Evaluation 

The therapy of a laryngeal cancer patient must be discussed by

ultiple experts from different disciplines in a tumor board. In

reparation of the tumor board, one physician prepares the case

ncluding an initial suggestion of how to treat the patient, which

ill then be discussed by the board. In a perfect evaluation sce-

ario, we would compare the preparation and discussion with and

ithout using the CDSS. However, we focus the evaluation on tu-

or board preparation and leave the tumor board discussion for

uture work. It would require a separate complex study with a

arge organizational effort to imitate a realistic tumor board sce-

ario with many clinical experts. 

For visual evaluation purposes, we use a BN representing the

reatment of laryngeal cancer [51] , which is still under develop-

ent by medical experts and has not yet been fully validated.

ence, we decided to use a validated sub-network [38] . This sub-

etwork consists of 303 nodes and 334 causal relations, and rep-

esents the TNM classification ( T umor size and type, lymph N ode

n-filtration, and M etastasis spreading) in laryngeal cancer manage-

ent [52] . It automatically computes the classification based on

he available evidence items. The TNM classification or staging has

 high influence on the therapy decision-making and is determined

anually prior to the tumor board by adhering to the guidelines

nd based on the patient paper records. The TNM staging is an-

ounced in the tumor board meeting by the presenting physician

nd may be questioned and has to be reworked, e.g., due to very

ecent updated evidence from imaging or pathology. Thus, in our

valuation, we can see the determination of the TNM classification

nd its discussion in the tumor board meeting as a reasonable sub-

titute for preparing and discussing the therapy recommendation. 

In the evaluation, we investigate three complementing aspects

hat match the following evaluation codes proposed by Isenberg

t al. [53] : Visual Data Analysis and Reasoning , User Performance ,

nd User Experience . Furthermore, according to Gunning [54] , the

measures of explanation effectiveness” of artificial intelligence ap-

roaches include user satisfaction (US) , mental model (MM) , task

erformance (TP) , trust assessment (TA) , and correctability (Co) . Be-

ore we elaborate on these aspects, we briefly describe our evalu-

tion procedure. 



8 J. Müller, M. Stoehr and A. Oeser et al. / Computers & Graphics 91 (2020) 1–11 

Fig. 6. Conceptual workflow. The participating physicians were asked to comprehend the computed TNM classification, determine and classify the key influencing evidence 

items, and explain the differences caused by an evidence update. The physicians started with gathering an overview of a patient’s condition by collecting all patient-specific 

information and investigating the predefined outcome variables in the outcome view as well as their key influences in the evidence view (1). Highly important evidence 

items resulting in a recommendation change are highlighted through a gray circle (2). Since numerous evidence items can be present, a visual auto-complete functionality 

allows for the search of a specific evidence whose row is then highlighted (3, 4). As physicians must know both, the supporting as well as the contradictory facts for a 

recommendation, a visual separation of these evidence items is provided (5). During the evaluation process, the physicians added a new evidence item by clicking on the 

plus icon (6, 7). The physicians then, investigated the resulting changes in the evidence view and the outcome view (8, 9). To fully understand the reasoning behind the 

TNM classification, they read the guidelines in the document view (10) and explored the BN structure in the network view (11). 
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7.1. Evaluation procedure 

We conducted the evaluation of our visual approach with six

experienced otolaryngologists – two male and four female – with

one, two, five, six, eight, and ten years of professional experience,

respectively. One physician is a co-author of this paper and has ex-

pertise in BNs, whereas the other participants are unfamiliar with

BNs. 

After giving a short introduction to the topic and the tasks

that need to be fulfilled, we split the evaluation study into two

parts, starting alternatingly to avoid learning effects. In the first

part, we asked the participants to determine the TNM-staging for

two individual anonymized real patient cases by investigating an

unsorted case sheet of patient-specific examination results, which

resembles the TNM-staging process within clinical routine. In do-

ing so, we asked them to name the key influences supporting and

contradicting their recommendation. These information entities are

important for justification when presenting the TNM-classification

in the tumor board. We then extended the list of evidence items

by one additional examination result. In clinical routine, a newly-

aggregated evidence can appear anytime, e.g., during the tumor

board from another physician, and needs to be taken into account.

Given this extended set of evidence items, we asked the physicians

whether they would see a need to change their recommendation

and especially, whether the new piece of evidence had an impact

on the classification of tumor type. The tumor type, e.g., a squa-

mous cell carcinoma, is highly important for the determination of

the T stage, and tumors of different type demand unique treat-

ment. 

The second part comprises the same tasks using our new vi-

sual approach with the difference that this time they were asked

to comprehend the TNM classification of the system instead of de-

termining it themselves. They also used two comparable patient

cases recorded within clinical routine. They followed the workflow

shown in Fig. 6 , beginning with an overview of the patient’s con-

dition and the computed recommendation, followed by an explo-

ration of the underlying BN, and an investigation of the conse-

quences caused by the evidence update. 

7.1.1. User performance 

We recorded the time needed to fulfill all tasks. On average, the

participating physicians spent 10.1 min using the unsorted case-

sheet of patient-specific examination results. Utilizing our visual
pproach, however, the average amount of time spent to accom-

lish the same tasks was 6.6 min; 3.5 min faster. Although five of

he physicians had not seen the proposed visual approach before,

e observed that after one patient case of learning, all physicians

ere able to independently operate the prototype. One could ar-

ue that the time savings compared to the case-sheet consultation

re related to the sorted presentation of evidence items ( TP ). How-

ver, the participating physicians described the TNM-classification

rocess using paper records and the hospital information system

s comparable to the case-sheet presentation. Only their experi-

nce with the hospital information system allows them for a quick

earch for examination results on a regular basis. Therefore, our

omparison is valid. 

.1.2. Visual data analysis and reasoning 

Although our evaluation study was not performed to validate

he correctness of the utilized BN, enhancements were suggested

y the physicians. For example, the physicians noted that the tu-

or type pathohistological finding is overweighted in the TNM-

taging process ( Co ). In this context, we emphasize that the physi-

ian who was not familiar with BNs was also able to identify this

verweighting. Thus, our visual approach can assist in the valida-

ion of BNs. 

.1.3. User experience 

During the justification process of the computed recommenda-

ion, the physicians especially valued the well-structured and clear

resentation of evidence items sorted by their relevance for the

ecommendation in the evidence view ( Section 6.1, Fig. 2 (1)). It

llows getting an overview of the patient’s condition, indicating

he important patient-specific information leading to the recom-

endation, and justifying the computed outcome ( US , MM ). Fur-

hermore, the usage of familiar visualizations, such as pie and bar

hart-inspired presentations, to represent evidence items and the

ssociated uncertainty within the system, were stated to be very

elpful during the comprehension process. Additionally, the se-

ection of outcomes of interest in the outcome view ( Section 6.3,

ig. 2 (2)) and the resulting updated sorting of evidence items by

heir global relevance in an animated fashion in the evidence view

 Section 6.1, Fig. 2 (1)) were described as improving the usabil-

ty ( TA ). 

By providing additional information in the form of doctor’s

etters and clinical guidelines in the document view ( Section 6.2,
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ig. 2 (3)), the justification process is simplified since physicians

an, e.g., relate the relevant evidence items to their description in

he corresponding clinical guidelines. For example, one physician

ompared the evidence items leading to a N-state – N0 with the

egarding TNM-guidelines from the document view ( Fig. 2 (3)) and

onfirmed the computed outcome. 

We conducted a questionnaire to get insights into the clinical

elevance of the proposed approach, the effectiveness of the visu-

lizations, and the convenience of the interaction facilities. It com-

rises 26 questions, 7 inquiring participant details and 19 employ-

ng a five-point Likert scale to rate various aspects of relevance,

ffectiveness and convenience ( −−, - , o , + , ++ ). While the six

hysicians filled in the questionnaire, the spoken comments were

ecorded. We provide the questionnaire, as well as the detailed an-

wers, in the supplementary material and summarize the most im-

ortant insights in the following: 

All physicians emphasized the importance and clinical relevance

f visual explanation and guidance in a CDSS. They confirmed that

he proposed visual approach fulfills their demands on comprehen-

ion and justification of the generated recommendation ( TA ). They

articularly valued the structured, clear, and familiar presenta-

ion of all evidence items, which resembles their regular decision-

aking process. The sorting of all evidence items regarding their

ocal relevance for a specific state of an outcome variable as well

s the emphasis of supporting and contradictory facts using filled

nd unfilled circles, however, were seen as more controversial. One

hysician claimed the contradictory evidence items are irrelevant

hereas the other physicians rated this information to be helpful

see in Fig. 3 ). The presentation of probability distributions using

onut-charts was rated as clear and understandable. 

The physicians appreciated the visual emphasis of all changes

esulting from an evidence update by double-ring donut charts. In

he network view, they were able to investigate the impact of the

pdate on the reasoning of the CDSS. The view linking and interac-

ion facilities were rated as conforming with user expectations, and

perating in a concise manner. All interactions provide immediate

eedback. Running the BN reasoning engine after an evidence up-

ate yields results in around two seconds on a standard notebook,

hich was considered acceptable by the physicians. 

The animation of changes in all views except the document

iew, e.g., animation of rows shifting in the table of the evidence

iew after choosing a different outcome variable and animation

f graph navigation in the network view (see the supplemental

ideo), were highly appreciated. They assisted the physicians in re-

racing an evidence’s global influence on multiple outcomes and in

eneral, in keeping track of changes in the visualization. Finally, all

hysicians commented that they would in general argue for using

he proposed approach during tumor board preparation and board

eeting in order to present their initial treatment recommenda-

ion. 

. Discussion 

The evaluation indicates that our approach supports the verifi-

ation and justification of recommendations provided by a CDSS.

he combination of simple and familiar visualization techniques,

uch as pie chart and bar chart-inspired visualizations represent-

ng highly complex processes, allows physicians without knowl-

dge in CDSS for the comprehension of generated recommenda-

ions. Using our prototype, the physicians were able to verify the

omputed TNM-staging recommendation by investigating the pro-

osed information ( R1 , R2 , R3 , R4 ) while comprehending the as-

ociated uncertainty within the generated outcome ( R5 ). All physi-

ians emphasized the ability to update evidence items and inspect

he related highlighted changes ( R6 ) as well as the investigation

f causal relations within the underlying network ( R3 ). The inter-
ction techniques and their response time were rated as fulfilling

he required needs and suitable for the accomplished tasks. Our

rototype serves as an introduction tool to the patient’s condition,

ince it summarizes all given patient-specific information sorted by

heir relevance. With these advantages, it can assist during the tu-

or board preparation in recommendation generation and during

he tumor board in discussing the recommendation. 

Limitations. Currently, our approach is tailored to graphical

ausal models such as BNs. However, with the exception of the

etwork view, it can be transferred to any kind of model incor-

orating uncertainty and any kind of function for specifying the

lobal relevance of individual evidence items. 

Furthermore, patient-specific information are provided in a csv

le at present. For application in clinical routine, data needs to be

etched directly from the hospital information system, gathering all

vailable information automatically. 

Due to space restrictions, only a limited number of evidence

tems are visible at a glance in the evidence view. However, be-

ause of the sorting of the evidence items by their individual level

f relevance for a recommendation, the most important patient-

pecific information entities are visible while the remainder is re-

rievable through scrolling methods. 

Currently, only the local structure of the network is presented.

hus, users can investigate the direct causal reasons and causal

ffects of a single node of interest using the network view. One

hysician requested a global representation of the whole underly-

ng network using a fish-eye-technique [55] . The causal chain of

easoning [23] between two nodes of interest further apart was

lso requested. However, within BNs there are multiple paths of

easoning, and not every node is of importance within this path. To

onvey the causal chain of reasoning, a suitable presentation needs

o be found. 

In hypothetical reasoning using our approach, only two sets of

vidence items can be currently compared. A collaborative setup,

here several experts discuss various alternatives, requires multi-

le of these comparisons. 

Lessons learned. During the development of our proposed visual

pproach, we recognized that it was especially important to dis-

uss our concept with many domain experts having different lev-

ls of expertise in causal modeling. In the beginning, we shared

ur ideas with two expert physicians. However, when conducting

he evaluation with domain experts who did not contribute to the

esign phase, it became clear that improvements, such as the in-

egration of global and local relevance, were essential for under-

tanding and justifying the reasoning process. 

Furthermore, in our initial development phase, we focused too

uch on “technical” explainability of the Bayesian inferencing by

roviding facilities for network exploration. After multiple discus-

ions and an initial evaluation with domain experts, we changed

ur point of view after learning that “medical” explainability is

ery much related to convey the relevance of individual evidence

tems for the computed recommendation. 

. Conclusion and future work 

For CDSS, the presentation and explanation of the underlying

odels computation result and its reasoning via a sophisticated

uman computer interface have been identified as the grand chal-

enges. We address these challenges by presenting a novel visual

pproach to explainable computerized clinical decision support.

nspired by the decision-making process in clinical routine, our

pproach combines uncertainty-aware presentations of the com-

uted recommendation with methods for justification presented

hrough a list of patient-specific evidence items sorted by their

elevance for the chosen outcome. Additionally, a structured ex-

loration method for comprehension of the reasoning within the
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CDSS depicting the local structure of the model/network is pro-

vided. Analysis of the impact of an evidence update allows for

the investigation and justification of the generated results and

provides methods for hypothetical reasoning regarding a patient’s

most probable future condition. During an evaluation study, physi-

cians assessed our proposed approach to generate trustworthy and

justifiable results, and have recommended its usage within clinical

routine. 

For future work, physicians proposed a representation of the

global structure of the network and the visualization of the causal

chain of reasoning within the CDSS. By providing this informa-

tion, more insights into underlying reasoning can be gathered,

which assists especially for inexperienced physicians in learning

the decision-making process for a specific clinical question. Fur-

thermore, we want to provide export facilities of evidence item

sets to store the state after user modifications. As soon as the

treatment decision model for patients suffering from laryngeal

cancer is completed and validated, a clinical comparative evalua-

tion of applying the proposed approach in the tumor board can be

conducted. 
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