
CloudGazer: A Divide-and-Conquer Approach to
Monitoring and Optimizing Cloud-Based Networks

Holger Stitz∗

Johannes Kepler University Linz
Samuel Gratzl†

Johannes Kepler University Linz
Michael Krieger‡

RISC Software GmbH
Marc Streit§

Johannes Kepler University Linz

2013-04-14T 09:26

09:11 09:12 09:13 09:14 09:15 09:16 09:17 09:18 09:19 09:20 09:21 09:22 09:23 09:24 09:25 09:26

10 bins time scale

Physical Perspective

Virtual Perspective

Application Perspective

com

bigmkt1

dc01 mail01 web01 web01a web01b web01c web01d

web01e administrator wss1_0 wss1_1 wss1_2 wss1_3 wss1_4

wss1_5 wss1_6 wss1_7 wss1_8 wss1_9

bigmkt2

dc02 mail02 web02 web02a web02b web02c

web02d web02l wss2_0 wss2_1 wss2_2 wss2_3

wss2_4 wss2_5 wss2_6 wss2_7 wss2_8 wss2_9

bigmkt3

dc03 mail03 web03 web03a web03b web03c

web03d wss3_0 wss3_1 wss3_2 wss3_3 wss3_4

wss3_5 wss3_6 wss3_7 wss3_8 wss3_9

root

f1 rack1 s3big12mail01 f2 rack3 s6 big15 wss1_8

Figure 1: Screenshot of CloudGazer showing the application perspective in the focus view (right) and the virtual and physical perspectives
as interactive thumbnails (left). The user has selected the blocks representing ‘mail01’ and ‘wss1 8’ to inspect their relationship across the
semantic perspectives. By looking at the dynamically created inlay (bottom), it becomes obvious that the virtual machine ‘big15’ has a high
load even though ‘wss1 8’ has only few connections. The user concludes that another application on ‘big15’ must cause the problem.

ABSTRACT

With the rise of virtualization and cloud-based networks of vari-
ous scales and degrees of complexity, new approaches to managing
such infrastructures are required. In these networks, relationships
among components can be of arbitrary cardinality (1:1, 1:n, n:m),
making it challenging for administrators to investigate which com-
ponents influence others. In this paper we present CloudGazer, a
scalable visualization system that allows users to monitor and opti-
mize cloud-based networks effectively to reduce energy consump-
tion and to increase the quality of service. Instead of visualizing
the overall network, we split the graph into semantic perspectives
that provide a much simpler view of the network. CloudGazer is
a multiple coordinated view system that visualizes either static or
live status information about the components of a perspective while
reintroducing lost inter-perspective relationships on demand using
dynamically created inlays. We demonstrate the effectiveness of
CloudGazer in two usage scenarios: The first is based on a real-
world network of our domain partners where static performance
parameters are used to find an optimal design. In the second sce-
nario we use the VAST 2013 Challenge dataset to demonstrate how
the system can be employed with live streaming data.

1 INTRODUCTION

The availability of modern cloud computing technology has led to
a surge in building more dynamic, fast growing, and continually

∗e-mail: holger.stitz@jku.at
†e-mail: samuel.gratzl@jku.at
‡e-mail: michael.krieger@risc-software.at
§e-mail: marc.streit@jku.at

changing systems. Cloud-based networks are built from various
physical components, such as servers and storage devices, that host
applications and provide resources that can be used flexibly for dif-
ferent purposes. To make optimal use of the hardware, applica-
tions run on virtual machines (VMs) that are, in turn, hosted on
servers. However, the assignment between components is neither
exclusive nor static. Multiple application instances can run on the
same VM, and multiple applications of the same type can run on
multiple VMs. Moreover, a physical server can host several VMs.
To optimize the quality of service and minimize energy consump-
tion, these assignments are changed regularly depending on the load
of individual VMs or other circumstances in the network.

The work of cloud data center administrators comprises many
different tasks, ranging from designing the network to active mon-
itoring and optimizing the infrastructure for reduced energy con-
sumption and a high quality of service. State-of-the-art network
monitoring systems are often of limited use for these tasks, as they
provide only an overview of the status of isolated components, such
as CPU load, memory load, and available bandwidth. However, the
crucial knowledge about how components influence each other is
missing. An alternative approach is to present the overall network
infrastructure as a graph. Figure 2 visualizes an example network
in which physical components are shown in blue, virtual machines
(VMs) in green, and applications in red. As can be seen, the graph
can become cluttered quickly—even for small networks.

In cloud-based networks we can differentiate between two ba-
sic types of relationship: (1) direct relationships between compo-
nents of the same type, representing physical connections or logical
groupings of components (e.g., a grouping of VMs or applications
by customer); and (2) mapping relationships, representing the as-
signment of one component to another (a VM running on a server).
In Figure 3a and 3b, direct relationships are indicated by solid lines
and mapping relationships by dashed lines.

Instead of letting users work with the overall graph that mixes

external

root

f1 rack1
s1

s2

s3

rack2

s4

s5

f2

rack3

s6

vms

bigmkt1

big11

big12

big13

big14

big15

bigmkt2

big21

big22

big23

big24

bigmkt3

big31

big32

com

bigmkt1

dc01

mail01

web01

web01a

web01b

web01c

web01d

web01e

administrator

wss1_0

wss1_1

wss1_2

wss1_3

wss1_4

wss1_5

wss1_6

wss1_7

wss1_8

wss1_9

bigmkt2

dc02

mail02

web02

web02a

web02b

web02c

web02d

web02l

wss2_0

wss2_1

wss2_2

wss2_3

wss2_4

wss2_5

wss2_6

wss2_7

wss2_8

wss2_9

bigmkt3

dc03

mail03

web03

web03a

web03b

web03c

web03d

wss3_0

wss3_1

wss3_2

wss3_3

wss3_4

wss3_5

wss3_6

wss3_7 wss3_8

wss3_9

Figure 2: Graph of a cloud-based network with 67 nodes. Blue,
green, and red nodes encode physical components, VMs, and ap-
plications respectively. Solid links denote relationships between
components of the same type, such as logical groupings of VMs and
applications by customer, and dashed links indicate mapping rela-
tionships where one type of component is assigned to a component
of a different type.

both relationship types, we split the network into perspectives ac-
cording to component type: physical, virtual, and application per-
spective, as demonstrated in Figure 3. The resulting perspectives
are much smaller and easier to manage, and also match better the
mental model of the administrators. This subdivision strategy for
coping with the complexity of graphs has already been applied suc-
cessfully in many different domains. The large biological path-
way network, for instance, is subdivided into small semantic sub-
pathways [12].

(a) Overall graph (b) Component-specific perspectives

Figure 3: Division of the network into component-specific per-
spectives. Solid lines represent direct relationships between com-
ponents, while dashed lines indicate mapping relationships. The
graph in (a) is split into the three perspectives shown in (b).

However, subdividing the network comes at the cost of losing
mapping relationships, which are crucial, for instance, to avoiding
side effects during optimization that result from changes in the net-
work. For example, migrating a VM to another server can optimize
one application’s communication, but may hamper the performance
of other applications hosted on the same VM.

The primary contribution of this paper is CloudGazer, a visu-
alization system for analyzing, monitoring, and optimizing com-
plex distributed systems. CloudGazer lets users work with separate
perspectives while reintroducing lost inter-perspective relationships
on demand. As a secondary contribution we present the Hierar-
chical Grid layout, which further increases the scalability of our
solution in terms of the number of components.

2 DOMAIN BACKGROUND AND GOALS

Modern networks comprise different types of components that all
work together: physical servers, virtual machines (VMs) hosted on
servers, and applications running on the VMs. This design results in
a graph where relationships among components can be of arbitrary
cardinality (1:1, 1:n, n:m). In the following section, we introduce
different service models offered by providers, followed by a discus-
sion of the domain goals we aim to solve.

2.1 Cloud Computing Stack
Before cloud computing became popular, customers were able to
rent a whole physical server located in some data center. How-
ever, with improved virtualization approaches, the rise of cloud
computing and platforms such as VMWare VSphere1, OpenStack2,
and OpenNebula3 the situation has changed fundamentally. Ac-
cording to the established NIST definition [14], cloud computing
can be categorized into three service models: Infrastructure-as-a-
Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-
Service (SaaS).

IaaS providers sell VMs to their customers, who can freely install
their preferred operating system, host services, and manage their
own software-defined network. Using this strategy, IaaS providers
are able to increase their overall data center workload by hosting
multiple VMs on a single physical server. This has the advan-
tage that customers are not directly affected by hardware problems.
Most of the major cloud operators today (Amazon Web Services4,
Microsoft Azure5, Google Cloud Platform6, and SoftLayer7) pro-
vide IaaS for their customers. PaaS providers go one step further
and provide only platforms on which customers can run their ap-
plications. Examples are classic web-hosting providers and also
Microsoft Azure, Google App Engine8, and IBM BlueMix9, which
all provide a platform to host websites or web-applications. The
last type of cloud provider offers specific applications or software
to the customers, which is called SaaS. Customers of such providers
do not have any administrative rights and are restricted to using only
specific services. A prominent example is the Customer Relation-
ship Management service provided by Salesforce10.

Depending on the cloud computing model, administrators en-
counter various challenges when managing their networks. While
in SaaS scenarios they have full control of every aspect of the net-
work, when renting out servers they can influence only how the
underlying physical network is organized. In all other cloud mod-
els, administrators can manipulate the assignment of components.
In the IaaS case, for instance, they can reassign VMs to servers.
The more control customers have, the more they want to monitor,
manage, and optimize the network, for example, by moving appli-
cations between different rented VMs. However, depending on the
assignments between VMs and physical servers, moving an appli-
cation may decrease the performance of other applications.

In general, customers would benefit from knowing, for instance,
the assignments of their VMs to servers. However, for privacy rea-
sons they are often only allowed to see coarse high-level informa-
tion. Similarly, administrators of IaaS or PaaS providers would ben-
efit from knowing details about applications run by their customers,
to optimize the assignment for quality of service and energy con-
sumption.

1http://www.vmware.com/products/vsphere/
2http://www.openstack.org/
3http://www.opennebula.org/
4http://aws.amazon.com/
5http://azure.microsoft.com/
6http://cloud.google.com/
7http://www.softlayer.com/
8http://appengine.google.com/
9http://ace.ng.bluemix.net/

10http://www.salesforce.com/

http://www.vmware.com/products/vsphere/
http://www.openstack.org/
http://www.opennebula.org/
http://aws.amazon.com/
http://azure.microsoft.com/
http://cloud.google.com/
http://www.softlayer.com/
http://appengine.google.com/
http://ace.ng.bluemix.net/
http://www.salesforce.com/

2.2 Goals
Over several months of close cooperation with our project part-
ners, we analyzed the process of managing and optimizing cloud-
based networks. There are commercial products in this field such
as VMWare’s Distributed Resource Scheduler11, which try to op-
timize assignments of VMs to servers by analyzing their behavior
automatically. However, such systems are of limited use for com-
plex, heterogeneous cloud-based networks. They apply somewhat
simplistic models and rules for optimization and work best in cases
where all VMs are clones, as in a group of web servers. In heteroge-
neous networks, a deep understanding of the semantics and commu-
nication between the components from all three perspectives (phys-
ical, virtual, and application) is important to monitor and optimize
the network effectively. Consequently, a visualization solution that
targets these problems should allow administrators to:
G I: Monitor the status of the network by visually inspecting
static performance information about the components (e.g., CPU
power, available memory) and/or live performance and traffic data.
G II: Discover bottlenecks by analyzing the infrastructure’s de-
sign in the context of the monitoring information.
G III: Optimize the network interactively. Depending on the re-
quirements and purpose of the network, different optimization cri-
teria exist. For example, if the internal communication needs to be
minimized, the administrator’s goal is to reduce the length of com-
munication routes between components. If the task is to optimize
the balance of resources, administrators should be able to change
the mapping between components, e.g., the assignment of VMs to
physical servers or assignment of applications to VMs.

3 REQUIREMENTS

Below we present a list of requirements that an effective cloud mon-
itoring and optimization solution must fulfill. We elicited the re-
quirements in interviews and feedback sessions with cloud com-
puting experts, one of whom is co-author of this paper.
R I: Encode topology of cloud infrastructure. The visual repre-
sentation of the cloud-based network needs to show relationships
between components and encode different types of components.
R II: Encode static or dynamic attributes. This includes static
performance attributes such as installed main memory, hard disk
capacity, and CPU specification. In the case of dynamically chang-
ing data, the visualization must encode attributes such as the current
CPU load or main memory load factor. In addition to attributes of
single components, the communication flow and connections be-
tween components needs to be represented effectively without clut-
tering the visualization.
R III: Enable time navigation. The user must be able to select in-
teractively the time interval for which the streaming data is encoded
in the network visualization. The selected time span should be ei-
ther bound to the current time point or fixed to a static snapshot of
the network.
R IV: Support interactive changes of mapping relationships.
It should be possible for users to optimize the cloud-based network
by manipulating the mapping relationships between components.
R V: Scalability. The visualization needs to scale to a large num-
ber of components, many attributes, and a high traffic load.
R VI: Encode topological evolution. An effective solution
should enable users to explore, compare, and analyze changes
within the structure and assignments in the network over time.
R VII: Support privacy preservation. Administrators who are in
charge of specific sub-parts of the network may not have the clear-
ance to see all parts, but must be offered a privacy-preserving view,
in order to minimize side effects when optimizing their part of the
network.

11http://www.vmware.com/products/vsphere/

4 RELATED WORK

CloudGazer is designed to address the three domain-specific goals
formulated in Section 2.2. In this section we start with a discussion
of commercial tools that target similar goals, followed by a consid-
eration of related work in network traffic visualization. Finally, we
summarize contextually relevant approaches to visually comparing
and relating multiple hierarchies.

4.1 Cloud Computing Software
The majority of commercial tools follow a classic dashboard ap-
proach that enables users to monitor the current state of cloud-based
networks (cf. goal G I). Dashboards are mash-ups of simple graphs,
statistical plots, and tables that present the network topology to-
gether with traffic and performance parameters over time. In most
tools the dashboard is designed to provide a high-level overview of
the network, from which users can drill down to lower-level infor-
mation, such as single transaction events. Examples of such mon-
itoring tools are OPSView Server Virtualization Monitoring12 and
Compuware APM for Enterprise Tiers13. Depending on the tool,
information is presented at various levels of detail. The most con-
densed status of a network or components within the network are
traffic-light representations. An inherent problem in many tools is
that switching to more detailed information about one component
or part of the network often results in a loss of context.

In general, dashboard solutions—if well designed—are well
suited to addressing monitoring tasks (goal G I). However, discov-
ering potential bottlenecks (goal G II) is difficult, since individual
dashboard elements are often isolated from each other, which ham-
pers the detection of relationships and anti-patterns that could cause
problems in the near future. Most of the tools do not focus on inte-
grated ways of optimizing and fixing problems (G III). One excep-
tion is Cirba Control Console14, which gives hints on how to opti-
mize the cloud-based network in order to prevent future problems
and to increase cost-effectiveness. The hints are based on scores
that are computed for all physical and virtual machines. Although
the tool supports the task of optimizing the network based on static
data effectively, it cannot cope with live streaming data.

Tools such as OPSView Server Virtualization Monitoring and
Compuware APM for Enterprise Tiers present the overall structure
of the cloud-based network in a single graph or tree representation.
Although this works for small networks, it results in scalability is-
sues with a growing number of components. Larger graphs get clut-
tered easily, making it hard for administrators to interpret and relate
different components and their relationships in the context of live
streaming data.

In summary, none of the available tools addresses all three goals
effectively in a single solution. We therefore believe that the pre-
sented solution could have a significant impact on the design of
next-generation cloud computing tools.

4.2 Network Traffic Visualization
The problem of visualizing computer networks has been and re-
mains an active research topic in the visualization community. Most
of this work focuses on the task of monitoring and analyzing traffic
visually, for instance, to detect and react to attacks. Examples are
the work by Fisher et. al that shows connections on top of a treemap
which encodes the subnets of the network [6], and the LiveRAC sys-
tem [13], which uses a space-filling layout for visualizing the status
of nodes at multiple levels of detail over time. LiveRAC is par-
ticularly interesting, as it scales well to visualizing data associated
with thousands of nodes. In LiveRAC and many other systems, the
topology is secondary and often not even shown in the visualization.

12http://www.opsview.com/virtualization-monitoring/
13http://compuware.com/
14http://www.cirba.com/

http://www.vmware.com/products/vsphere/
http://www.opsview.com/virtualization-monitoring/
http://compuware.com/
http://www.cirba.com/

2013-04-05T 12:13

1:58 11:59 12:00 12:01 12:02 12:03 12:04 12:05 12:06 12:07 12:08 12:09 12:10 12:11 12:12 12:13

 5 bins time scale

Physical Perspective

Virtual Perspective

Application Perspective

vms

big11 big12 big13 big14 big15

bigmkt2

big21 big22 big23 big24

bigmkt3

big31 big32

big23

web02d wss2_0 wss2_1 wss2_2 wss2_8 wss2_9

bigmkt1

timeline1

semantic perspectives

focus view

block

inlay
2

3

4

5

Figure 4: Building blocks of CloudGazer. (1) Timeline for temporal navigation. (2) Semantic perspectives shown as interactive thumbnails.
(3) Focus view presenting one perspective in greater detail. (4) Blocks visualizing a single component with its associated data. (5) Inlay
showing relationships of selected nodes to other perspectives.

However, from a domain-independent visualization point of view,
it boils down to the challenge of presenting topological informa-
tion of a graph or hierarchy together with node and edge attributes
that potentially change over time. Existing solutions usually fo-
cus either on the topology aspect (e.g., [16]) or on the evolution of
nodes and attributes over time (e.g., [13]). A notable exception is
enRoute [17], where users are able to select a path in a biological
network, which is then presented together with associated experi-
mental data. Another exception is the work by Saraiya et al. [19]
that shows heatmaps and line charts as small glyph nodes embedded
in a graph visualization. However, the solution becomes cluttered
quickly if applied to graphs with more than a few dozen nodes. In
CloudGazer, we strive to incorporate both aspects—topology and
additional data attributes—while addressing the scalability issue by
splitting the network into multiple perspectives.

4.3 Hierarchy Matching
As cloud-based networks are graphs, the vast body of work on
graph visualization is applicable [22]. Due to the fact that the work-
flows and the associated data change over time, also the state-of-
the-art in the sub-field of dynamic graph visualization is relevant
in this context [1, 10]. However, instead of visualizing the over-
all graph, we cope with the complexity of the cloud-based network
by subdividing it into multiple hierarchies. This strategy requires
reintroducing the lost relationships between the hierarchies. A vast
body of related work exists on matching and comparing two or mul-
tiple hierarchies. A recent survey by Graham et al. [7] identified
seven fundamental approaches to this task: i) drawing edges be-
tween spatially separate hierarchies; ii) highlighting related nodes;
iii) animating between the hierarchy representations; iv) using ma-
trix representations; v) agglomerating nodes that have multiple par-
ents for display in the same representation; vi) 3D representation
of interlinked hierarchies; vii) atomic view that shows only parts of
the hierarchies on demand.

The first two approaches are options that we discuss in further
detail in the remainder of this section. All other approaches are
not applicable. Animation (iii) and atomic views (vii) are not vi-
able options, as administrators need to see the status of all perspec-
tives concurrently to be able to monitor them (see G I). Matrix rep-
resentations (iv), such as the RelEx system [20], can match only
two trees and are therefore not applicable in this context. Agglom-
erating nodes (v) can also be ruled out, as it would increase the
complexity of the perspectives again. 3D representations (vi) suffer
from occlusion and perspective distortion.

The first approach of drawing edges between hierarchies is well
suited to identifying structural changes. TreeJuxtaposer [15], for
instance, supports pairwise tree comparison. The work by Robert-
son et al. [18] follows a similar idea for mapping two schema trees.
Holten and Wijk [9] visualize two trees as space-filling icicle plots

that face each other, where items between plots are connected by
hierarchically bundled edges. Another example is Code Flow [21],
which visualizes drifts, merges, and insertions between different
versions of source code. The conceptual difference from the pre-
vious examples is that Code Flow visualizes the evolution between
multiple states of the tree by showing each state in a parallel co-
ordinate fashion. Although this extends the approach to multiple
trees, it has the same limitations as parallel coordinates: only rela-
tionships between adjacent trees can be seen.

All these papers are good examples of how to address the com-
parison task effectively. In CloudGazer, however, we not only have
direct 1:1 relationships between trees but inter-hierarchy relation-
ships of varying cardinality (1:n and n:m), which makes it hard for
users to understand the complex relationships between the trees.
Thus, we use dynamically created inlays to address this problem
(see Section 5.4).

The second approach identified in the survey uses coloring and
highlighting to visualize relationships across trees. Bremm et al. [3]
proposed an interactive visual comparison of multiple trees where
users need to select one tree as reference in order to see how it re-
lates to others. All compared trees are presented as small views
rendered next to each other. While this allows users to identify
topological differences between trees, it is error-prone and slow,
as it requires users to manually match the relationships by visually
comparing them—a task that is known to be cognitively demand-
ing. In CloudGazer we utilize interactive thumbnails to provide an
overview of the perspectives. However, for communicating inter-
perspective relationships, we rely on inlays that contain all rela-
tionships relevant to the current selection.

5 CLOUDGAZER VISUALIZATION APPROACH

Even small-scale networks with a few dozen components can be-
come hard to understand, as demonstrated in Figure 2. To address
this issue, we apply a divide-and-conquer strategy where the overall
graph of the network is broken up into component-specific perspec-
tives (see Figure 3). Deriving perspectives from the overall graph is
a one-time authoring step that can be performed automatically.

In CloudGazer we arrange the perspectives in a multiple co-
ordinated view setup with each perspective shown as a separate
view. The user can interactively choose a focus perspective that
is presented in detail, while other perspectives are shown as inter-
active thumbnails. As illustrated in Figure 4, CloudGazer consists
of blocks encoding component-specific attributes (see Section 5.1),
interactive thumbnails showing a high-level version of all perspec-
tives, a focus view visualizing one perspective in detail (Section
5.2), inlays embedded in the focus view showing relationships of
the focus perspective to others (Section 5.4), and a timeline for tem-
poral navigation (Section 5.5).

By selecting components of interest, the user can investigate
mapping relationships across perspectives effectively. We insert
these relationships into foreign perspectives as inlays. To make
the association between nodes and perspectives clear, we assign
the same color to all nodes that belong to a particular perspec-
tive. In the following sections we discuss the building blocks of
the CloudGazer system.

5.1 Blocks
Blocks are the basic visual unit of CloudGazer that facilitate mon-
itoring the state of a single component, as illustrated in Figure 5.
Depending on the usage scenario, a block encodes static perfor-
mance information of components or live status and traffic infor-
mation (see R II).

Dell Server label

static

Apache

dynamic

outgoing

incoming

tntn-6

attributes

connections

Figure 5: Blocks represent the status of a single component. Static
blocks (left) encode component attributes using stacked bars. Each
bar corresponds to one attribute. Dynamic blocks (right) visualize
live streaming data using heatmaps and streamgraphs. Each row of
the heatmap encodes data from different attributes over time. In the
case of live streaming data, new data is pushed into the heatmap
from the right. The streamgraph in the lower part of the represen-
tation encodes incoming and outgoing connections. The height of
the first inner layer corresponds to the number of connections with
directly linked components. With each layer the distance in the hi-
erarchy increases, as indicated by a decreasing brightness.

Stacked Bars We represent static component attributes as
stacked bars normalized by their global maximum value (see Fig-
ure 5). The light gray bar encodes a value associated with the com-
ponent, while the dark bar represents the sum of attribute values
from other perspectives that are assigned to this component. For
example, if the mapped attribute is memory, the length of the bar
encodes the main memory installed on the server. While the dark
gray bar is the memory allocated by all VMs hosted on this server,
the light gray bar encodes the remaining free memory. To make the
length of the bars comparable across components, we use the white
portion of the bar to indicate a difference to the maximum value
across all components on this perspective level.

Heatmap We use heatmaps to encode component attributes
that change over time (see Figure 5). Each column represents a
time step, and each row is associated with a different attribute. Pos-
sible attributes are CPU load, main memory load factor, and hard
drive disk usage. New live traffic data is added as the last column
on the right, pushing previous time steps one column to the left.
The number of columns can be changed interactively by the user.
We use a white (0) to orange (1) color scale.

Streamgraph We use streamgraphs to encode the communi-
cation with other components, as illustrated in Figure 5. Instead of
explicitly visualizing the communication between individual com-
ponents by changing the edge encoding, we group connections ac-
cording to the number of intermediate hops in the perspective hi-
erarchy and show the groups as layers of the streamgraph. Parent
and child components, for instance, have a distance of one, while
siblings and grandparents/grandchildren have a distance of two.
All external communication with components outside the cloud-
based network is summarized as the outermost layer. All groups

are stacked according to their distance and normalized by their cur-
rent global maximum value. In addition, we differentiate between
incoming and outgoing connections by separating them into two
charts, as show in Figure 4. Streams pointing upwards and down-
wards represent outgoing and incoming connections, respectively.
Note that, depending on the user’s preferences, it is possible to
switch from streamgraphs to a stacked bar chart representation. Due
to our design decision to encode communication in the block rather
than the edges, point-to-point connections are lost. To alleviate this
problem, a user can select a block in order to filter the data of all
other blocks to contain only the communication with that selected.

As the streamgraph is the most salient part of the block represen-
tation, it should encode the attribute that is most relevant to solving
the analysis task. In our usage scenarios, streamgraphs represent the
number of connections, while the evolution of all other attributes is
visualized in the heatmap. However, the mapping of attributes to
the streamgraph and rows of the heatmap can be tailored to the us-
age scenario. Multiple stacked streamgraphs are also possible.

Note that we use the color of blocks contained in the interactive
thumbnail perspectives to encode a single attribute. In the examples
shown in the paper, the color represents an aggregated value of the
number of connections.

5.2 Focus View
The focus view is the central visualization in CloudGazer and
presents in detail the currently selected perspective, as shown in
Figure 4. The visualization of the focus perspective is linked with
the thumbnails of all perspectives shown on the left of the interface.
When the user selects a block in the focus view, all blocks in for-
eign perspectives that share a mapping relationship are highlighted
in the interactive thumbnails, as shown in Figure 1.

CloudGazer supports various layouts for arranging the blocks
effectively (addressing requirement R I). Widely used tree layouts
such as node-link and icicle plots [11] have the disadvantage that
they grow in size rapidly with an increasing number of leaf nodes.
To alleviate the problem, we propose the Hierarchical Grid layout,
which is explained in more detail in the following section. To ac-
count for the size of the perspective and the task at hand, users can
switch freely between layouts.

Even with a space-efficient layout and dividing the network into
multiple smaller perspectives, the most crucial issue of the focus
view is its scalability to larger numbers of blocks without sacrificing
the ability to track and monitor individual components (see also
requirement R V). In CloudGazer we take a series of measures to
address this issue:

Collapse & Expand By clicking on nodes, users can collapse
all child nodes to a single node. For example, in the application
perspective all web applications can be collapsed on demand. The
collapsed proxy node then shows aggregated information from all
hidden child nodes.

Hierarchical Zooming To quickly focus on certain sub-parts
of the hierarchy, users can double-click on a node to turn into the
new root of the displayed hierarchy. This kind of navigation is par-
ticularly useful for large hierarchies.

Activity-Based Shrinking In real-world scenarios not every
component will be active. Depending on the current load of the
network, some components might have little or no communication
at all. These components are less relevant to administrators. Thus,
they can be visualized in a simplified and more compact form. For
these cases, older time steps can be removed, to make the blocks
thinner, or blocks can even be hidden. CloudGazer optionally pro-
vides automatic adaptation of component width according to its cur-
rent activity, calculated by the attributes’ variance over time. The
thinner a block, the less of its attribute’s history is shown, which en-
sures that blocks remain comparable. In addition, the blocks can be

root

f1

rack1

s1 s2 s3

rack2

s4 s5

f2

rack3

s6

(a) Node-link layout

root

f1

rack1

s1 s2 s3

rack2

s4 s5

f2

rack3

s6

(b) Icicle plot layout

root

f1

rack1

s1 s2

s3

rack2

s4 s5

f2

rack3

s6

(c) Hierarchical Grid layout

Figure 6: Hierarchy represented by the different layout approaches available in CloudGazer.

automatically ordered by activity, such that active ones are moved
to the front, the downside of which is a constantly changing layout.

5.3 Perspective Layouts
An effective layout for arranging hierarchically structured perspec-
tives is an important success factor for a cloud-based network vi-
sualization. For smaller hierarchies we provide a regular node-link
tree layout (see Figure 6a). To increase the scalability in terms of
leaf nodes (R V), we introduce the Hierarchical Grid layout.

The Hierarchical Grid layout is a modified version of an icicle
plot [11]. As icicle plots are space filling, the node widths on each
level of the hierarchy are determined by dividing the available width
by the number of nodes. Figure 6b shows a small hierarchy repre-
sented as an icicle plot. However, with an increasing number of
nodes, the node width can become too small. As we visualize traf-
fic data and additional attributes inside the nodes, a reduced node
width also reduces the space for visualizing data. In classic icicle
plot implementations, users can alleviate the problem by zooming
into a part of the hierarchy by promoting a node to become the new
root. In the Hierarchical Grid layout we arrange the leaf nodes in
a grid-like structure. While this causes the representation to grow
downwards, the node width for the leaves is kept constant, as can be
seen in Figure 6c. A constant node width is important to make the
data shown in the streamgraphs and heatmaps comparable across
blocks. Figure 1 shows the layout applied to an application perspec-
tive with 54 blocks. The design decision to keep the node width
static in a space-filling layout can result in empty space between
branches of the hierarchy. However, we consider this to be a minor
esthetic issue that does not have a negative impact on functionality.

Both icicle plots and the Hierarchical Grid layout express the hi-
erarchy implicitly through the position of the nodes. If nodes from
different levels touch each other, they share a relationship. As traf-
fic information is encoded in the nodes themselves and not on the
edges, icicle plots and the Hierarchical Grid layout are more space
efficient than explicit node-link diagrams. Due to the compactness
of the Hierarchical Grid and the fact that it can also be interpreted
when rendered smaller, we use this layout for the interactive thumb-
nails of the perspectives, as shown on the left in Figure 1.

Note that in this paper we focus on hierarchically structured per-
spectives. However, the presented visualization concept is indepen-
dent of structure and layout of the perspectives and could also be
applied to general graphs or other specialized topologies.

5.4 Inlays
A downside of splitting the overall network into multiple per-
spectives is the loss of visual representation of the mapping rela-
tionships between components belonging to different perspectives.
CloudGazer addresses this problem by letting the administrator se-
lect blocks for which the lost context will be reintroduced using
inlays. Inlays are dynamically created graphs that are assembled
according to the current block selection. When the user selects a
single component in one perspective, all related components from
other perspectives are added to the inlay graph. If the selected block

is a server, for instance, the inlay contains all VMs hosted by this
server and all applications running on the VMs (see Figure 7). If the
user selects a second block, the inlay algorithm looks for a path that
connects the selected components in the other perspectives (R I). If
a path can be found, all components along the path will be part of
the inlay, as can be seen in Figure 1.

In the focus view, which shows the selected perspective, we add
the inlay at the bottom. If the inlay shows the path between two se-
lected blocks across multiple perspectives, the left-most and right-
most blocks are duplicates of the originally selected block. We use
dotted lines to connect the original blocks with the duplicates in
the inlay. Animated transitions [8] help users to track visual state
changes when adding the inlays.

By inspecting components and relationships in inlays, adminis-
trators can discover bottlenecks in the cloud infrastructure (address-
ing G II). In addition, CloudGazer enables users to optimize the net-
work proactively by changing mapping relationships (G III). Using
drag-and-drop makes it possible to reassign components across per-
spectives (fulfilling R IV). If blocks visualize live traffic data, the
impact of the changes can be observed immediately.

5.5 Timeline
The interactive timeline provides for temporal navigation and for
choosing the time span that shows up in blocks (R III). The length
of the time span directly influences the block width. The time span
is discretized into multiple bins, as indicated within the selected
time span shown in the top of Figure 4. The number of discrete
steps can be changed interactively and is used within blocks to bin
attribute values.

5.6 Implementation
CloudGazer is an HTML5 web application that uses D3 [2] for
visualization and the AngularJS15 web framework to mash up el-
ements. The server part is written in Python using the Tornado
framework16 to provide live traffic data. The interaction with the
prototype system is demonstrated in an accompanying video.

6 USAGE SCENARIOS

We demonstrate the effectiveness of CloudGazer in two scenarios.
The first discusses how the prototype system can be used to op-
timize statically a cloud-based network of one of our partners by
optimizing assignments between components (G III). The second
uses simulated data to demonstrate how CloudGazer can be used to
monitor dynamic networks (G I) and discover bottlenecks (G II).

6.1 Optimizing a Cloud-Based Network
Our project partner RISC Software GmbH specializes in admin-
istrating various cloud infrastructures for different customers and
research projects. They maintain an IBM CloudBurst with four
physical servers. Each CloudBurst server has 72 GB memory, is

15http://angularjs.org/
16http://tornadoweb.org/

http://angularjs.org/
http://tornadoweb.org/

root

cloudburst

cb1 cb2 cb3 cb4

risc_sw

rsw1 rsw2 rsw3 rsw4

cb2

tele_2 prodchain_2 prodchain_3 prodchain_5

redis_3 matlab_6 matlab_7 matlab_9

(a) Before optimization

root

cloudburst

cb1 cb2 cb3 cb4

risc_sw

rsw1 rsw2 rsw3 rsw4

rsw1

intern_1 tele_1 tele_2 tele_3

mail_1 apache_4 redis_3 matlab_1

(b) After optimization

Figure 7: Server perspective with the selected server ‘cb2’ and the corresponding inlay with related VMs and applications. The two
stacked bars encode the components’ main memory and disk space (dark gray = used, light gray = free, white = empty space to make bars
comparable across components, i.e., only present if available memory is different between components on the same hierarchy level). To
reduce the connection distances between the VMs ‘tele 1’, ‘tele 2’, and ‘tele 3’, the administrator reassigns the VM ‘tele 2’ to server ‘rsw1’
via drag-and-drop.

connected to a 40 TB storage array, and has a 10 GBit connection.
The VMs have 512 MB to 32 GB of memory assigned, which can
be flexibly allocated. In addition, they maintain a second rack with
four servers, each with a configuration of 128 GB memory, 2 x 1 TB
internal storage, and a 10 GBit connection.

A research project on traffic engineering is collecting and pro-
cessing telematics data. Three applications are required for this
purpose: a database, a computation server, and a web server, which
initially run on independent VMs (tele 1, tele 2, tele 3) and on sep-
arate CloudBurst servers (cb1, cb2, cb3). However, the data transfer
between the database and the computation server results in high in-
ternal network load. The administrator decides to merge the three
applications on one physical server in order to reduce communica-
tion distances. Figure 7 shows the server perspective in focus with
related VMs and applications running on the selected server cb2 as
inlay. The visualization in CloudGazer shows that the CloudBurst
servers have insufficient memory capacity to merge all VMs on one
single server. The administrator explores the servers of the other
rack and discovers that server rsw1 has enough available memory
for hosting all project-related applications. Using drag-and-drop,
he assigns the VM of each CloudBurst server to server rsw1.

6.2 Monitoring Dynamic Cloud-Based Network

In the second usage scenario we demonstrate the CloudGazer sys-
tem with simulated data from the 2013 Big Marketing VAST Mini-
Challenge [4]. The dataset consists of NetFlow data along with
additional server attributes, including CPU load and memory us-
age, collected over a period of two weeks. We interpret the given
network infrastructure as the application perspective. Based on this
dataset, we generated a virtual and physical perspective. Since the
data are relatively sparse, we aggregated them such that one sec-
ond in the visualization corresponds to 60 seconds in the dataset.
Further, we combined all workstations of each Big Market section
in ten characteristic workstations running on terminal servers. To-
gether with cloud computing experts we created the following use
case to demonstrate how CloudGazer supports administrators mon-
itoring a network based on live data:

The administrator of the Big Market network is responsible for
handling customer requests concerning problems with the cloud in-
frastructure. A customer reports a problem accessing her e-mail and
other applications. The administrator starts to investigate the issue
by looking at internal logs. He finds out that the customer is logged
in as wss1 8 and decides to look at the status of the application in
CloudGazer’s application perspective (see Figure 1). Each block in
the focus view shows the overall status of an application, includ-
ing CPU load and disk usage as heatmaps and incoming/outgoing

connections as streamgraphs. However, neither wss1 8 nor the mail
server mail01 are under heavy load according to the block visual-
izations. There is some external traffic on wss1 8, but this seems to
be regular traffic caused by the customer’s web usage. The adminis-
trator suspects that not the applications themselves are the problem
but the VMs they are running on, and in particular their physical
relationship. By selecting both blocks mail01 and wss1 8 in the fo-
cus view, an inlay is added showing with which VMs and servers
the applications are associated. He realizes that big15, which hosts
the customer’s workstation, is under heavy load, as shown in Fig-
ure 1. The administrator clicks on the VM block, which makes
CloudGazer switch to the virtual perspective that shows an inlay of
all applications hosted on the selected VM. The administrator real-
izes that one application, wss1 6, is consuming most of the VM’s
resources. Using drag-and-drop, he moves this application to an
idle VM. This solves the customer’s problem, since the VM can
now provide more resources to the workstation, and the overall net-
work is again more balanced.

7 DISCUSSION AND LIMITATIONS

Scalability Scalability is the most critical concern when de-
veloping monitoring visualization techniques for large-scale cloud
infrastructures. The strategy of splitting the network into seman-
tic perspectives alleviates the problem but does not conclusively
solve it. To further increase the scalability of CloudGazer so it can
cope with large cloud-based networks, we take several measures,
the most important of which is an optimized layout (Section 5.3)
and specially designed interaction techniques (Section 5.2).

While the strategy of breaking up a cloud-based network into
smaller semantic perspectives increases its scalability to larger net-
works, it also introduces problems concerning loss of relationship
representations. In CloudGazer we address this issue by adding in-
lays that show relevant portions of related perspectives on demand.

Communication Encoding Communication between compo-
nents is mainly 1:1. A naive approach is to visualize all connec-
tions using a node-link diagram and encode the amount of traf-
fic by changing the width or color of edges. However, in discus-
sions with our project partners we found that the communication
distance, i.e., the number of intermediate hops, is more relevant
than the actual communication endpoint. Therefore, we use stream-
graphs to encode communication distances for each component (see
Section 5.1). When a user selects a component, we filter all other
streamgraphs to show only the communication with that compo-
nent, allowing users to inspect the 1:1 connections on demand.

Optimization Costs CloudGazer allows administrators to op-
timize their networks interactively by manipulating the assignments

of components across different perspectives. For example, adminis-
trators can move one VM to another server in order to optimize the
communication distances or average server load. However, moving
a VM to another server entails costs, such as the transfer time from
one server to another or a possible short outage of the VM. In the
current version of CloudGazer these costs are not considered, even
though they can influence the usefulness of optimizations in terms
of cost/benefit ratio.

Evolution Monitoring a network consists both of tracking the
status of its components and of monitoring for changes in its topol-
ogy due to reconfiguration in response to changed requirements or
to optimization measures. Thus, perspectives and the mappings be-
tween them also change over time. Finding ways to let administra-
tors track changes and evaluate their consequences is an interesting
research question (R VI), which we plan to address in the future.

Privacy Preservation In large-scale networks, multiple ad-
ministrators work on different parts or aspects of the same network.
Some users may have limited clearance to see certain parts of the
network. However, to avoid side effects during concurrent opti-
mizations, it is beneficial to give them an overview of the whole
network. Privacy-preserving visualization techniques need to be ap-
plied to provide abstract overviews without showing details that are
not allowed to be seen by certain users. A simple approach is to hide
labels. However, even without labels individual components might
be identifiable due to characteristic communication or attribute pat-
terns. Consequently, more sophisticated privacy-preserving visu-
alization techniques must be integrated [5]. CloudGazer does not
yet include such measures. Therefore, requirement R VI remains
open for future work. In particular, the problem of finding the right
balance between costs and benefits of privacy-preserving network
visualizations is an interesting topic.

8 CONCLUSIONS AND FUTURE WORK

We have presented CloudGazer, a flexible visualization solution for
monitoring and optimizing cloud-based networks. Following the
divide-and-conquer principle, we first divide the overall network
into smaller semantic perspectives that are easier to understand and
handle. In a second step, we reintroduce the lost inter-perspective
relationships for selected parts of the focus perspective by adding
dynamic inlays.

As part of future work we plan to increase the flexibility of our
approach by generalizing the topology of perspectives from hierar-
chies to general graphs. This is particularly relevant for covering
large-scale infrastructures where many redundant components and
connections exist in order to increase reliability and system stabil-
ity. Another interesting open research direction is tracking and vi-
sualizing the evolution of networks in terms of attributes (traffic)
and topological changes, including altered relationships between
perspectives. Applying methods from predictive analytics to this
provenance information would enable administrators to pinpoint
potential future bottlenecks. In a next step, the analytical process-
ing results could also be used to make suggestions, such as how and
when the topology or the mapping between components should be
optimized, and what the implications of the changes would be. Ulti-
mately, this would enable administrators not only to react to current
problems but to prevent them proactively.

ACKNOWLEDGEMENTS

This work was funded by the Austrian Research Promotion Agency
(840232).

REFERENCES

[1] F. Beck, M. Burch, S. Diehl, and D. Weiskopf. The state of the art
in visualizing dynamic graphs. In Proceedings of the Eurographics
Conference on Visualization (EuroVis ’14) – State of The Art Reports,
2014.

[2] M. Bostock, V. Ogievetsky, and J. Heer. D3: Data-driven documents.
IEEE Transactions on Visualization and Computer Graphics (InfoVis
’11), 17(12):2301–2309, 2011.

[3] S. Bremm, T. von Landesberger, M. Hess, T. Schreck, P. Weil, and
K. Hamacherk. Interactive visual comparison of multiple trees. In
Proceedings of the IEEE Conference on Visual Analytics Science and
Technology (VAST ’11), pages 31–40. IEEE, 2011.

[4] K. Cook, G. Grinstein, and M. Whiting. VAST challenge dataset 2013,
mini-challenge 3, 2013.

[5] A. Dasgupta and R. Kosara. Adaptive privacy-preserving visualization
using parallel coordinates. IEEE Transactions on Visualization and
Computer Graphics (InfoVis ’11), 17(12):2241–2248, 2011.

[6] F. Fischer, F. Mansmann, D. A. Keim, S. Pietzko, and M. Waldvo-
gel. Large-scale network monitoring for visual analysis of attacks. In
Proceedings of the Workshop on Visualization for Computer Security
(VizSec ’08), pages 111–118. Springer, 2008.

[7] M. Graham and J. Kennedy. A survey of multiple tree visualisation.
Information Visualization, 9(4):235–252, 2010.

[8] J. Heer and G. G. Robertson. Animated transitions in statistical data
graphics. Proceedings of the IEEE Symposium on Information Visual-
ization (InfoVis ’07), 13(6):1240–1247, 2007.

[9] D. Holten and J. J. v. Wijk. Visual comparison of hierarchically orga-
nized data. Computer Graphics Forum (EuroVis ’08), 27(3):759–766,
2008.

[10] N. Kerracher, J. Kennedy, and K. Chalmers. The design space of tem-
poral graph visualisation. In Proceedings of the Eurographics Confer-
ence on Visualization (EuroVis ’14, Short Papers Track), 2014.

[11] J. B. Kruskal and J. M. Landwehr. Icicle plots: Better displays for
hierarchical clustering. The American Statistician, 37(2):162, 1983.

[12] A. Lex, C. Partl, D. Kalkofen, M. Streit, S. Gratzl, A. M. Wasser-
man, D. Schmalstieg, and H. Pfister. Entourage: Visualizing relation-
ships between biological pathways using contextual subsets. IEEE
Transactions on Visualization and Computer Graphics (InfoVis ’13),
19(12):2536–2545, 2013.

[13] P. McLachlan, T. Munzner, E. Koutsofios, and S. North. LiveRAC:
Interactive visual exploration of system management time-series data.
In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems (CHI ’08), pages 1483–1492. ACM, 2008.

[14] P. Mell and T. Grance. The NIST definition of cloud computing, 2011.
[15] T. Munzner, F. Guimbretière, S. Tasiran, L. Zhang, and Y. Zhou. Tree-

Juxtaposer: Scalable tree comparison using focus+context with guar-
anteed visibility. In Proceedings of the ACM Conference on Com-
puter Graphics and Interactive Techniques (SIGGRAPH ’03), pages
453–462. ACM, 2003.

[16] G. Namata, B. Staats, and B. Shneiderman. DualNet: A coordinated
view approach to network visualization. In Proceedings of the ACM
Conference on Information and Knowledge Management (CIKM ’07).
ACM, 2007.

[17] C. Partl, A. Lex, M. Streit, D. Kalkofen, K. Kashofer, and D. Schmal-
stieg. enRoute: Dynamic path extraction from biological pathway
maps for exploring heterogeneous experimental datasets. BMC Bioin-
formatics, 14(Suppl 19):S3, 2013.

[18] G. G. Robertson, M. P. Czerwinski, and J. E. Churchill. Visual-
ization of mappings between schemas. In Proceedings of the ACM
SIGCHI Conference on Human Factors in Computing Systems (CHI
’05), pages 431–439. ACM, 2005.

[19] P. Saraiya, P. Lee, and C. North. Visualization of graphs with as-
sociated timeseries data. In Proceedings of the IEEE Symposium on
Information Visualization (InfoVis ’05), pages 225–232. IEEE, 2005.

[20] M. Sedlmair, A. Frank, T. Munzner, and A. Butz. Relex: Visual-
ization for actively changing overlay network specifications. IEEE
Transactions on Visualization and Computer Graphics (InfoVis ’12),
18(12):2729–2738, 2012.

[21] A. Telea and D. Auber. Code flows: Visualizing structural evolution
of source code. Computer Graphics Forum (EuroVis ’08), 27(3):831–
838, 2008.

[22] T. von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. van
Wijk, J.-D. Fekete, and D. Fellner. Visual analysis of large graphs:
State-of-the-art and future research challenges. Computer Graphics
Forum, 30(6):1719–1749, 2011.

	Introduction
	Domain Background and Goals
	Cloud Computing Stack
	Goals

	Requirements
	Related Work
	Cloud Computing Software
	Network Traffic Visualization
	Hierarchy Matching

	CloudGazer Visualization Approach
	Blocks
	Focus View
	Perspective Layouts
	Inlays
	Timeline
	Implementation

	Usage Scenarios
	Optimizing a Cloud-Based Network
	Monitoring Dynamic Cloud-Based Network

	Discussion and Limitations
	Conclusions and Future Work

