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Abstract— A common strategy in Multi-Criteria Decision Making (MCDM) is to rank alternative solutions by weighted summary
scores. Weights, however, are often abstract to the decision maker and can only be set by vague intuition. While previous work
supports a point-wise exploration of weight spaces, we argue that MCDM can benefit from a regional and global visual analysis of
weight spaces. Our main contribution is WeightLifter, a novel interactive visualization technique for weight-based MCDM that facilitates
the exploration of weight spaces with up to ten criteria. Our technique enables users to better understand the sensitivity of a decision to
changes of weights, to efficiently localize weight regions where a given solution ranks high, and to filter out solutions which do not rank
high enough for any plausible combination of weights. We provide a comprehensive requirement analysis for weight-based MCDM
and describe an interactive workflow that meets these requirements. For evaluation, we describe a usage scenario of WeightLifter
in automotive engineering and report qualitative feedback from users of a deployed version as well as preliminary feedback from
decision makers in multiple domains. This feedback confirms that WeightLifter increases both the efficiency of weight-based MCDM
and the awareness of uncertainty in the ultimate decisions.
Index Terms—Visual analysis, decision making, multi-objective optimization, interactive ranking, rank sensitivity

1 INTRODUCTION

In our daily lives as well as in professional settings, decisions typi-
cally require the consideration of multiple – often conflicting – crite-
ria. Buying a car, for example, involves personally assessing multiple
car models regarding criteria such as cost, comfort, safety, and fuel
economy. More comfortable and safer cars usually come at a higher
price. In portfolio management, stocks enabling high returns typically
involve high risks. In product design, competing criteria include per-
formance, reliability, production costs, and form factors.

Multi-Criteria Decision Making (MCDM, also known as Multi-
Criteria Decision Analysis) is thus a challenge of ubiquitous impor-
tance and has long been a dedicated field of research [40]. As a sub-
field of Operations Research, MCDM focuses on structuring and solv-
ing decision and planning problems for which unique optimal solu-
tions do not exist but where the superiority of solutions depends on
the decision maker’s preferences. In this paper, we focus on discrete
MCDM problems comprising a finite set of alternative solutions.

In order to support decision makers facing such problems, the
MCDM literature discriminates between various decision strate-
gies [27]. As one of the most frequently applied strategies, Additive
Weighting assigns weights to the criteria in order to express the pref-
erence for each solution by a weighted summary score for subsequent
ranking (see Sec. 4.1 for a formal description). This strategy makes
it straightforward to obtain a unique decision—typically the solution
ranking first. Moreover, the explicit and quantitative representation of
preference as weights supports reproducibility.

In practice, however, this seemingly precise and transparent strat-
egy conceals significant sources of uncertainty. In many cases, the
weights are not known precisely, but set by vague intuition. For ex-
ample, a car buyer may prefer safety over fuel economy and costs,
but might be unsure about precise weights for these criteria. Weights
are often rather abstract to the decision maker. Moreover, Additive
Weighting typically requires to normalize the criteria before summa-
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tion, which represents an additional source of ambiguity. In general,
reducing decisions to a single score may hide interesting options and
the ranks of solutions may be highly sensitive to changes in weights.
These uncertainties may significantly reduce the confidence in the ul-
timate decision.

Decision makers may thus benefit from suitable tools that support
them in exploring the relationship between weights and the corre-
sponding (top) ranked solutions. While this seems an opportunity for
interactive visualization, few tools explicitly address general MCDM
problems and even fewer tools allow the user to see the effect of ma-
nipulating weights [38]. A notable exception, LineUp [16], enables the
user to compare entire rankings corresponding to user-defined weight-
ings and served as inspiration and starting point of our work. LineUp
employs a point-wise approach to the exploration of the space of pos-
sible combinations of weights (referred to as weight space). In the
context of MCDM, this approach supports only a cumbersome and
indirect assessment of the sensitivity of a top-ranked solution to vari-
ations in weights and does not support expressing a vague intuition
about weightings. We argue that MCDM can benefit from a more
comprehensive exploration of the weight space.

Our main contribution is WeightLifter, a new interactive visualiza-
tion technique that increases both the efficiency of MDCM using Ad-
ditive Weighting and the confidence in the ultimate decisions. Its main
novel aspect is a global visual representation and exploration of weight
spaces with up to ten criteria. This enables, for example, visualizing
the sensitivity of a decision to weight changes, an efficient localization
of weight regions where a given solution ranks high, and the filtering
of solutions which do not rank high enough for any plausible combi-
nation of weights. Additional contributions of the paper include:

• A comprehensive requirement analysis of weight-based MCDM.
• A concept for integrating WeightLifter with other views to sup-

port an interactive workflow for MCDM.
• A description of a usage scenario of WeightLifter in automotive

engineering.
• A report of qualitative feedback from engineers using a deployed

version of WeightLifter.

2 REQUIREMENT ANALYSIS

In order to ensure that WeightLifter is applicable to a broad set
of MCDM problems, we identified the requirements from multiple
sources: We had several discussions with decision makers from dif-
ferent fields (automotive engineering, health policy making, energy
transmission operation, and aviation infrastructure planning), reflected
on experiences with our previous work on LineUp [16], and conducted



thorough research studies on limitations of existing approaches from
MCDM [35, 40] (Sec. 3). We refined these requirements in multiple
iterations, following the nested model for visualization design and val-
idation [26]. We grouped the resulting requirements into three high-
level goals: (1) high decision confidence, (2) efficient decision mak-
ing, and (3) scalability to problems involving many criteria and a large
number of solutions.

As a guiding example throughout this paper, consider a fictional
purchase situation: Assume that Jane wants to buy a used car from a
list of 1,442 available models, which thus correspond to the possible
‘solutions’ in this example. She bases her decision on six criteria:
Price (in EUR), Age (in months), Mileage (in kilometers), number of
Doors, Guarantee Period (in months), and quarterly Tax (in EUR).
Jane wants an affordable, reliable family car, but could not quantify
her preferences as precise criteria weights. She thus wants to reduce
the 1,442 models to a short list which still covers a range of good
choices for different realistic preferences.

2.1 High Decision Confidence
R1: Analyzing trade-offs. It should be intuitive to express prefer-

ences (i.e., weights) and to explore the effect of variations in prefer-
ences. For this task, we found that users often have particular trade-
offs in mind, including trade-offs between two criteria, between one
criterion and all others, and between groups of criteria. Jane may want
to explore the trade-off between Price and all other criteria.

R2: Visualizing weight-related sensitivities of decisions. The
sensitivity of a decision along interesting trade-offs (R1) should be di-
rectly perceptible. To increase her decision confidence, Jane wants to
know if certain variations of weights would have a significant impact
on the best choice of car model.

R3: Localizing favorable weight space regions. It should be effi-
cient to localize and characterize the region in the weight space where
a particular solution is considered a good or even the best choice.
Aware of her vague intuition of weights, Jane might prefer localiz-
ing cars that are robustly considered good choices for many different
weightings and to match this short list of candidates against her intu-
itive preferences.

2.2 Efficient Decision Making
R4: Filtering decision-irrelevant weight space regions. In most

cases, large parts of the weight space represent preferences which are
irrelevant for the decision maker. As Price is an important criterion
to Jane, she is not interested in expensive cars that only become good
choices when the weight on Price is low. To focus the analysis, users
should thus be able to specify which criteria weightings are meaning-
ful for them.

R5: Focus on decision-relevant solutions. The set of solutions
which is presented to the user in detail should only be as large as nec-
essary. Specifically, it should not contain solutions which fail to be
good choices for any plausible weighting (R4) or violate other filter
criteria (R9). In the guiding example, only 24 cars are considered an
optimal choice for any possible combination of weights. This enables
Jane to focus her attention on a small set early in the decision making
process without requiring her to specify criteria preferences.

R6: Dynamic transparent ranking of solutions. In addition to
an instant identification of the best choice for a given weighting of
criteria, the user should be presented a ranking of all other decision-
relevant solutions as context information. The visual encoding should
explain the cause of the ranking and should convey for which criteria
a solution has sub-optimal values. This enables Jane to assess, for
example, if the best-ranking model is in fact much better than other
candidates for a given weighting, and how multiple roughly equivalent
alternatives differ regarding their per-criterion strengths.

R7: Comparison of solutions regarding favorable weight re-
gions. The technique should support a selection of solutions for a
detailed comparison. In particular, it should provide an effective vi-
sual encoding when comparing the favorable regions in weight space
for multiple solutions. After initial steps for reducing the number of
possible car candidates (R5 and R4), Jane wants to further shorten

the list by excluding models based on direct comparisons between the
remaining cars. In addition to the actual data values of the criteria,
Jane wants to compare different car models by their robustness in be-
ing considered a good choice (R3).

2.3 Problem Scalability
R8: Scalability and flexibility regarding criteria. The technique

should avoid any upper limit on the number of the criteria while being
intuitive also for problems with only two or three criteria. It should
be applicable to criteria of different types and scaling. Jane’s criteria
include ones to be minimized (e.g., Price) as well as maximized (e.g.,
Guarantee Period) and are partly discrete (e.g., number of Doors).

R9: Incorporating additional decision making strategies. The
technique should support mixing the Additive Weighting strategy with
other strategies, e.g., Elimination by Aspects [38] for pre-filtering so-
lutions based on actual criteria values rather than expressing filters
solely in terms of weights (as in R4). Jane has a hard upper limit on
the Price of her new car regardless of all other criteria.

3 RELATED WORK

Weight space-aware MCDM is related to parameter space exploration
in general (Sec. 3.1) and other work on MCDM (Sec. 3.2).

3.1 Parameter Space Exploration
For many types of complex computations, analyzing the correspon-
dence between inputs and outputs is crucial. An increasing number of
visualization systems aims to replace the traditional exploration based
on trial-and-error by more global strategies [33]. Examples include
meteorological simulations [29], disease simulations [1], image anal-
ysis [30], and simulations in engineering and design [8, 13, 23]. The
analysis of parameter spaces comprises multiple tasks, which are also
relevant in the context of this paper.

Sensitivity analysis refers to understanding what variations of out-
puts can be expected with changes of inputs [33]. While sensitivities
can be expressed on a global scale [32], most visualization systems fo-
cus on local sensitivities, e.g., in scatter plots [11]. In several cases, lo-
cal sensitivities are defined around a focal point, which can be used for
slicing higher-dimensional parameter spaces [4]. HyperSlice [39], for
example, shows all 2D orthogonal slices of a scalar function around
a focal point. This work inspired our concept of navigating weight
spaces (R1, Sec. 4). While most previous work addresses Cartesian
parameter spaces, sensitivity analysis in our context refers to the sta-
bility of top-ranks (R2) within barycentric coordinate spaces.

As another task, partitioning the output space reveals what different
types of outputs can be achieved [33]. Bergner et al. [5] cluster fuel
cell performance graphs as the outputs of a model. Mapping the clus-
ters back into the input space reveals parameter regions that lead to
similar results. In our work, the partitioning of weight spaces reveals
segments where the top-ranked solution does not change (R3).

Another motivation for a systematic parameter space analysis con-
cerns the identification of input parameter values which optimize the
outputs in some sense. While the optimization regarding multiple
quantitative objective functions is a classical problem of Operations
Research (Sec. 3.2), an assessment of optimality often also involves
qualitative judgments of complex data like time series [1, 18] seg-
mented image data [37], animations [8], and 3D geometry [13]. This
explains a need for systems which combine human-oriented assess-
ments of outputs with mathematically defined decision making strate-
gies such as Additive Weighting (R9). An example addressing both
aspects in the context of light design is LiteVis [34].

3.2 Multi-Criteria Decision Making
In many decades of research, the field of Multi-Criteria Decision Mak-
ing (MCDM) has investigated approaches for solving decision prob-
lems that involve multiple criteria [20] (remark: we use the term cri-
terion in this paper, while the term objective is also common in the
literature). A single best solution does generally not exist for MCDM
problems. Instead, a solution is considered Pareto-optimal if no other
solution exists that is better for some criteria without being worse for



others. Much work focuses on problems where the criteria are given
as functions on a continuous decision domain. In this case, many ap-
proaches address the (semi-)automated creation of Pareto-optimal so-
lutions, e.g., the NIMBUS method [25]. As a common classification
of methods, the decision makers preferences can be given a priori, pro-
gressively, or a posteriori to creating the solutions [17]. In this paper,
we focus on MCDM for a finite number of discrete solutions, which
corresponds to the a posteriori case.

Velasquez and Hester survey the MCDM literature along eleven
methods [40]. A main distinction concerns the strategy and required
precision for specifying preference information by the decision maker.
ELECTRE [31] and PROMETHEE [7], for example, ask for ordering
the criteria by their preference, but do not support a direct identifica-
tion of strengths and weaknesses of the alternative solutions. Additive
Weighting allows a compensation between criteria but requires precise
weights for each criterion. As argued in Sec. , the need to define pre-
cise weights may mismatch an often vague intuition about the relative
importance of the criteria. Therefore, some methods extend Additive
Weighting by including uncertainties regarding weights, e.g., based on
multidimensional integrals [35] and random changes of weights [9].
While these methods are related to our goals, they are mathematical
approaches to MCDM and do not address human-factors regarding
transparent presentation (R6) and effective solution comparison (R7).

In visualization, several approaches address the representation of a
discrete set of Pareto-optimal solutions, known as the Pareto Frontier.
Korhonen and Wallenius [19] note that visualizing the Pareto Frontier
for more than three criteria is difficult. Common approaches include
scatter plot matrices of bi-objective slices [21] and extensions to par-
allel coordinates [2], which are the prevalent technique for visualizing
Pareto Frontiers [3]. More recently, Chen et al. [12] propose a mod-
ification of self-organizing maps where anchor points correspond to
criteria. While this creates a comprehensible overview of the Pareto
Frontier, it introduces projection errors when more than three crite-
ria are involved. In general, visualizing the Pareto Frontier implic-
itly facilitates MCDM by representing trade-offs, but does not provide
explicit suggestions, e.g., by ranking the solutions (R6). Therefore,
reaching a decision may still be hard for a large number of Pareto-
optimal solutions [24] and requires additional strategies.

A recent study of 21 visualization systems [38] found that Lexico-
graphic and Elimination by Aspects were by far the most commonly
supported decision making strategies [27]. Vismon [6], for example,
supports decision making in fisheries. The user can eliminate regions
of the decision space by constraining on indicators which represent
aggregations of complex simulation outputs. Only a few visualiza-
tion tools support Additive Weighting as decision making strategy.
ParaGlide [5] employs weighting by investigating a distance metric
rather than by adjusting the weights directly. More related to our goals,
ValueCharts [10] shows a ranking of solutions by weighting multi-
ple criteria. Users may perform a sensitivity analysis of the ranks by
changing the weights interactively. Conceptually similar, LineUp [16]
employs Additive Weighting to let the user control the creation and
comparison of rankings. The approach has quickly gained popular-
ity, e.g., for ranking documents [14] and light designs [34]. However,
the focus of LineUp is on the inspection of rankings in their entirety,
not on the efficient identification of a small set of decision-relevant
solutions (R5). Moreover, all described visualization techniques are
limited to a point-wise exploration of weight spaces. They neither
provide a visualization of local weight-related sensitivities (R2, with
the exception of ValueCharts [10]), nor a global analysis of the weight
space. The goal of our work is thus to bridge the gap between global
exploration strategies for parameter spaces in other contexts [33] and
the task of weight-based MCDM.

4 SENSITIVITY-AWARE WEIGHT SPACE EXPLORATION

This section presents WeightLifter, a novel technique to weight space
analysis in the context of MCDM (see Fig. 1). WeightLifter ad-
dresses the interactive visualization of the weight space itself for nav-
igation (R1, Sec. 4.2 and 4.3), weight-related sensitivity analysis (R2,
Sec. 4.4), global solution characterization (R3, Sec. 4.5), and weight-

Fig. 1: WeightLifter for an MCDM problem of six criteria. Two-way
trade-offs show the rank sensitivities (a) and the global rank distribu-
tions (b) of the top-ranking solution for the current weighting (c) and
support defining constraints on the weights (d). A barycentric triangle
(e) displays three-way trade-offs.

related filtering (R4, Sec. 4.6). WeightLifter is conceptually indepen-
dent of any surrounding system or other linked views. For addressing
the other requirements of MCDM problems, however, WeightLifter
is suitable and intended to be used in conjunction with other views
(Sec. 5) in order to enable a holistic MCDM workflow (Sec. 6).

4.1 Problem Formalization
Discrete MCDM can be formalized as choosing from a set of m
possible solutions {S1, . . . ,Sm} on the basis of n different criteria
{C1, . . . ,Cn}. To support criteria of heterogeneous types and scales
(R8), each criterion C j has an associated cost function f j that maps
the criterion values of the solutions to the interval [0,∞). The cost
functions thus express the cost in terms of dissatisfaction incurred by
values of the criteria. A cost of zero indicates perfect satisfaction.
Cost functions f j with an increasing gradient can be used for numer-
ical criteria that should be minimized (i.e., larger values cause larger
dissatisfaction), while decreasing f j express a desired maximization
of C j. In many cases, cost functions have a simple (e.g., linear) struc-
ture. A simple cost function for, e.g., Mileage assigns the value of the
car with minimal Mileage to a cost of zero and linearly interpolates
to assign the maximal Mileage to a cost of one. All examples in this
paper apply corresponding linear cost functions for all criteria.

Consistent with Additive Weighting [40], the cost values of the cri-
teria are weighted by a vector w, referred to as current weighting, and
summed up to attain an overall cost v(Si,w) per solution Si.

v(Si,w) =
n

∑
j=1

f j(Si)w j

Weights are non-negative and normalized. The set of all possible
combinations of weights is called weight space W and corresponds to
an (n− 1)-simplex in geometry, i.e., a line for two criteria, a triangle
for three (Fig. 2a, c), and a tetrahedron for four criteria (Fig. 2b).

W = {w ∈ Rn : w j ≥ 0,
n

∑
j=1

w j = 1}

We call the solution with the minimal overall cost for the current
weighting w current solution. The current solution may change with
respect to changes of w. WeightLifter analyzes the effect of changes
to w on changes of the current solution.

Some MCDM problems benefit from inspecting more than the top-
ranking solution, especially when multiple solutions have similar over-
all costs. E.g., cars ranking high for large regions of W may be inter-
esting even if they never rank first. For considering these potentially
interesting alternatives, we denote a user-defined number of additional
ranks as rank context, e.g. the second and third-ranking car. As for the
current solution, the rank context may change on variations of w.

4.2 Navigation of Two-way Trade-offs
As a starting point, consider a decision involving only two criteria,
e.g., Price and Mileage of a car. In this case, a simple slider intuitively
represents all possible trade-offs between these two criteria.

WeightLifter uses this familiar slider metaphor as a basis for vi-
sualizing trade-offs also for MCDM problems involving more than



Fig. 2: Two-way trade-offs within the sketched weight space and the corresponding sliders of WeightLifter. (a) one criterion and the remaining
two criteria, (b) two groupings of criteria, and (c) two criteria (with w1 held constant at 25%). The blue dot indicates the current weighting.

two criteria. As inspired by HyperSlice [39], the general idea is to
break down the multidimensional MCDM problem to a set of coordi-
nated visual representations of low-dimensional trade-offs (Fig. 1). In
particular, we use sliders to represent two-way trade-offs, i.e., trade-
offs between two disjoint sets of criteria. Common cases of two-way
trade-offs include trade-offs between two criteria (e.g., Price versus
Mileage), between one criterion and all others (e.g., Price versus the
combination of all other criteria), and between groups of related crite-
ria (e.g., the cost-related criteria Price and Tax versus the wear-related
criteria Age and Mileage).

Each position within a slider corresponds to a relative weighting of
the criteria at its ends. The position of the current weighting is shown
by a blue line crossing the sliders (see Fig. 1c). For example, a blue
line crossing the center of the slider indicates that the sum of the cri-
teria weights is equal for both ends. Dragging this line towards one
end increases the current weights for the criteria at this end by the
same amount by which the weights at the opposite end are reduced.
The proportion of weights between the criteria at the same end is pre-
served. Furthermore, the weights of non-involved criteria are not af-
fected. Each slider could be understood as representing a straight line
through the weight space passing through the current weighting.

Fig. 2 illustrates particular sliders for three exemplary MCDM
problems. Fig. 2a and Fig. 2c show cases with three criteria while
Fig. 2b shows a case with four criteria. Each sub-figure sketches the
entire weight space of the corresponding MCDM problem, and indi-
cates one possible two-way trade-off in this space as well as its visual
slider representation in WeightLifter. The slider in Fig. 2a has crite-
rion 1 (red) at the top end, and the combination of criterion 2 (yellow)
and criterion 3 (green) at the bottom. Dragging the blue line towards
criterion 1 increases its current weight by reducing the weights of cri-
teria 2 and 3, which preserve their proportion to each other. The slider
in Fig. 2b has two criteria at either end. In both Fig. 2a and b, the
sliders involve all criteria of the respective MCDM problems and thus
represent 100% weight. In Fig. 2c, the slider represents the trade-off
between criteria 2 and 3, but not criterion 1. In this case, dragging the
blue line does not affect the weight of criterion 1. We call the sum of
all weights represented by a slider its Overall Trade-off Weight.

Regarding the visual encoding, each slider shows the proportion
of weights between the assigned criteria at either end as horizontal
stacked bars. We employ hue to discriminate the criteria, which has
proven a suitable visual variable for this purpose in prior work [16]. As
illustrated in Fig. 2c, we also indicate sliders where the Overall Trade-
off Weight is less than 100%. In this case, the length of a thick white
bar above the slider indicates the Overall Trade-off Weight while thin-
ner colored bars show weights that are not affected by that slider. This
representation is important as it conveys the overall impact of sliders
on the current weighting. We also experimented with encoding the
Overall Trade-off Weight as the height or width of sliders, but found
that these alternatives severely reduced the interpretability of sliders.

As the default configuration, WeightLifter starts with one vertical
slider per criterion to represent the trade-off between that criterion and
the combination of all other criteria. In Fig. 1, for example, the left-
most slider represents the trade-off of Age vs. the remaining five cri-
teria Doors, Guarantee Period, Mileage, Price, and Tax. The second
slider represents Doors vs. all other five criteria, etc. As an advantage

of such one-vs.-all-other sliders, the position of the current weight-
ing directly represents the weight of the single criterion. For example,
Price has the highest weight of all criteria in Fig. 1. This configuration
of all sliders could be understood as a mixing desk metaphor.

The number of potentially interesting trade-offs increases rapidly
with the dimensionality of the MCDM problem. The user can add
sliders on demand which are appended to the right (before the trian-
gle, discussed in Sec. 4.3). For example, the user could be interested
in trade-offs between particular pairs of criteria, as shown in Fig. 2c.
New sliders can be configured to represent any two-way trade-off by
dragging criteria from other sliders or the color legend to areas at the
top or bottom of the slider. This way, the user may define combina-
tions of criteria at the end points of sliders in an ad-hoc fashion. In
general, the user can add criteria to or remove criteria from any slider
any time, and may also remove sliders entirely.

Sliders showing the same set of criteria are considered to seman-
tically belong together. In particular, this applies to all sliders of the
default configuration, as each of them comprises all criteria. Related
sliders that are placed adjacent to each other are drawn closer together
and use a continuous blue line to display the current weighting. Fig. 6
shows an example with five connected and one disconnected slider.

4.3 Navigation of Three-way Trade-offs
It is often helpful to explicitly represent all weight combinations be-
tween three sets of criteria. Even for MCDM problems involving more
than three criteria, three-way trade-offs may already cover the most
important degrees of freedom, e.g., if some criteria are more important
than others or if criteria can be grouped into semantically related sets.
For this reason, WeightLifter optionally represents three-way trade-
offs using barycentric coordinates in an equilateral triangle. Fig. 1e,
for example, illustrates the three-way trade-off between the car Price,
Mileage, and Age, which Jane considers as her most important criteria.

As far as possible, the visual encoding and handling of three-way
trade-offs is consistent with those of two-way trade-offs. Specifically,
at each vertex, the set of assigned criteria is represented by stacked
bars which also supports drag and drop of criteria for configuration.
Moreover, the Overall Trade-off Weight is shown as an additional
stacked bar on top of the triangle if it is less than 100%.

As a potential problem, barycentric coordinates are far less well-
known than sliders. To facilitate their understanding, we decided to
visually encode the current weighting as the intersection of three lines
(Fig. 1e). Each line extends from the position of the current weighting
to the opposite side of its corresponding vertex, as the length of this
part directly represents the relative weight of that vertex. Hue indicates
the corresponding criteria of these lines. Users can change the current
weighting by dragging the intersection point within the triangle.

4.4 Visualization of Rank Sensitivities
A key goal of WeightLifter is to convey how changes of the current
weighting impact the decision (R2). For this reason, we highlight re-
gions around the current weighting in blue in which the current solu-
tion does not change (see Fig. 3). In Fig. 1a, for example, increasing
the weight of the criterion Age in the leftmost slider does not change
which car model is considered the best choice. However, slightly in-
creasing the weight of Price in the sixth slider or the triangle results in
a switch of the optimal choice. In general, the distance of the current



Fig. 3: The rank sensitivity for the current solution in (a) a three-way
trade-off (b) a two-way trade-off.

Fig. 4: Illustration of the computation and visualization of a global
rank distribution along binned weights of C1.

weighting from the borders of the blue region represents the stabil-
ity of the current solution regarding changes of weights. Situations
in which the current weighting is far away from all borders indicate
robust decisions while narrow bands reveal that the decision is highly
sensitive to changes of weights.

In addition to the blue region around the current weighting, we com-
pute all boundaries where the current solution switches and indicate
them as black lines within sliders and within the triangle (see Fig. 3).
These boundaries convey a segmentation across each trade-off with
respect to the current weighting. For example, the boundaries reveal
that the triangle in Fig. 3a can be segmented into seven regions, i.e.,
the blue region around the current solution plus six others. The trade-
off along the slider in Fig. 3b intersects four regions. Each of these
regions corresponds to a particular solution which is the best choice
for any weighting inside the region. Each region could thus be seen
as a visual representation of a solution in terms of the most favorable
weights and may, for example, serve as a visual element for selecting
that solution in weight space by clicking on it.

The number, size, and shape of the regions inside a particular slider
or triangle change when the user modifies the current weighting out-
side that element. The reason for this is that each slider and the tri-
angle represent a particular slice across the weight space that moves
with changes of the current weighting. In Fig. 3a, the intersection
point could be dragged rightwards to increase the weight of green at
the cost of yellow. This moves the trade-off represented by the slider
in Fig. 3b towards the right edge of the triangle, where it intersects
only two regions.

While the segmentation is based on switches of the best solution,
sliders and the triangle also highlight regions in light blue where the
current solution is still within the rank context, i.e., it is ranking high,
but not first. The extents of this rank context convey how fast the
current solution drops out of decision-relevant ranks. This provides
additional information about the stability of a decision, which may
increase the effectiveness of sliders [15]. In the triangle in Fig. 1,
for example, the rank context is narrower for increases of the weight
of car Price (turquoise) than for significant decreases. We note that
the boundaries of the rank context generally do not align with any
boundaries between first-ranking solutions.

4.5 Visualization of Global Rank Distribution
The sensitivity visualization along trade-offs (Sec. 4.4) is insufficient
for a global characterization of solutions (R3). As the main reason,
each two-way or three-way trade-off represents only a small part of the
weight space for problems involving more than three criteria. There-
fore, the number of visible regions in sliders and the triangle is typi-
cally (much) smaller than the overall number of first ranking solutions
within the entire weight space.

In order to support a global characterization of favorable weight
space regions (R3), WeightLifter takes a different approach. We com-
pute a segmentation of the entire weight space by sampling (see Sec. 7
for details). Each segment corresponds to all combinations of weights

Fig. 5: Illustration of two constraints on different two-way trade-offs,
each also implicitly constraining the other trade-off.

for which a particular solution is considered optimal, i.e., has minimal
overall cost. For visualization, the idea is to project the segment of the
current solution along each slider.

Fig. 4 illustrates a schematic example for a MCDM problem of
three criteria. The barycentric triangle thus represents the entire
weight space for this example. Assuming that the blue area corre-
sponds to the segment of the current solution, the distribution of this
segment can be visualized along two-way trade-offs as shown by the
vertical histogram to the right. Each histogram bin corresponds to
a particular part of the weight space. In Fig. 4, this sub-division is
defined in equal steps along the trade-off between the red criterion
and the combination of the green and yellow criteria. For example,
the bottom-most bin in Fig. 4 comprises all combinations of weights,
where the weight for the red criterion C1 is very small. In general,
each two-way trade-off can be used to define a sub-division of the
weight space. WeightLifter displays corresponding histograms next
to and aligned with each slider (see Fig. 1b). While Fig. 4 shows a
rather coarse subdivision for illustration, Fig. 1 uses more fine-grained
bins. We do not show information regarding global distribution for
three-way trade-offs in order to avoid overloading the visualization.

Each blue histogram bar represents the proportion of the weight
space of the corresponding bin where the current solution ranks first,
i.e., the relative frequency within the bin. In particular, a full bar indi-
cates that the current solution will not change regardless of the weights
orthogonal to that trade-off. In Fig. 4, for example, the fifth bar from
the bottom shows that the current solution will stay top-ranking within
that bin for any proportion of weights between the yellow and the
green criteria. Conversely, white bins indicate that the solution does
not rank first for any weighting inside the corresponding intervals.

The vertical histograms support a global assessment of the distribu-
tion of the favorable region for a given solution in weight space. In ad-
dition to the distribution of the first rank, we optionally also show the
distribution of the rank context in weight space, as illustrated in Fig. 1.
In this figure, for example, the histogram for the second slider from
the left shows that the current solution only ranks first if the weight
for the criterion Doors (yellow) is within a narrow range of very small
weights. The rank context shows that this solution does not even rank
second or third for high weights for Doors.

4.6 Constraining the Weight Space
While the intuition of decision makers about preferences is often
vague, it is rarely the case that they have no intuition at all. In terms of
the weight space, not all combinations of weights correspond to mean-
ingful preferences. Assuming that Jane is looking for a cheap car, for
example, she will not be interested in cars that only rank first if the
weight for Price is very low.

In order to enable filtering of decision-irrelevant weight combina-
tions (R4), WeightLifter supports specifying constraints in the weight
space. Upper or lower boundaries along two-way trade-offs can be
interactively defined by dragging small triangles from the bottom or
the top of the slider. Fig. 5 shows a schematic sketch of two types of
constraints for a problem involving three criteria. On the left slider,
the constraint excludes weightings where w1 is smaller than 10%, or



equivalently, where the sum of w2 and w3 exceed 90%. It can be un-
derstood as an absolute lower limit on w1. This type of absolute con-
straint is defined in sliders which involve all criteria. In the triangle,
its boundary is parallel to the bottom edge.

The constraint on the right slider in Fig. 5 defines that w3 is greater
or equal to w1. It could be understood as enforcing the proportion
between subsets of criteria. This type of proportional constraint is
defined in sliders which do not involve all criteria. In our example, it
is independent of w2 and its boundary extends through the vertex of C2
in the weight space. In the guiding example, proportional constraints
could help to express that the weight for Price should be larger than
the weight for Age. A specific application of proportional constraints
is ordering the criteria by relevance [36].

In general, WeightLifter supports constraints between criteria sub-
sets A and B that can be expressed with respect to a percentage c, as:

∑
An
i=A1

wi

∑
An
i=A1

wi +∑
Bn
i=B1

wi
◦ c

◦ ∈ {≥,≤,=} A,B⊂ {C1, . . . ,Cn} A∩B =∅ 0%≤ c≤ 100%
In case of absolute constraints, the denominator becomes 1 (i.e., 100%
weight), as shown in Fig. 5. According to this definition, constraints
represent regions of the weight space with linear boundaries. For
visual representation, sliders and the triangle indicate parts inside
constrained weight space regions as hatched areas (see Fig. 5 for a
schematic sketch and Fig. 1d for an illustration of the real system).
We visually distinguish between regions that are explicitly excluded
by constraints defined on that slider (dark gray hatching), and regions
that are implicitly impossible due to constraints along other trade-offs
(light gray hatching). For example, both sliders in Fig. 5 represent
straight lines in the triangle that intersect both constraints, i.e., the
constraint specified on the own slider as well as the one specified on
the other slider, respectively. Using this geometric interpretation, it
becomes clear that the size of the constrained areas along sliders de-
pends very much on the position of the trade-off within the weight
space. For example, increasing w3 (green) at the cost of w2 (yellow)
in Fig. 5 would shift both trade-off lines to the right within the triangle
and thus reduce the size of the hatched areas on both sliders.

As a special type of constraint, the user can fix the current weight-
ing on any slider by a dedicated lock button. In Fig. 6, for example, the
weight for Doors in the leftmost slider is fixed to a low value, as Jane,
at this point only investigating cars with 4 or 5 Doors, does not con-
sider this criterion as decision-relevant anymore. Fixing weights can
also be helpful if particular weights are externally given. Moreover,
this effectively reduces the dimensionality of the weight space, which
can be reasonable in case of a large number of criteria, e.g., for miti-
gating performance problems when sampling high-dimensional spaces
(Sec. 7). In order to avoid that the navigable weight space is reduced to
a single point for every trade-off, a fixed criterion is removed from the
other trade-offs. The reduced overall trade-off weights are indicated
on top of each trade-off (see Fig. 6).

In addition to their direct visual representation in sliders and the
triangle, constraints affect the computation of all global characteristics
of the weight space. For example, global rank distribution histograms,
as described in Sec. 4.5, refer to the constrained rather than the entire
weight space. In general, constraints enable to express a particular
degree of fuzzyness regarding the user preferences, which may range
from considering the entire weight space to looking at a single point.

5 SYSTEM INTEGRATION

As reflected by the requirements (Sec. 2), MCDM is a multi-faceted
task. While WeightLifter addresses the requirements that concern the
weight space (R1, R2, R3, R4, R7, R8), decision makers often pre-
filter solutions (R9) and need to inspect and compare a small set of
decision-relevant solutions in detail (R5, R6, and R7 regarding com-
parisons beyond weight-related aspects). To address all requirements,
this section suggests integrating WeightLifter with other linked views
on a conceptual level (see Fig. 6). Sec. 6 proposes a MCDM work-
flow that concretizes the interplay between the views. We found the
subsequent views relevant in many contexts:

Ranked Solution Details: To provide precise values and to explain
the effect of the current weighting on the ranking of the solutions
(R6), our system offers a multi-column ranking visualization inspired
by LineUp [16]. Textual columns show solution attributes, e.g., the
name of the car model in Fig. 6a. An additional column shows the
weighted sum of costs as a stacked bar chart (Fig. 6b) where each
segment corresponds to the cost of one criterion while the overall bar
length corresponds to the sum of all weighted costs. This encoding
explicitly conveys for which criteria each solution deviates from the
optimum, i.e., the smaller the bar, the better. Moreover, a column
called rank frequency (Fig. 6c) shows the percentage of all possible
weight combinations for which the particular solution ranks first (dark
gray) or achieves ranks within the rank context (light gray). This in-
formation can be interpreted as a notion of importance. The solutions
can be sorted by any column. Changes of the current weighting trigger
an immediate re-sorting of the list. Our implementation also displays
the current weighting as a stacked percentage plot above the ranked ta-
ble (Fig. 6d), which indicates the cost function per criterion as a small
icon that expands to a larger graph when being hovered by the mouse.
Criteria Value View: Decision makers often need to see the raw cri-
teria values. We visualize this data in parallel coordinates which is a
prevalent technique for visualizing MCDM problems [3]. All axes are
scaled such that the current solution is a centric horizontal reference
line [2].

Additional views may be necessary to show application-specific
characteristics of solutions. Sec. 8.1 illustrates an example of adding
a scatter plot for showing meta-information about the solutions.

For consistent integration, all views are linked in multiple ways:
Color coding and ordering of criteria: Criteria are consistently dis-
criminated by hue for all views. The order of the criteria is consistent
as well, e.g., for sliders in WeightLifter and parallel coordinate axes.
Current solution: All views highlight the current solution in blue and
update on changes of the current solution.
Comparison solution: Hovering a solution in any view temporarily
highlights it in purple in all views (see Fig. 6). This facilitates a pair-
wise comparison of solutions. In WeightLifter, each two-way trade-off
adds a temporary slider to indicate the rank-sensitivity of the com-
parison solution, and extends the vertical histograms by showing the
global rank distribution also for the comparison solution.
Set of decision-relevant solutions: In our system, a solution is con-
sidered decision-relevant if it is ranking first or within the rank-context
for any combination of weights inside the constrained weight space
and if it is not excluded by external filters. Such filters may be defined
by interval brushes in the Criteria Value View (Fig. 6e) or by exclud-
ing individual solutions in the Ranked Solution Details. Filters thus
support incorporating decision making strategies such as Elimination
by Aspects [38] (R9). Non-decision-relevant solutions are shown as
light gray context in the Criteria Value View. The Ranked Solution
Details lists only decision-relevant solutions (R5) and summarizes the
weighted sum of costs for all others as a histogram in a separate row
at the bottom of the list (Fig. 6f).

6 WEIGHTSPACE-AWARE DECISION MAKING WORKFLOW

The process of MCDM involves multiple steps. In this section, we pro-
pose a workflow that coarsely distinguishes between an initial setup of
the MCDM problem by constraining the solutions based on a-priori
knowledge (Sec. 6.1), and an iterative exploration of the solutions for
reducing the set of candidates (Sec. 6.2). The workflow builds upon
the integration of WeightLifter with other views (Sec. 5) and is illus-
trated by our guiding car purchase example (see Fig. 6).

6.1 Setting Initial Constraints
A typical first step in decision making is to reduce the set of all solu-
tions by setting filters on the criteria themselves (R9) and by narrowing
the weight space to reflect realistic preferences (R4).
Constraining the Criteria: Jane starts by limiting the solutions to
family suitable cars that have 4 or 5 Doors by brushing in the parallel



Fig. 6: Integration of WeightLifter with other views. The Ranked Solution Details involves multiple columns (a, b, c) and the current weighting
(d) to list a reduced set of decision-relevant solutions . Solutions can be filtered, e.g., by brushes in a linked parallel coordinate plot (e). Excluded
solutions are shown as context (f). All views highlight the current solution (blue) and a comparison solution (purple).

coordinate plot. Due to a limited budget, she likewise puts a hard limit
of 25,000 EUR on Price. These filters reduce the set to 808 cars.
Constraining the Weight Space: Having restricted the number of
Doors, Jane does not care much if her car has 4 or 5 Doors and fixes the
corresponding weight to 5%.Despite the limit of 25,000 EUR, how-
ever, Jane still cares much about Price and reflects this by constraining
the weight of Price to at least 50%. Jane also sets the rank context to
include second and third-ranking cars. After these steps, 31 cars are
considered decision-relevant.

6.2 Exploring and Reducing Candidate Solutions

Ordering by Global Rank Frequencies: In order to focus on the
most probable candidates, Jane orders all cars in the Ranked Solution
Details by their global rank frequencies (Fig. 6c). Interestingly, the
car in the top row is much less frequently the first-ranking choice than
the car in the second row, but is most often among the top-three cars
and also has the smallest overall costs for the current weighting. While
the seven cars with highest rank frequencies have similar overall costs,
these costs originate from different criteria (Fig. 6b). The four cars in
the top four rows are cheap yet old whereas the next three models incur
their costs from their high Price.
Pair-wise Comparison of Solutions: Fig. 6 illustrates the compari-
son of the top-ranking two cars, i.e., the current solution (blue) and
the comparison solution (purple) when Jane hovers the second row of
the Ranked Solution Details. The local sensitivities and global rank
distributions in WeightLifter make Jane aware of high sensitivities of
the decision on even slight variations of her preferences. For example,
the first rank of the current solution is highly sensitive to any variation
in weights for Age (red) or Mileage (orange) as well as for increases
of weight on Guarantee Period (green) or Tax (brown). The local sen-
sitivity slider for Price shows that the two solutions will eventually
switch their ranks when further increasing the weight on Price. The
global rank distribution histograms reveal that the comparison solu-
tion is globally the best choice for very high weights on Price and is
frequently top-ranking for very low weights on Mileage.

However, inspecting the underlying criteria values for Price and
Mileage in the parallel coordinates shows that the difference in Price
is very small while the difference in Mileage is more significant. Jane
considers the significantly lower Mileage more important than the
slightly lower Price and thus decides to manually reject the second-
ranking comparison solution because the current solution seems the
better option to her. After similar pair-wise comparisons, Jane ulti-
mately narrows the set of candidates to three car models for which she
arranges a test-drive.

7 IMPLEMENTATION

The WeightLifter technique has been implemented as part of Visplore,
a system for visual exploration of multivariate datasets. Visplore is im-
plemented in C++ and uses OpenGL for rendering. A multi-threading
architecture [28] is used to maintain interactivity during computations.

For computing global rank frequencies and global rank distribu-
tions, we use an MCMC sampling of the weight space using the
method of Tervonen et al. [36]. We chose this method because it
explicitly considers user-defined constraints and slices of the weight
space. This method efficiently samples within the constrained weight
space rather than rejecting samples outside the constraints, which can
be inefficient. For problems of up to six criteria, we compute the num-
ber of samples that would be needed for a regular grid with an Eu-
clidean distance of 3% weight between samples. For an unconstrained
weight space of five criteria, this corresponds to 66,045 samples which
take 1.2 seconds to compute on a 3.2 GHz Haswell System. For six cri-
teria, the number of samples increases to 501,942 which require 22.1
seconds. For even higher dimensional problems, we limit the number
of samples to one million. For ten criteria, this typically still obtains
an acceptable precision for global rank frequencies, but may introduce
sampling artifacts in the form of global rank distribution spikes.

For sampling along two- and three-way trade-offs, we use an incre-
mental sampling strategy to enable a more fine-grained sampling than
for the global sampling. Starting from the extrema of the trade-off,
we compare the rankings of the first and context ranks. If they differ,
we split at the half-way point of each two-way trade-off. This recur-
sive splitting continues until we achieve pixel-density sampling or the
ranks are identical. This strategy exploits the convexity of the weight
space. Any constraints on trade-offs define linear boundaries in the
weight space (see Fig. 5) and preserve this convexity.

8 EVALUATION

To evaluate our approach on multiple levels [26], this section first de-
scribes a usage scenario of WeightLifter to a real-world problem in
car engine design. We then report qualitative feedback collected dur-
ing regular meetings with domain experts in automotive engineering
over two years, including feedback from a one-month deployment and
preliminary feedback from decision makers from other domains.

8.1 Usage Scenario: Powertrain Optimization
The high-level task of this usage scenario is the configuration of an
automatic transmission. In this usage scenario, the parameter space
comprises Engine Speed (abbr. Speed) and Load Signal (abbr. Load).
Speed states the rotations of the crankshaft per minute and Load is the



Fig. 7: A case study for powertrain optimization. A dominating solution (a) turns out as a non-converged simulation run (b). After setting an
initial weighting (c) and weight space constraints (d), multiple parameter regions are revealed to rank first for various weight combinations (e).
High sensitivities to the weights on Pressure and Torque (f) motivate grouping Exhaust Emissions for an examination as three-way trade-off (g).
Reducing samples by importance and parameter space coverage, the engineer creates a representative set for future optimization (h).

percentage at which the gas pedal is pressed. An external tool provides
simulation results for 400 sample positions in this parameter space.
The optimization comprises five criteria: (1) maximize Torque, (2)
minimize Pressure at the intake, and minimize the Exhaust Emissions
for (3) CO, (4) CO2, and (5) NO. The first goal of this scenario is
to identify reasonable parameter regions which optimize the criteria.
The second goal is to identify the weightings corresponding to a small
set of representative solutions in these regions as input to an external
gradient-based optimization.

For this application, an additional scatter plot shows Speed vs Load
for all simulation runs. A brown background shows an interpolation
of the overall cost v (defined in Sec. 4.1) as a function of Speed and
Load for the current weighting. This scatter plot was part of the ver-
sion evaluated by domain experts (see Sec. 8.2), who required this
representation of the simulation parameter space to establish a mental
model of the specific application problem.

After data import and problem setup, the Rank Frequency column
reveals that a single solution ranks first for 99% of the weight space
(Fig. 7a). However, the scatter plot reveals the point to be an outlier
(Fig. 7b) and the parallel coordinates show that its Exhaust Emissions
are precisely zero. The engineer considers it as a non-converged sim-
ulation run and excludes it manually.

The next step is to narrow down the search. Reflecting approx-
imate intuition, the engineer defines initial weights as 40% Torque,
30% Pressure, and 10% for each of the emission rates (Fig. 7c). She
also filters the weight space to ensure a minimum of 10% weight for
Torque and Pressure as well as a minimum of 5% for each of the emis-
sions (Fig. 7d). The rank context is set to include 2nd and 3rd rank-
ing solutions, because they may be relevant for identifying interesting
parameter space regions. In fact, the top-ranking solutions cover mul-
tiple parameter regions, mostly those with low Speed and almost zero
Load (Fig. 7e). The current solution is also located at the edge of the

sampled parameter space.

The two-way trade-offs indicate high sensitivities of the current so-
lution for lowering the weight of Pressure and increasing the weight
of Torque (Fig. 7f). The engineer hovers solutions in the ranked list to
assess the global distribution of ranks for the five criteria. This reveals
that most solutions are globally more sensitive to changes in weights
of Torque and Pressure while the sensitivities of the three Exhaust
Emissions are lower and similar to each other.

Based on this information, the engineer wants to inspect the three-
way trade-off between Torque, Pressure, and the group of Exhaust
Emissions. Assigning the criteria to the vertices of the triangle ac-
cordingly provides a concise overview of the weight space (Fig. 7g).
Hovering segments in the three-way trade-off efficiently relates weight
regions to locations in the parameter space, and vice versa. An inter-
esting finding, for example, is that slightly increasing the weight of
Torque causes a sample in the inner part of the parameter space to
rank first, as highlighted in purple. The ranked list and the parallel co-
ordinates show that the compared solution significantly improves on
Torque while being worse for all other criteria. Information like this
guides the definition of additional simulation runs in corresponding
parts of the parameter space as the first goal of this usage scenario.

For the second goal, the engineer orders the solutions in the list
by rank frequency. She selects eight solutions based on their rank
frequencies while ensuring that all top-ranking parts of the parameter
space are represented by at least one sample. Filtering on this set up-
dates the segmentation of the weight space (Fig. 7h). For each solution
in this set, WeightLifter enables to identify a central weighting that is
as far away as possible from any weight boundaries. The engineer
confidently uses these weightings as input parameters of a subsequent
automatized optimization.



8.2 Qualitative Feedback

Longitudinal feedback: Over two years, six domain experts in auto-
motive engineering from a long-term partner company were involved
in the design process of WeightLifter. Every two months, they pro-
vided feedback in joint workshops of approximately two hours each
based on paper sketches and interactive prototypes.

A first result was a refined understanding of MCDM-related prob-
lems in this application context. It is a core task of the engineers
to identify regions in a parameter space that simultaneously optimize
multiple criteria. Numerical optimization tools are frequently used but
require the specification of weights for the criteria. Previously, weights
were guessed, which reduced confidence in the automatic optimization
results. More recently, the domain experts started with a coarse sam-
pling of the parameter space (see Sec. 8.1). While this helps to under-
stand the sensitivities of the individual criteria, finding suitable weight
factors was supported only indirectly and still incurred much effort.
The engineers thus envisioned a tool for relating criteria weightings to
parameter space regions.

Early in the process, we showed LineUp [16] to the engineers.
While their feedback was positive overall, they wanted to make the
dissatisfaction with criteria more explicit and advocated cost functions
without an inherent upper bound. More importantly, the analysis of
weight variations was considered inefficient.

Despite this input, however, it turned out that most engineers were
initially not used to thinking in terms of a “weight space.” In their
existing workflows, they solely relied on a point-wise exploration of
weight spaces. The engineers agreed that an analysis of weight re-
gions is very helpful. Still, it took them approx. three workshops and
repeated explanation in the context of specific domain problems to de-
velop a mental model of a weight space. While two-way trade-offs
were considered simple to understand, barycentric coordinates were
new to them and required time for familiarization. In this process,
the linking with familiar views such as the parallel coordinates and
the scatter plot of the simulation parameter space was crucial. Many
comments during this phase referred to requests for inspecting precise
values (e.g., for weights, parameters) and usability issues in previous
prototypes, which were addressed for later versions.
Deployment: After incorporating the input, we deployed the system
to four experts for final evaluation. After one month, we collected their
feedback in separate interviews using the rose-bud-thorn method [22].
The engineers confirmed that WeightLifter significantly improves their
intuition about weight spaces and it enables them to consider weight
space regions simultaneously when identifying interesting parts of the
parameter space. It also supports a systematic identification of weight-
ings for subsequent optimization. Both aspects are considered signif-
icant gains of efficiency. Moreover, the new possibilities encouraged
the engineers to include additional criteria in their decisions, which
was considered a significant qualitative gain.

Most parts of WeightLifter were well-understood, i.e., the naviga-
tion in weight space based on trade-offs, and the representation of local
weight-related sensitivities. Constraining the weight space was called
the usual case, e.g., when optimizing for particular classes of cars. The
engineers also emphasized that considering multiple top ranks (i.e., the
rank context) is necessary, as solutions often have similar overall costs.
The feedback to the global rank distribution was mixed. Two engi-
neers were still unsure about their interpretation, while the other two
considered them highly useful for identifying relevant subsets of crite-
ria. As future improvements, the engineers wished to use WeightLifter
to specify new simulation runs and to include quantitative indicators
of weight-related sensitivities.
Other domains: Besides automotive engineering, we also collected
preliminary qualitative feedback from decision makers in health pol-
icy making, energy transmission operation, and aviation infrastructure
planning. We provided individual WeightLifter workshops of approx-
imately one hour based on the guiding example. They all acknowl-
edged the relevance of MCDM by Additive Weighting and confirmed
that setting weights is a common problem. In energy operation, for
example, the decision maker suggested to use WeightLifter for model

selection in data mining. He judged the three-way trade-off as a very
suitable representation for deciding between model accuracy, model
complexity, and training effort. In health policy making, it must be de-
cided, e.g., whether the costs of certain medical treatments should be
covered by the public health insurance. Such decisions involve stake-
holders with conflicting priorities and are based on indicators about
the population that are often afflicted by uncertainties. In this case,
WeightLifter was found suitable to partly compensate for data uncer-
tainty by showing weight-related sensitivities. Overall, all three de-
cision makers considered WeightLifter as helpful for communicating
decisions and mediating between stakeholders by making decisions
more transparent.

9 DISCUSSION AND FUTURE WORK

WeightLifter makes Additive Weighting more easily accessible as a
MCDM strategy. Additive Weighting is consistent and compensatory,
i.e., a high value in one criterion can make up for a low value in an-
other criterion. However, Additive Weighting demands much mental
processing from the user to determine the trade-off weights [27]. The
visualization of the weight space allows the decision maker to under-
stand the effects of weights and reduces the mental overhead.

Concerning scalability, we found that WeightLifter is reasonably
applicable to MCDM problems of up to 10 criteria. In addition to
the number of discriminable colors [41] and available screen space,
an important factor limiting the number of criteria is the challenge to
globally sample a high-dimensional weight space in sufficient density
(Sec. 7). For higher-dimensional MCDM problems, a prior analysis
may indicate correlations between criteria and thus allow us to pre-
filter criteria. Alternatively, the dimensionality may also be reduced
by fixing the weights for particular criteria. Focusing only on high-
ranking solutions usually reduces the decision candidates to a man-
ageable set even in the case of thousands of potential solutions.

While WeightLifter focuses on the effect of weights on the solution,
the cost functions also have an important impact. As for the weights,
slight changes to cost functions may affect the ranking. We thus plan
to extend the global analysis to incorporate variations in cost functions.

In the future, WeightLifter could track the interaction history to re-
call and communicate the decision making process. Furthermore, we
plan to conduct a controlled user study for quantitatively comparing
multiple MCDM systems (e.g., WeightLifter, LineUp [16], and Pareto
Frontier visualizations) regarding particular decision-making tasks.

10 CONCLUSION

This paper introduced WeightLifter, a visualization technique for in-
creasing the efficiency and transparency of Multi-Criteria Decision
Making based on Additive Weighting. An automated analysis of
weight spaces efficiently reduces an initial set of solutions to poten-
tial decision candidates. The dynamic definition of two- and three-
way trade-offs enables a flexible analysis in terms of decision-relevant
conflicts between criteria. Along each trade-off, a visual representa-
tion of the weight space conveys the stability of decisions to varying
or uncertain preferences and characterizes solutions in terms of favor-
able preferences. We illustrated how WeightLifter can be linked to
other views to supports a dynamic ranking and comparison of solu-
tions and we described a workflow for weight space-aware MCDM.
WeightLifter received very positive feedback from users working in
automotive engineering and is widely applicable to decision making
problems in general contexts. We thus believe that WeightLifter can
be beneficial in many application contexts by reducing uncertainty in
the decision making process.
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