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Visualization of Rubik’s Cube Solution Algorithms
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Figure 1: Projected solution pathways for 100 random Rubik’s Cubes solved with the beginner’s method (left), and with Fridrich’s method
(right), respectively. Data for both algorithms was combined for the t-SNE calculation, but is shown in two individual visualizations for easier
interpretation. The random initial states form a broad cluster near the center of the projected state space (1). Both solution algorithms take
similar intermediate paths (2), and later checkpoints cluster densely near the final solution (3). Notably, Fridrich’s algorithm avoids lengthy
sequences of rotations right before the solution (4).

Abstract
Rubik’s Cube is among the world’s most famous puzzle toys. Despite its relatively simple principle, it requires dedicated, carefully
planned algorithms to be solved. In this paper, we present an approach to visualize how different solution algorithms navigate
through the high-dimensional space of Rubik’s Cube states. We use t-distributed stochastic neighbor embedding (t-SNE) to
project feature vector representations of cube states to two dimensions. t-SNE preserves the similarity of cube states and leads to
clusters of intermediate states and bundles of cube solution pathways in the projection. Our prototype implementation allows
interactive exploration of differences between algorithms, showing detailed state information on demand.

1. Introduction

The increasing popularity of machine learning applications has been
accompanied by a growing demand for tools to visualize and help
understand complex algorithms [HKPC18]. In this paper, we chose
Rubik’s Cube as an example of a difficult problem solving task,

and show how a visualization can help understand different solution
algorithms acting in a high-dimensional space.

Rubik’s Cube is a famous puzzle toy devised in 1974 by the
Hungarian inventor and professor of architecture Ernő Rubik. With
350 million cubes sold around the world by January 2009, it is the
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world’s top-selling puzzle game [Ada09]. The classic version of
Rubik’s Cube has six faces, with each face being made up by a 3×3
grid of colored facets. These facets are the faces of smaller cubes,
the so-called cubies. The cube consists of 26 such cubies: 8 corner
cubies with three faces each, 12 edge cubies with two faces each,
and 6 center cubies with one face each. The 27th cubie at the center
of the cube is replaced by a mechanism that enables rotation of one
9-cubie slice of the cube at a time. For a standard Rubik’s Cube, or
any n× n× n cube with odd n, the relative positions of the center
cubies cannot change. The color of the center facet of one cube
face is thus assigned to the whole face, and the cube is considered
solved when each facet is correctly positioned on its color’s face.
Otherwise, the cube is said to be in a scrambled state.

Rubik’s Cube is commonly known to be almost impossible to
solve if no specific solution strategy or algorithm is applied. The
closer a cube is to being solved and the more cubies are in the correct
position, the more likely it is that any rotation with the intention
of solving another part of the cube will scramble already correctly
placed cubies. Therefore, precisely considered sequences of rota-
tions need to be applied, which ensure that only specific cubies are
moved to their intended destinations. Many solution strategies for
Rubik’s Cube have been developed. They differ in complexity and
speed, depending on the amount of special patterns and conditions
that are detected and utilized during the solving process. Generally,
the faster a solution algorithm is and the fewer rotations are needed,
the more sub-algorithms need to be learned and applied under the
correct conditions. The classic beginners’ method is highly inef-
ficient but has only few sub-algorithms to be memorized. More
advanced methods, such as Fridrich’s CFOP method [Fri97] or the
Petrus method, are harder to learn but usually require significantly
fewer moves. Generally, solution algorithms often use checkpoints:
special points in the state-space of the cube (e. g., having the yellow
cross on the yellow side). This state-space, in which the solution
algorithms act, is high-dimensional and encompasses more than
4.3×1019 unique states, which makes visualizing the solution path-
ways challenging.

In this paper, we present an approach for visualizing solution
strategies for Rubik’s Cube by showing how algorithms navigate
differently through projections of the high-dimensional state-space.
We focus on two solution strategies: a simple method that will be
referred to as beginner’s method and the more advanced CFOP
method by Jessica Fridrich, hereafter referred to as Fridrich method.
We further describe our implementation of a prototype for interac-
tively exploring the projected solution pathways, and show how it
can be used to answer the following questions:

Q1 Do checkpoints cluster for different initial states?

Q2 When exactly do algorithms start to diverge after starting from
the same initial states?

Q3 Are the differences between algorithms immediately recogniz-
able?

2. Related Work

Detailed information on a number of different Rubik’s Cube solu-
tion algorithms has been compiled in several Wikis and Internet
forums [Fer, Mak12]. AlgExplorer [Teo17], published on such an

online forum in 2017, is a command-line tool for exploring the algo-
rithm/solution space based on an extensive record of Rubik’s Cube
solutions [Jaf]. Scientific papers on Rubik’s Cube have typically
been concerned with finding optimal solutions. Kunkle et al., for
instance, used out-of-core parallel computing and properties of the
cube’s permutation group to find a lower bound of 26 moves [KC07].
However, to our knowledge, no attempts at visualizing different so-
lution strategies have been published.

The cube states along the solution pathways can be viewed es-
sentially as a multivariate time series, with the cube face colors
as categorical variables. Combining dimensionality reduction tech-
niques with trajectory encoding is a common choice for visualizing
multivariate time series. TimeSeriesPath [BWS∗12], for instance,
is based on principal component analysis (PCA). The Time Curves
idiom by Bach et al. [BSH∗16] visualizes patterns in temporal data
by folding time series into trajectories according to a similarity
measure. Schreck et al. used self organizing maps (SOMs) to vi-
sualize time-resolved financial data as trajectories [STKF07]. In
a similar fashion, textual data has been visualized as projected n-
gram series, e. g., by Mao et al. [MDL07]. A generalized version
of n-gram trajectories for non-textual data was proposed by Ward
and Guo [WG11]. Both of these approaches rely on PCA. Brown
et al. used multidimensional scaling (MDS) to visualize system
states as trajectories during user interaction [BYC∗18]. In addition
to PCA, SOMs, and MDS, also t-distributed stochastic neighbor
embedding (t-SNE) [MH08] has proven a powerful tool for creating
visualizations of high dimensional sequential data. Van den Elzen et
al. applied t-SNE, among other projection techniques, to visualize
high-dimensional states of dynamic networks [vdEHBvW16].

For our visualization of Rubik’s Cube solution algorithms, we
use a combination of dimensionality reduction, in our case t-SNE,
and encoding state sequences as trajectories.

3. Method

Figure 2 shows the workflow for creating the Rubik’s Cube solver
visualization. This section describes steps 1 to 5 conceptually, includ-
ing cube initialization, data abstraction, projection, visualization,
and interaction. Technical details on the implementation are given
in Section 4.

3.1. Cube States as Feature Vectors

We create randomly scrambled cubes and automatically apply dif-
ferent solution algorithms to them. The first step of visualizing the
solution pathways is transforming the cube states into numerical
representations for further processing. We based the encoding of
the cube state on the data structure underlying the Rubik’s Cube
Solver Python API by Lucas Liberacki and Tom Brannan [LB15]
(see Section 4 for implementation details). Each face of the cube is
represented by a 3×3 matrix with one entry for each facet. For the
entries representing the facet colors we chose a one-hot encoding,
i. e., (0,0,0,0,0,1) for red, (0,0,0,0,1,0) for green etc. This encoding
ensures meaningful distance metrics for the dimensionality reduc-
tion. The resulting 6× (3×3)×6 tensor was flattened, yielding a
feature vector of length 324 for a single state.
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Figure 2: Workflow for the Rubik’s Cube solver visualization.

3.2. Projection

The high-dimensional feature vectors of complete solution pathways
are projected to a two-dimensional space using t-SNE. t-SNE en-
sures that similar states are close to each other in the projected space.
We found that PCA, due to its linear nature, could not preserve high-
dimensional clusters in the low-dimensional projected space. Note
that t-SNE does not guarantee to map two equal states to the exact
same point (as might be suggested by Figure 2), but the projections
will usually be very close together.

The notion of similarity in the original feature space depends
on an arbitrarily chosen distance metric. We tried different metrics
and ultimately settled on Euclidean distance, since it yielded the
most appealing results. Our way of projecting the cube states to two
dimensions does not take into account the number of operations
(i. e., rotations of cube slices) necessary to go from one state to
the next. Instead, we argue that applying the Euclidean distance to
our choice of feature vectors yields a representation that is more
in line with the intuitive judgment of how scrambled the cube is.
The reason for this is that, for a one-hot encoding, the Euclidean
distance is equal to the square root of the Hamming distance. It
thus corresponds to a “naive edit distance”, that measures wrongly
colored cube facets, but not the number of moves required to fix
them.

3.3. Visualization and Interaction

For the visualization we create a separate path for each cube, going
from its randomly scrambled origin to its fully solved endpoint.
These paths pass through the projections of all intermediate states,
and are implemented as Bezier curves as opposed to lines. This
ensures better readability when many cubes are displayed. The paths
for different solution algorithms are visually encoded by hue. Each
state of a cube along its path is displayed by a marker. We visual-
ize the random origins as crosses, checkpoints as squares, and the
solved states as stars, respectively. The square markers for different
algorithm are slightly rotated, to make them distinguishable from

one another when two paths share points in the projected state space.
Disk markers for intermediate states between checkpoints can be
displayed on demand. The markers’ brightness values encode the
progression through the solution path, with bright colors correspond-
ing to early states. For each marker, a mouse-over action reveals a
detailed view of the cube state, showing the colored facets of the
unfolded cube.

4. Implementation

We use Python to prepare the datasets for the visualization. First,
we create randomly scrambled cubes by starting from a solved cube
and performing random rotations. This ensures that only physi-
cally possible cube states are produced. The cubes are then solved
with a modified version of the previously mentioned API by Lib-
eracki and Brannan [LB15], to which we added a new solution
algorithm as well as options for data export. t-SNE is applied to
the generated cube states, and the projected states are written to
CSV files along with detailed facet color information. We use the
scikit-learn [PVG∗11] t-SNE implementation with a learning rate of
100 and a perplexity of 50. The hyperparameters were chosen exper-
imentally to yield satisfying results across many different datasets.
For the actual visualization we use D3.js [OHB11] to render SVGs.

A deployed version of our prototype implementation can be ac-
cessed at https://rubiks-cube-vis.netlify.com.

5. Results and Discussion

The following section describes how our visualization of the solu-
tion algorithms helps answering questions Q1 to Q3 raised in the
introduction.

5.1. Clustering

Figure 1 shows the projected solution paths for 100 randomly cho-
sen initial cube states, both for the beginner’s method and the more

© 2019 The Author(s)
Eurographics Proceedings © 2019 The Eurographics Association.

https://rubiks-cube-vis.netlify.com


C. A. Steinparz, A. P. Hinterreiter, H. Stitz & M. Streit / Visualization of Rubik’s Cube Solution Algorithms

Figure 3: Projected solution pathways of the same initial state (1)
solved with beginner’s method and Fridrich’s method, respectively.
The algorithms share the same path up to the second checkpoint
(2), at which two layers of the cube are already fully solved. Near
the end, the beginner’s method requires additional rotations, while
Fridrich’s method approaches the solution much faster.

advanced Fridrich’s method. Clearly, projecting the cube states with
t-SNE leads to the formation of different clusters. Most prominently,
later checkpoints form dense clusters close to the final solution
(see (3) in Figure 1), clearly answering question Q1 in the affir-
mative. Earlier checkpoints with fewer correctly positioned cube
facets are much more spread out. These checkpoints share a wide,
sparse region with the randomly selected initial states (1). In later
stages along the solution paths, intermediate states tend to form
clusters as well, which leads to bundles of parallel paths between
checkpoints (2).

5.2. Comparison of Algorithms

Figure 3 shows solution paths for the beginner’s method and
Fridrich’s method applied to the same initial state (1). Our choice of
color-mixing and the use of opacity allows us to answer question Q2
positively: the solution paths overlap completely up to the second
checkpoint (2). As the visualization, upon user demand, provides
detailed views of unfolded cubes for all intermediate states, it can
be seen that already two layers of the cube are fully solved at this
point. We found this behavior to be general, i. e., independent of
the initial state. Afterwards, the more optimized Fridrich method
makes use of a large amount of different sub-algorithms. This avoids
additional lengthy sequences of rotations close to the final solution.
For the beginner’s method, these rotations show up as characteristic
coils (3).

When projecting more cube solutions, the differences between
the strategies due to the use of sub-algorithms become even more
apparent (see Figure 1). Our visualization shows large bundles of
paths as a result of clusters of similar intermediate points. Up to
a certain point, these bundles appear similar for the two different
techniques (2). Further along the solution paths, the beginner’s
method’s sub-optimal approach to correctly positioning the final
cubies gives rise to a large cluster of many “avoidable” intermediate
steps (see (4) in the left part of Figure 1).

In case of Fridrich’ method, many fewer steps are required dur-
ing the final stages of solving the cube, leading to a much smaller
and less populated cluster of intermediate points (see (4) in the
right part of Figure 1). Thus, the scalability of our visualization ap-
proach to hundreds of cubes allows us to reliably detect differences
between the beginner’s method and Fridrich’s method, answering
question Q3 successfully.

5.3. Limitations

As already stated in Section 3.2, our choice of state representation
and projection does not preserve the symmetries of the Rubik’s
Cube permutation group. Furthermore, the implementation of the
solutions forces each solution pathway to reach the yellow cross
checkpoint first, even when an equivalent checkpoint (i. e., having
the cross on a different face) would be closer.

Finally, the visualization is currently rendered using SVGs. This
causes long update times and potentially sluggish, unresponsive
behavior when more than a couple of hundred cube solutions are
shown. We will address this issue in a future version of our visual-
ization tool, by switching from the SVG-based D3 implementation
to VegaLite [SMWH17] with its more efficient canvas rendering. To
further improve the interaction and reduce visual clutter when many
paths are drawn, edge bundling may be used.

6. Conclusions & Outlook

In this work we showed how dimensionality reduction can be used to
visualize the complex solution paths through the high-dimensional,
vast space of Rubik’s Cube states. Interactivity and display of de-
tailed information on demand enable the user to comparatively
explore different solution algorithms.

We plan to combine this visualization approach with a real Blue-
tooth connected Rubik’s Cube. Rotations performed with this cube
will then be directly projected in our visualization by means of an
out-of-sample extension [GSH15].

Recently, McAller et al. showed that reinforcement learning en-
ables artificially intelligent agents to autonomously learn how to
solve Rubik’s Cube [MASB18]. Our visualization approach is gen-
eral enough to also be applied to such automatically found algo-
rithms, and we plan to use it as a starting point for understanding
how AI systems approach complex problem solving tasks.
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